
1

Measuring Reliability of Software Products

Pankaj Jalote, Brendan Murphy, Mario Garzia, Ben Errez
Microsoft Corporation

One Redmond Way
Redmond, WA 98052

{pjalote, bmurphy, mariogar, bene}@microsoft.com

Abstract
Current methods to measure the reliability of software

are usually focused on large server based products. In
these approaches, the product reliability is traditionally
measured in terms of catastrophic failures, as the failure
data is generally collected manually through service
organizations which filter out data on many types of
operational failures. These method and metrics are not
applicable for mass market products that run in multiple
operational profiles, where other types of failures might
be equally important, and where manual data collection
is inadequate. For such products, unique issues arise in
obtaining the failure and population data, and in
analyzing this data to determine reliability. In this paper
we first discuss some of the key issues in determining
reliability of such software products, and then discuss two
systems being used for measuring reliability of
commercial software products.

1. Introduction

Knowing the desirable properties of a product in
quantitative terms is an established part of the engineering
activity. As reliability is one of the most desirable
properties of most products in the modern world, its
quantitative specification is clearly needed and desired.
Though general reliability theory has been well developed
for years, as the software process has some unique
characteristics which do not exist for physical systems, a
new set of models called the reliability growth models
were proposed for estimating the reliability of software
systems (for a survey of reliability models see [5,7].)

Most reliability growth models depend on one key
assumption about evolution of software systems – faults
are continually removed as failures are identified thereby
increasing the reliability of the software. The data on
failure and fixes for these models is typically obtained
during the final stages of testing. The growth model is
used to predict the reliability of the software system at

any point in time during this failure-and-fix process. The
key issue is to obtain a good model that can explain the
past data and predict the future.

Once the product is released, however, we are no
longer in a controlled test situation but instead are in an
operational environment with many users (maybe even
millions.) Consequently, faults are not necessarily
removed as failures occur. Furthermore, as many
installations of the software exist, it is possible to obtain
sufficient failure data before any changes are made to the
software to fix the faults. In other words, sufficient failure
data about one particular software version can be
available. Both these factors make it feasible to measure
the reliability of a software system in production –
something that is not practical with single-installation
software and that goes beyond the test environment
considered by growth models.

For measuring the reliability of a product, the main
issue is that of collecting accurate and complete failure
and population data that is needed for determining
reliability. Often the failure data is obtained through a
Product Service Organization (PSO) where users can
report failures when they encounter them, and population
data is obtained from the sales figures. (Examples of use
of this approach are given in [1, 8, 19].) Measuring
reliability this way implicitly assumes that reliability of a
product is the same for all users. In addition, it also
assumes that most failures are reported and that the user
base is known.

This approach for measuring reliability can work for
large server-type software products whose usage profile is
similar, whose population data is well known, and where
failures are likely to be reported due to the nature of their
customer base. However, these assumptions do not hold
for a mass-market product as it often has users with
greatly varying operational profiles, the population data
for different users groups is not easily known, and
different types of users have different inclinations to
failure reporting. Measuring reliability of such products
raises many unique issues.

2

In this paper we first discuss the key issues associated
with measuring the reliability of such widely used
software products and then describe two measurement
systems that are being used to measure reliability of
commercial software products. But before we do that, let
us define what we mean by reliability of a software
product and how it can be computed from the failure data.

2. Product Reliability

The reliability of a system is a measure of its ability to
provide a failure-free operation. For many practical
situations, reliability of a system is represented as the
failure rate. For measuring the failure rate of a software
product, we can have N installations of the software under
observation. If the total number of failures in all the N
installations in a time period T is F, then the best estimate
for the failure rate of the software is [18] λ = F / (N * T) .
This approach for measuring failure rates has been widely
used [1, 19].

Even this straightforward approach for quantifying
reliability has some underlying assumptions. Some of the
key assumptions in measuring reliability in this manner
are:

 All failures have “equal” reliability impact, and
that there is a single number that captures the
reliability of the product under all usage
scenarios.

 All the F failures can be recorded, and the
population size N is known.

 By normalizing by T*N (and T is generally
measured in days,) it is assumed that the system
is in use for same amount of time each day
(generally assumed to be 24 hours.)

 The operational profile is consistent across the
user base.

