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Abstract 
 
The grammar of the language in which some given code is written is essential for developing automated 

tools for maintenance, reengineering, and program analysis. Frequently grammar is available for a language 

but not for its variants that are implemented by various vendors and in which the given code may be 

written. In this work we address the problem of obtaining the grammar from source code, which can then 

be used for generating tools for the programs. We propose an incremental method for obtaining grammar 

for a particular language variant, from a set of programs written in the language variant and an approximate 

grammar (presumably of the standard language) with some user interaction. We also present the design of a 

tool for implementing this approach and our experience in working with grammars of C, C++ and COBOL . 
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1 Introduction 
 
In the software industry today, the effort spent on enhancing and renovating existing software 

systems constitute a major part of the total development work. Organizations regularly reuse their 

existing software systems for developing new ones. Frequently, instead of extending an existing 

system, organizations choose to reengineer it using newer languages, platforms and tools and then 

work with the reengineered system. 

 

Both enhancement and reengineering require dealing with legacy systems. These legacy systems 

are generally very large in size, so it is not feasible to analyze them manually. Some kind of tool 

support is essential to aid the renovation and updation tasks. A good amount of research has been 

done on automating the reverse-engineering process [3, 8, 9] and several approaches have also 

been developed.  These approaches can be used for recognizing a program's structure, its 



  2 

components, or for extracting the business logic that drives the application. Tools for quality 

management like test coverage analyzer, code compliance checker, static analyzer are also useful 

while adding new features to existing systems, as there is  a need to ensure quality of the new 

code. Most of these approaches and tools require the grammar of the language in which the 

programs are written.  

 

In general the grammar of the language in which programs are written is essential for developing  

useful tools which assist in the analysis and maintenance of software. Though grammar is 

generally available for a standard language, in the business environment one frequently has to 

work with a software system written in some language variant or dialect for which the grammar is 

not available. Legacy systems particularly are written in dialects for which usually little or no 

support is available. The source code for their compilers is also not available, so one cannot hope 

of getting grammar from the compiler front-end (an approach for obtaining the grammar from 

compiler source code is described in [2]). Nevertheless, it is highly desirable to design the 

aforementioned tools for these applications. So, there is a need to devise some approach for 

obtaining grammar from the given programs. In other words, there are many situations in which 

programs written in some language are available but the grammar for the language is not. As we 

have to work with the given language and with given programs, it is desirable to have the 

grammar for that language. 

 
Some work has been done to address some related problems. An approach for correcting a given 

grammar, which has errors, is given in [1]. In this approach, the given grammar itself is parsed 

using a tool. When the parser finds a mistake in the grammar, it is pointed out to the grammar 

writer who then manually corrects it. An approach for obtaining a reduced and unified grammar 

adapted for developing reengineering tools from a large grammar and source code is presented in 

[4]. In [7] a tool called Universal Syntax and Semantics Analyzer (USSA) is described, which 

generates a grammar from an initial grammar and a given set of rules that can be added and 

deleted such that the final grammar can parse the given program. An approach for dynamically 

changing the parser as the grammar evolves is given in [11]. 

 

In this paper we describe an approach for extracting grammar from a given set of programs. The 

extracted grammar should be such that it can parse the given programs successfully. In a sense 

this problem is the dual of the regular compiler and parsing problem. In a compiler we assume 

that the grammar is correct and the programs may have errors. In the problem we address here, 
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we assume that the programs are correct in the sense that they can be parsed and executed, but the 

grammar we have might have errors with respect to the given programs. 

 

In our approach, we start with an approximate grammar, perhaps of a variant of the language in 

which the given programs are written. There is an extensible Knowledge Base, which contains 

various rules and supports the generation of correct grammar. Whenever a language construct is 

encountered in the program that cannot be parsed with the current grammar, a suitable rule is 

picked from the Knowledge Base and added to the grammar. If there are multiple rules that can 

apply, the user selects one. If there is no suitable rule in the Knowledge Base, the user suggests a 

new rule, which is also added to the Knowledge Base for future use. For writing a new rule, the 

Knowledge Base can be used to suggest similar rules. We also describe a tool that we have 

developed for implementing this approach. 

 

2 Grammars, Languages and Dialects 
 
Every programming language has rules that describe the syntactic structure of valid programs. 