For measuring reliability of a mass-market product,
these assumptions do not hold. There are often multiple
user groups who use the product in very different ways
and therefore the impact of specific failures varies
between the different user groups. The weight of different
types of failures also changes from product to product –
for example, for some products a user-interface failure is
very important while for real-time applications
performance failure are often far more important. The
usage time of such software is generally not 24-hours a
day, and users often do not report failures. The population
size is also hard to obtain.

Hence, for a mass-market product, the above approach
for reliability measurement has to be extended to
accurately represent the reliability experience of different
user scenarios. For capturing the user perception of
reliability, we need to have the ability to distinguish

different types of failures in reliability measurement. We
view reliability of a product as a vector comprising of
failure rates for different failure types. That is, the
reliability of a product is:

Product Reliability = [λ1, λ2 , λ3 , ……, λn]

Note that from this reliability vector we can get a
single reliability number for a product by taking a
weighted sum of the failure rates for different types of
failures. The weights will represent the relative
importance for the product of the different failure types. If
all failures are equal, then the overall failure rate is the
sum of all the failure rates. Note also that varying
reliability perceptions of various user groups can be
reflected by assigning suitable weights to different types
of failures. The weights, however, need to remain
unchanged if the evolution of reliability with time is to be
studied.

This view of product reliability also provides a
practical framework for improving the product reliability
experience of users. Measurement in this form, along with
an idea of the users needs, can help better determine the
product areas that need to be strengthened for improving
the users’ reliability experience.

3. Measuring Reliability

Let us now discuss some of the key issues faced when
measuring the reliability of a software product, using the
approach discussed above.

3.1. Failure Classification

As reliability is concerned with the frequency of
different types of failures we need to have a clear and
unambiguous classification of failures. The failure
classification scheme should be general and
comprehensive and should permit a unique classification
of each failure. This failure classification will have to be
from the users’ perspective, as we are trying to capture
the reliability experience of the user. Unfortunately,
though many fault classifications have been proposed in
the literature (for example, see [2] and the IEEE standard
[9]), there are few classifications of failures available.
One classification was proposed by Cristian, which
classified failures as omission, timing, and response [4].
This classification partitions the failures at an abstract
level and needs to be extended to capture the users view.

For a modern software product, we suggest that
failures be partitioned at the top level as unplanned
events, planned events, and configuration failures.
Unplanned events are traditional failures like crash, hang,
incorrect or no output, which are caused by software
bugs. Planned events are those where the software is

3

shutdown in a planned manner to perform some
housekeeping tasks. Configuration failures occur due to
problems in configuration setting. In many systems,
configuration failures account for a large percentage of
failures [3]. We also include in this category, failures due
to human errors, which are very important in many data
center operations. It can be argued that planned events
and configuration failures are not software failures, as
there is no software fault causing them, but as they affect
the user’s reliability experience, we believe they should
be included. Some of the examples of the types of events
that can be included under these categories are given in
Figure 1.

 Unplanned Events
o Crashes
o Hangs
o Functionally incorrect response
o Untimely response – too fast or slow

 Planned Events
o Updates requiring restart
o Configuration changes requiring a

restart
 Configuration failures

o Application/System incompatibility
error

o Installation/setup failures

Figure 1: A failure classification

This failure classification provides a framework for
counting failures. Different products may choose to focus
on specific types of failures only, depending on what is of
importance to their users and the overhead of
measurement. However, if we want to compare
reliabilities of different products, it is essential to use a
standard framework and that failures are counted in the
same manner.

3.2. The Population Size

A key data we need for determining reliability is the
population size, that is, how many units of the product are
in operation. In the past sales information has often been
used [1, 8, 19]. Using the sales data for mass market
product poses new problems. Many product
manufacturers use multiple distribution channels to sell a
product. Whereas the product manufacturer typically
records a sale when the product is “sold” to the channel,
when the product is actually installed onto a computer by
a user (by the channel) is often not known. Additionally,
large organizations may buy licenses for unlimited
installations, with the actual number of users not reported
to the product manufacturer. Hence, getting an accurate
data about the actual population of units in use is not easy.

Furthermore, using the entire user population base for
reliability will require obtaining failure data from this
base, which will be much harder for a widely-sold mass
market product.

We propose that for determining reliability a (random)
sample, called the observed group, of the population size
be taken. With this identified observed group, failure data
will be recorded only for this group of users. Regular
statistical techniques can be used to determine the sample
size such that the final result is accurate to the degree
desired.

If we fix the population size early, it allows the
reliability growth with age to be tracked. It has been
observed that in many cases failure rate of units decrease
in the initial stages as users stabilize their configuration
and learn to avoid failure causing situations. By fixing the
sample relatively early, we avoid the problem of mixing
failure rates of old and new units, and can easily
determine the steady state reliability. Fixing a sample
early also allows understanding of the impact of patches
and service packs released by the product manufacturer.

3.3. Obtaining Failure Data

For reliability computation, we need a mechanism to
collect failure data, where the failures are occurring on
system used by users distributed around the world.

In the past, failures reported by the users to the PSO
have been used [1, 8, 14, 19]. But it is well known that
customers do not report all the problems they encounter
as they sometimes solve it themselves. This non-reporting
is far more pronounced in mass-market products.
Furthermore, for a mass-market product, there may be
multiple levels of PSOs – a retailer or a distribution
channel may be providing a PSO or a large user
organization may have its own PSO. A failure will
typically be escalated to the PSO of the product
manufacturer only if it cannot be addressed by other
PSOs. Hence, this method of data collection, though
useful for trend analysis and getting some general sense
of reliability, will not lead to an accurate determination of
reliability.

If data is to be reported by the user, we suggest the use
of polling. In this approach, users in the observed group
are periodically asked to fill a form to report failures they
have experienced in the last 24 hours. If we assume that
the probability of multiple failures of a type in 24 hours is
minimal (a fair assumption for the widely distributed
products that we are considering,) this form can be a
simple, with check boxes for each failure type, and its
submission can be easily automated.

The most accurate data collection for the observed
group will occur if the data is collected and reported
automatically through proper instrumentation and triggers
in the product. An event logging mechanism provides the

4

ability for products to record special events. Products
using event logging mechanism have to be programmed
to record their specific events in the log. These events will
typically be based on user interactions (to capture the
usage time,) and the program state and exit status (to
capture failure data.) From these event logs, a product
manufacturer can filter out system events of interest that
are recorded by the OS itself (e.g. reboots, crashes, etc.),
and the specific events their products have recorded. This
subset of the event log can be used to determine the
reliability and availability of the products. The level of
detail possible in the reliability analysis depends on what
events are being recognized and logged by the product.

Event logging has been used in operating systems to
assist in the management and repair of systems and
determine availability and reliability of such systems [6,
10, 15, 16]. The focus of these systems is often on system
shutdowns and recovery. However, event logs have not
been used much for measuring reliability of mass-market
products. In such products, the type of failures that may
be of interest is broader and identifying a definitive set of
events to record is harder.

3.4. Usage Time

For an accurate computation of reliability, the actual
usage time of the product by the user needs to be
determined to be able to calculate the failure rates. As a
convenience, it is often implicitly assumed that the
product is used, on an average, for the same amount of
time every day by every user. With this assumption, the
day count can be used for determining reliability.

However, the usage duration for different users may
vary considerably for mass-market products. As the
failures encountered by a user clearly depend on the
amount of usage of the product – the longer the usage
duration the more the chances of encountering failures –
to get an accurate idea of the reliability of the product in
use, we need to capture the usage time. Employing usage
time instead of number of days of ownership for
reliability computation is similar to the calendar time vs.
CPU time discussion in reliability growth models [17].
For reliability growth models, it is widely believed that
using CPU time gives better reliability estimates. Note
that usage time collection throws up new issues for mass
market products as the use of such products is generally
spread over many sessions.

3.5. Hardware/Software Configuration

For server-type software, its underlying hardware
configuration is often well defined and understood. This
is not so for mass market product – a product may run as
a client or as a server, may run on a machine with lots of
memory or a machine with little memory, a machine with

network connection or without, etc. Besides the hardware
configuration, the product may also co-exist with many
other types of software resident on the computer including
games, entertainment software, various programs
downloaded from the Internet, etc. It is known that the
failure rate of software often depends on the load on the
hardware or the capacity of the hardware [11, 12] – for
example a software is more likely to fail in a system with
small memory as compared to a system with large
memory. Though our reliability definition does not
require information about hardware/software
configuration, for improving the reliability of products,
the dependency of reliability on the configuration needs to
be understood and characterized. For this reason, it is
highly desirable if the configuration information for users
in the observed group is also collected.