These rules are called the grammar of the language. For example, in the programming language 

C, the rules say that a program is made up of translation units, a translation unit consists of 

function definitions, and functions are composed of statements and so on. These rules can be 

considered as a C grammar. 

 

Chomsky has classified four classes of grammars in terms of productions. Of these, context free 

grammar is the most important in terms of application to programming languages and compiling. 

Context free grammars are used to describe syntax of programming language constructs. 

Grammars are capable of describing most, but not all, of the syntax of a programming language. 

With a little help in describing tokens from lexical analyzer the context free grammar can be used 

to parse programs or to generate parsers for them. 

 

Though a few constructs found in some programming languages can not be described using 

context free grammars, they are useful for describing most constructs of a programming language 

[5]. Mostly the tools that generate parsers automatically, like Yacc [12], make use of context free 

grammars. For example, one can write the parser for C, C++ or COBOL using context free 

grammars. 
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Like in natural languages, different dialects of programming languages have evolved. One of the 

main reasons for creation of a dialect is the non-availability of some useful constructs in its parent 

language. That is, the parent language is viewed as lacking some constructs that are probably 

available in some other language. Hence to enrich the language, vendors may add these constructs 

in the language, giving rise to a dialect. A dialect will generally process the ANSI/ISO standard 

language, though it may add few extra features in the language to make it more user-friendly. We 

define a dialect of a language as a language that has some constructs that the parent language 

does not have. The overall structure or the grammar of a dialect is not very different from its 

parent; they differ mostly in the list of tokens, few extra operators and runtime systems. Note that 

for the purpose of grammar extraction we are concerned only with new constructs, since the use 

of such a construct in a program can be identified by a parser. Constructs that may be deleted 

cannot be identified as the lack of use of some constructs in a finite set of programs cannot be 

taken to mean that the construct has been deleted.  

 

One point that deserves a mention here is that a program itself can be defined and used as its 

grammar. For a set of programs, ∑* (∑ is the set of symbols) is a trivial grammar that will parse 

all the programs. However, this is not an interesting grammar. Languages are normally perceived 

as hierarchical structures consisting of identifiers, operators, expressions, statements, control flow 

constructs, functions/procedures etc. ∑* will fail to capture any of these constructs and therefore, 

is of no practical use. For program analysis and tool development the language structure must be 

exposed by the grammar. So we need a grammar, which captures the syntactic structure of the 

programming language, from which these tools can automatically be generated. 

 

3 Extracting Grammar of a Dialect 
 
We are considering the following problem. The grammar for a language is available, but not for 

its dialect. Some programs written in the dialect are also available. We want to find, automatically 

if possible, the grammar of the dialect.  

 

Extraction of grammar from programs is not a trivial problem. It is very similar to the natural 

language learning problem. There are many issues that make it impossible to automate this 

process. A given program may conform to a large number of grammars. These grammars differ 

on the precision with which they capture the syntactic structure of the language. As discussed 

above, the program itself is one of the grammars to which it conforms. In order to obtain the 
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correct and precise grammar we need a large number of valid and invalid programs, which is not 

possible when we only have a finite number of programs written in the language. Also, if we start 

from the scratch i.e. without any initial grammar, it is very difficult just to find when one 

construct ends and another starts. This problem becomes more significant when one construct 

contains another construct, e.g. the body of a for loop contains an if statement. Moreover, there 

are many classes of languages like imperative, functional, logical etc. and the ways in which 

programs are written in these languages are very different. So, it makes it all the more difficult to 

extract the grammar if no information about the language is available.  

 

However, if an approximate grammar for the dialect is available, which may be the grammar of 

the parent language, the problem becomes simpler. In this case, we need to extract grammar only 

for the constructs which are new in the dialect. The help of a knowledge base can be useful in 

extracting the grammar.  

 

The programming languages, as we see them today, have evolved over time. The constructs that 

are found in one programming language can also be found in other programming languages. For 

example, statements for iteration, selection, branching etc. are found in many programming 

languages and have almost the same structure and syntax. So, it is possible to create a Knowledge 

Base of such common constructs and their syntax rules.  

 

With such a knowledge base, one approach for extracting the grammar is as follows. If the 

language in which the programs are written is a dialect of some popular language like C or 

COBOL, then the grammar of the parent language can be taken as the starting grammar. From the 

approximate grammar a parser is generated. We now try to parse the programs using this parser. 