4. Example Measurement Systems

Microsoft has many mass-market products. Efforts are
underway at Microsoft for measuring reliability of some
of these products. Here we briefly describe two such
efforts, and how they address the issues mentioned above.

4.1. Office Customer Experience Improvement
Program (CEIP)

One of the first systems to attempt to apply the
proposed methodology was Microsoft Office Systems
2003 through its Customer Experience Improvement
Program (CEIP) technology. CEIP is an elaborate,
programmable, event recording system for products,
which can be used to record both failure data and usage
data.

To record failures of a software product through CEIP,
the product has to be programmed to record events using
CEIP provided APIs. Generally, for capturing failure
information, three types of events are captured.

 Application termination – when an application
terminates, an event is recorded. This records
normal exits, crash exits, hangs, and user forced
exits. Events on some exits are recorded by a
handler that is executed before exiting. Some
exits cannot be recorded at the time they occur;
instead, they are identified and recorded when
the application is restarted using various status
tracking mechanisms.

 Assert failures – An application may be shipped
to the customers with assert statements in its
code (called ship asserts.) If a ship assert fails, it
is treated as an event and information about the
failing assert and some related state information
is recorded.

5

 Alerts – most applications give alerts to the users
when some special situations arise (e.g. file does
not exist, network not available, file writing fails,
etc.) Many of these alerts represent failure
situations, and recording of alerts provides
additional failure information.

Application termination events are used mostly to
identify crashes and hangs. Assert and alert events (as
well as some application termination events) are used to
identify functionality failures. Some alerts identify
configuration failures. Failures of each assert and alert is
recorded as a separate event, and their grouping into
categories is left for post-processing of the event log.
How completely the different types of failures are
recorded through these means depends on how well the
application can identify the failures through asserts and
alerts. Our experience is that most failures that users are
concerned about can be identified through these means.

When the event data is collected, configuration
information like the version of the underlying Operating
System, patches uploaded, the version of the application,
language being used, amount of memory in the system,
information about the hardware, etc. is also collected.
Through this data, loading of patches and other updates
can be identified, providing information about “planned
events”. The configuration data also provides the ability
to study correlations of failures with different
configuration parameters.

In addition to failure data, CEIP also collects usage
data using the same event logging mechanism as used for
failure data. Essentially, the start and end of a session are
recorded, giving the duration of each session as well as
the total number of sessions for the user. Many other user
actions (like giving keyboard input, moving the mouse)

are also recorded. Furthermore, by polling every minute

to see if the user is active, the actual time the user is
interacting with the application is also recorded. The
mechanism is now also being used to record the
performance of applications. Rules will be built later to
classify some levels of performance as constituting
“untimely response” failures.

CEIP is available to a user by subscription only. That
is, it is enabled only for users who subscribe to it, and
data is collected only for these users. Each subscriber is
assigned a unique number. The subscribers therefore form
the observed group. Through this subscription process,
the total population size of the observed group is known.
It should be mentioned that this method of selecting the
observed group is not strictly random. However, there are
thousands of users who have subscribed to CEIP
providing a large and wide user base for measurements.

Hence, the information from CEIP provides data on
different types of failures encountered by users for the
application being investigated, the usage time for the
application and the number of sessions, and the total
population. (CEIP provides a lot more data for
understanding the user behavior as well.) From this data,
failure rate for different types of failures being recorded
can be determined, giving the reliability of the
application.

Let’s look at an example. Though data about different
types of failures is recorded and their failure rates can be
determined, quite frequently managers focus on crash-
failure and hang-failures, as these are most disruptive for
the users, and the users attach the highest weight to these
failures. Given in Table 1 is part of a sample report that is
generated by CEIP tools. The report gives the total
number of sessions, the total session length, and the count
of crash and hangs failures for some observation period.
Failure rate for these two failure types is then computed

from the data – it can be computed as number of failures

Product
No of
Sessions

No of Crash
Failures

No of Hang
Failures

Session
Length
(mts)

Crash
Failure Rate
(per hr)

Hang
Failure Rate
(per hr)

A 33,000 300 1,000

3,140,000 0.0057 0.0191

B 422,000 1200

8,700

46,450,000 0.0015 0.0112

C 20,000 100

700

2,540,000 0.0023 0.0165

D 24,000 100

1,000

5,940,000 0.0010 0.0101

E 153,000 600

3,300

12,920,000 0.0027 0.0153

F 12,000 100

200 900,000 0.0066 0.0133

G 648,000 2600

29,900

183,530,000 0.0008 0.0097

Table 1: An example CEIP report

6

per session or number of failures per hour of usage. Note
that the data in this table is for illustration purposes only –
it has been obtained from an actual report but has been
scaled to protect the confidentiality of the data.