As the grammar is not complete, at some point while parsing a construct, the parser will fail. 

Here, the rule Knowledge Base is searched for a suitable rule for the construct. The rule is added 

in the grammar and the parser is generated again. The parsing of the program starts again from 

the first line. This process continues till the program is successfully parsed and the correct 

grammar is obtained. 

 

Another approach could be to build a parser with an exhaustive set of grammar rules. As the 

constructs found in many programming languages are similar, this parser would be able to parse 

all programs belonging to a particular language class. As the parsing proceeds, some rules in this 

grammar are used for parsing the statements in the program. These rules are marked. After, the 
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whole program is parsed, the marked rules together form a minimal grammar, which is capable of 

parsing the given program. 

 

The two approaches discussed above assume that all kinds of constructs and their grammars are 

known and available. So obtaining the grammar for a particular language variant just requires 

searching the Knowledge Base for a suitable rule and plugging the rule at a correct place in the 

approximate grammar. 

 

As it turns out, it is very difficult, if not impossible to come up with an exhaustive list of 

constructs and their grammar rules. Moreover, locating the correct position in the grammar to 

insert the rule is also a non-trivial task. Besides, the newly added rule may use some existing 

grammar symbols. These symbols names may be different from those already present in the 

grammar. So, before adding the rule in the grammar, its symbols must be replaced by those that 

are defined in the grammar. Automating this process is also not possible. As a result, a system 

cannot be expected to recover the grammar automatically from the source program. 

 

Some work has been done in the area of regular grammar learning [10]. The approaches 

developed are heuristic in nature; they are useful for small problems but do not scale well for 

large problem sizes. The automatic learning of context free grammar is made more difficult by 

the fact that several decision problems related to context free grammars are undecidable. Hence, 

obtaining the grammar from programs should be viewed as a co-operative process involving both 

the system and the user. The system finds the deficiencies in the grammar and probable solutions. 

The user assists it in making decisions for choosing a rule from many probable. The user also 

helps in modifying the rule so that it contains only the symbols that are defined in the grammar. 

 

After a rule is added or modified, the grammar is affected at more than one place. As a result, 

some of the constructs, which were successfully parsed earlier, may become unparseable. Various 

kinds of conflicts may arise as the side effect of adding a rule. So it is necessary to do this 

processing in an iterative manner. After adding a new rule, the parser should be regenerated and 

the parsing must resume from the beginning of the program. This is the approach we take. 

 

4 An Interactive, Iterative Approach 
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As discussed above, for extracting grammar from programs, we need an interactive and iterative 

approach. In this section, we present one such approach. The following figure gives an overview 

of our approach. 

 
    Fig.1 Overview of the Approach 
 
As can be observed from the above figure, we take the source program and an approximate 

grammar as the input and after a series of modifications to the grammar generate the correct 

grammar for the program. Below, we discuss the various steps involved in the process. 

 
4.1 Parsing the Source Program 
 
Parsing, or syntax analysis as it is sometimes known, is a process in which a string of tokens is 

examined to determine whether it obeys certain structural conventions explicit in the syntactic 

definition of the language [6]. We use the shift-reduce approach. From the context free grammar 

of a language its shift-reduce parser can be generated automatically. Tools like Yacc can be used 

to generate a LALR (1) parser from a BNF like grammar specification. 

 

The shift-reduce parser works in the following way: The string of tokens is scanned from left to 

right and the symbols are shifted into a stack. Whenever a sequence of tokens from the top of the 

stack form the right hand side of a production rule in the grammar, it is reduced i.e. replaced by 

the left hand side symbol. If at any stage, no reduction or shift is possible i.e. no grammar rule 
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matches the sequence of tokens present on the stack, an error is declared. By looking at the stack 

top, one can determine the place in the grammar where the parsing failed.  

 

The occurrence of an error while parsing signifies that either the program is not correct or the 

grammar is not complete. In our case, since all the programs are valid, the error represents 

incompleteness of the grammar. The exact position of the error can be determined by looking at 

the line being parsed and the parser stack.  