From this data measures such as mean time to crash, or
mean time to hang, could easily be calculated. Similarly,
the average session length and the mean number of
sessions before a crash/hang can also be determined.

How the mean time to some type of failure (or the
failure rate) evolves with time can easily be determined
from past data. A sample chart showing the mean time to
crash (MTTC) failures for a few different products is
shown below in Figure 2. The names of the products and
the actual values of time has been omitted to protect the
confidentiality of the data, though the trends are as
obtained from the actual data.

MTTC Growth

1 2 3 4 5 6 7 8 9 10 11 12 13

Months

M
ea

n
 t

im
e

to
 C

ra
sh A

B

C

D

E

Figure 2: Mean time to crash failures

The CEIP has two parts – a client that resides in the
user’s machine, and a centralized server. The data
recorded in the client machine is sent to the server, along
with configuration data.

The event logging mechanism requires the event to
specify the parameters it wants to record. These
parameters include things like program counter (or
offset), application name, tag of the assert or alert, unique
user tag, etc. These parameters are used to define different
buckets in which the events are grouped. For efficiency
(millions of records are sent every day), for one bucket,
data is captured only for the first few events. After that
only the event count is incremented. For each new
combination of parameters, a new bucket is created.

This method of bucketing allows the application
developers to identify the major causes of a type of failure
event. And, as is often the case, for many products the 80-
20 rule was found to hold true. That is, most of the
failures encountered by users are caused by a few
problems. These problems then become the high priority
issues to be resolved by product developers in order to
give maximum reliability benefit to the users.

CEIP is being deployed by thousands of customers,
providing millions of records each day. Internally at
Microsoft, reports from CEIP are used to report various

reliability and quality metrics. Its use has been quite
effective in identifying and removing various reliability
problems, including defects. Its use continues to grow.
Though the current focus is on overall rates of different
types of failures, in the future correlations between
configurations and different failure rates may be studied,
information for which is already available.

4.2. Microsoft Reliability Analysis Service
(MRAS)

While CEIP is a measurement platform for products
running in MS Office context, the Microsoft Reliability
Analysis Service (MRAS) focuses on reliability (and
availability) tracking of Windows servers, and products
running on servers like MS SQL database, MS IIS web
server, MS mail Exchange, and the Windows Active
Directory. Another difference is that while CEIP data is
reported internally at Microsoft, MRAS also provides the
customer with custom reliability and availability reports
for their servers. MRAS is discussed in detail in [6].

MRAS is made up of two main components – the
MRAS client and the MRAS reporting site. The MRAS
Client is installed on a particular server and is supplied
with the set of servers it should track. It is responsible for
collecting the server log data, and subsequently uploading
it to the MRAS reporting site. In each collection, the
client collects only new data, making frequent collections
efficient. While there are hundreds of events that may be
recorded in a server’s log, the client only collects a
relatively small number of events (approximately 100
different events).

The reporting site serves as the data warehouse and
analysis component. The data from clients is loaded to the
data warehouse, analyzed and stored in tables for later
reporting. The reliability reports are accessed and
managed through a web interface.

The server group to be monitored is specified by the
user. Hence, a client knows the precise number of servers
it is monitoring. It also can obtain the data about the
configuration of the server and which applications are
running on it. From data from clients, the reporting site
knows the total number of servers being monitored, as
well as the total number of the monitored applications
running. In other words, it has the observed group size for
the servers as well as the applications it is monitoring.
(Note again that this approach of observed group selection
is not completely random.)

MRAS focuses primarily on planned and unplanned
events that result in loss of availability as that is of
primary interest for server and server applications.
Therefore, though it can be used to track any event, it
primarily focuses on crashes and events leading to
shutdown of the system or applications. Part of a sample
report of MRAS is shown in Table 2. In this report, OS

7

crash failures are reported separately. All other failures
leading to OS shutdowns are combined together (further
details on these could, however, be provided, if needed.)
Note that in this failure category, “planned events”
leading to shutdowns are also included. Similarly, in this
report, events of different types of the applications it is
monitoring is combined together into one number.

In addition to the above information, as availability is
of interest to users of servers, MRAS also records time to
restore, from which availability is computed and reported.
MRAS also provides a breakdown of known shutdown
reasons, which is useful for understanding and addressing
the main causes of downtime leveraging the Shutdown
Event Tracker (SET) feature provided in Windows Server
2003 [16]. In addition to shutdown information, the report
also provides information on the crash stop codes and
crashing application modules, and a host of other
information that can be used for analysis as well as
reliability improvement. Further details about the MRS
can be found in [6].

Beta versions of MRAS have been deployed to over
200 corporate customers and being used extensively
within Microsoft to collect on thousands of servers.
MRAS has been instrumental in measuring the reliability
of beta versions of Windows Server 2003 at both
Microsoft and customer sites.

5. Interpreting Reliability Measurements

The previous Section provided a couple of examples of
measurements systems developed within Microsoft to
quantify the reliability of the products. Each of these
measurement systems have been applied to multiple
products. Reliability measurements from these systems
clearly provide a method of measuring the reliability
trends of individual products and the relative reliability of
different versions of the same products. Impact of
reliability initiatives can also be measured.

However, care has to be exercised when using these
measurements for comparing reliability across products.
One method of comparing reliability is to convert the
product reliability to a single number using some weights
for the different types of failures. Though one can say that
for comparison same weights should be used for different
products, this may not be the correct approach as
reliability of every product depends on a number of
factors often unique to the product, and users of a product
may attach different “unreliability values” to failures as

compared to another product. If we select the weights that
capture the users view, then comparison of the final
number is possible, but validating the weights is not easy.

Of course reliability of different products with respect
to some failure type can be compared. However, even
with this comparison one has to be careful as even though
we have a framework for identifying failures and system
to record them, recording of events is still done by
products. If we want to compare reliability of different
products, uniform policies for recording events will be
imposed. Only when one is sure that different products
are recording all the same events can comparisons be
meaningfully done.

The reliability measurements provided by the systems
can have other uses as well. As many studies have shown,
technical reliability is only one of many factors that
impact the end users perception of reliability. Examples
of other factors that impact the users perception of the
product reliability are installation issues (configuration
problems, driver incompatibility), product learning
(failure rate decrease following product installation),
patch distribution, ease of management, interoperability
etc. Reliability measurements can be used to understand
these factors.

For instance, the ease of product installation can be
measured based on the time it takes for a product
reliability to reach steady state following its installation.

If configuration failures are being recorded and
measured, then the failure rate trend for those failures will
also provide insight in this aspect. Similarly, product
learning and patch distribution can be measured through
comparing the reliability of systems that install the
product shortly after its release, against product that are
installed a year after release. Ease of management may be
measured as the number of actions/reboots it takes to
perform any management action.

Using the understanding between different failure rates
and reliability attributes, it is possible to compare
reliability attributes across products. For instance, ease of
installation can be compared by using failure data
collected from the different products for a period
immediately after installation (e.g. 2 weeks after
application installation). Obviously the comparisons are
more relevant when applied to products within the same
class (e.g. application to application would be valid but
application to operating system would require much
greater interpretation).

Total
Running
Time

No of
Shutdowns

No. of OS
Crashes

No of App
Exceptions

OS Crash
Rate

OS
Shutdown
Rate

App
Exception
Rate

622 years 11243 142 281 0.23
(per year)

18.07
(per year)

0.45
(per year)

Table 2: Parts of an MRAS report

8

6. Summary

Software reliability measurement efforts in past have
focused on large server based products, where users
report failures, and the user population base is well
known. For a mass market product that runs in different
operational profiles with different user groups attaching
different levels of importance to different types of
failures, this approach is not suitable. Reliability
measurement for such a product throws up new problems.

For mass market products, we define reliability as a
vector of failure rates for different types of failures. This
definition allows different reliability experience of
different groups to be quantified in a manner consistent
with their environment. In this paper, we discussed some
of the key issues that arise when measuring reliability of
mass market products, and suggested a failure
classification framework that can be used for capturing
data on failures.

We have described two example systems for
measuring reliability of applications. One is the Office
Customer Experience Improvement Program (CEIP),
which uses the subscription mechanism to specify the
observed group. Detailed failure and usage data is
collected through logging of different events. The second
example is that of Microsoft Reliability Analysis Service
(MRAS), which uses the logging mechanism of Windows
server. Products running on the server can record their
own events. The event log is sent to a central place, where
it is analyzed and report given. As only specified servers
are monitored, the size of the observed group is known.

This paper focuses primarily on reliability
measurement. Of course, once reliability is measured, a
product manufacturer also wants to know how to improve
the reliability. It will therefore be best if systems and
mechanisms put in place for measurement to have the
ability to provide information that can help reliability
improvement. Both CEIP and MRAS provide detailed
information to aid reliability improvement efforts.

We believe that efforts like these can lead towards well
established product reliability measurement norms and
platforms, and development of the capability of
comparing reliability attributes of different software
products, as is the case in many engineering disciplines.

7. References

[1] R. Chillarege, S. Biyani, J. Rosenthal, “Measurement of
failure rate in widely distributed software”, Proc. 25th Fault
Tolerant Computing Symposium, FTCS-25, 1995, pp. 424-
433.

[2] R. Chillarege, et. al. “Orthogonal defect classification – A
concept for in-process measurements”, IEEE Trans. On
Software Engineering, Vol 18(11), Nov 1992, pp. 943-956.

[3] R. Chillarege, What is software failure, IEEE Transactions
on Reliability, Vol 45(3), Sept 1996, pp. 354-355.

[4] F. Cristian, “Understanding fault-tolerant distributed
systems”, Communications of the ACM, Vol 34(2), Feb
1991, pp. 56-78.

[5] W. Farr, “Software reliability modeling survey” in Software
Reliability Engineering, Editor: M. R. Lyu, McGraw Hill
and IEEE Computer Society Press, 1996, pp. 71-117.

[6] M. R. Garzia, “Assessing the reliability of windows servers”,
Proc. Conference on Dependable Systems and Networks
(DSN), San Francisco, 2003.

[7] A. L. Goel, “Software reliability models: Assumptions,
limitations, and applicability”, IEEE Transactions on
Software Engineering, Vol 11:12, 1985, pp. 1411-1423.

[8] J. Gray, “A census of Tandem system availability between
1985 and 1990”, IEEE Transactions on Reliability, Vol
39:4, Oct 1990, pp. 409-418.

[9] IEEE, IEEE Guide to Classification for Software Anomalies,
IEEE Standard 1044.1, 1995.

[10] R. K. Iyer and I. Lee, Measurement-based analysis of
software reliability, in Software Reliability Engineering,
Editor: M. R. Lyu, McGraw Hill and IEEE Computer
Society Press, 1996, pp. 303-358.

[11] R. K. Iyer, S. E. Butner, and E.J. McCluskey, A statistical
failure/load relationship: results of a multi-computer study,
IEEE Trans. On Computers, Vol C-31, July 1982, pp. 697-
706.

[12] R.K. Iyer and P. Velardi, Hardware-related software errors:
measurement and analysis, IEEE Tran. On Software Engg.,
Vol. SE-11 (2), Feb 1985, pp.223-231.

[13] W. D. Jones, M. A. Vouk, “Field data analysis” in Software
Reliability Engineering, Editor: M. R. Lyu, McGraw Hill
and IEEE Computer Society Press, 1996, pp 439-489.

[14] S. Kan, D. Manlove, B. Gintowt, “Measuring system
availability – field performance and in-process metrics”,
ISSRE 2003, Supplementary Proceedings, pp. 189-199.

[15] B. Murphy, T. Gent, “Measuring system and software
reliability using an automated data collection process”,
Quality and Reliability Engineering International, 1995.

[16] B. Murphy and B. Levidow, Windows 2000 dependability,
Proc. IEEE DSN, June 2000.

[17] J. D. Musa, A. Iannino, and K. Okumoto, Software
Reliability – Measurement, Prediction, Application,
McGraw-Hill, 1987.

[18] K. S. Trivedi, Probability and Statistics with Reliability,
Queuing and Computer Science Applications, Second
Edition, John Wiley and Sons, 2002.

[19] A. P. Wood, “Software Reliability from the customer
view”, IEEE Computer, August 2003, pp. 37-42.