 

An improvement over this approach is to modify the parser to help not only identify the line 

number of the new construct, but potentially also the structure of the construct. For this, we have 

modified the Yacc parsing process, particularly when an “error” is encountered. Every time a 

shift occurs the new terminal symbol is pushed onto an auxiliary stack and every time a reduce 

occurs, the number of symbols equal to the r.h.s of the corresponding nonterminal, are popped 

and the new nonterminal is pushed. Thus our stack runs parallely with the Yacc stack. When an 

error occurs we continue scanning input from the source file (by calling the lexical analyzer) till 

we get a synchronization symbol (determined currently as semicolon). We keep pushing these 

symbols onto the stack. From this stack, we constitute the error string as a concatenation of all the 

symbols starting from the first terminal we encounter from the bottom till the top of stack. This 

error string can later be used to help determine the grammar rule.  

 

In order to deal with the error, we need to modify the grammar so that it becomes able to parse 

the statement that produced the error. We maintain a Knowledge Base of grammar rules for this 

purpose. 

 
4.2 Obtaining Grammar for the New Constructs 
 
The parse error occurs because the grammar is incomplete - it does not contain any rule for the 

construct used in the source program. We need to modify the grammar by adding a grammar rule 

for this new construct. For this purpose, we maintain a Knowledge Base of commonly found 

constructs and their grammar rules. Whenever an error occurs while parsing, the Knowledge Base 

is searched for a matching rule. If no matching rule is found, the user is asked to write a rule for 

the construct. 

 

In this approach, the Knowledge Base is the most important resource. It is a repository of  

grammar rules in BNF notation, which evolves over time with the addition of new rules. A 
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particular record in the Knowledge Base contains a keyword for searching, category of the 

statement, the grammar rule for the statement and a list of new symbols the rule defines. 

 

Once the location and cause of error in the program is ascertained, the Knowledge Base is 

searched for a matching rule. For this search, all the words in the statement can be treated as 

keywords, or the user can specify the category to which the statement belongs. The search in the 

Knowledge Base may return more than one matching rules. Some heuristics or help from the user 

can be employed to select the best possible rule from the list. 

 

One heuristic that we have developed and implemented works as follows. We form a set of 

symbols present in the error string which is obtained during the modified parsing as discussed 

above. We search the Knowledge Base and find all the rules which have some keywords common 

to this set .This is determined by taking the intersection of the two sets. All these rules are made 

available to the user, who can pick the appropriate rule. 

 

As the Knowledge Base is not exhaustive, it is possible that no matching rule for a particular 

construct is found in the Knowledge Base. In this case, some help from the user is required. The 

user is asked to write a rule for the new construct. Once the user writes a rule, it can also be added 

in the Knowledge Base. So, the next time such a construct is encountered its matching rule can 

directly be found in the Knowledge Base. While entering the new rule, the user must also enter 

the definition for any new non-terminals introduced in the rule. 

 
4.3 Modifying the Grammar 
 
After a grammar rule for the new construct is obtained it should now be added to the grammar. 

Before adding the rule, it must be modified so as to adapt it to the existing grammar. A grammar 

writer chooses some names to define a particular construct, so the new rule may contain some 

symbols i.e. terminals and non-terminals that are not defined in the existing grammar. These 

symbols must be replaced by equivalent symbols that are already defined in the grammar. If no 

equivalent symbols are defined in the grammar then the user or the Knowledge Base must define 

them. In the case when the rule is retrieved from the Knowledge Base, the record for the rule also 

contains a list of the new non-terminals it uses; these non-terminals must also be defined. 

 

One simple approach for adapting the rule that we have implemented is to provide a mapping 

between nonterminals used in the Knowledge Base and to their equivalent nonterminals in the 
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grammar used. Note that for this approach, a  new mapping has to be provided each time a new 

grammar is used. Also note that this mapping has to be created by the user and cannot be 

automated. We believe such mappings are easy to identify.  

 

After the correct and adapted rule for the new construct has been obtained, it must be inserted in 

the grammar at an appropriate position. This position can be ascertained by looking at the parser 

stack. Some help from the user may also be needed for it. The rule is added in the grammar and 

appropriate changes are also made in the lexical analyzer. If some new keywords are introduced 

then the lexical analyzer must be able to recognize them, so definitions for new tokens must also 

be given.  

 

After the addition of a new rule in the grammar, it may become of the form 

 

A → αβ1 | αβ2 | αβ3  . . . 

  

This kind of grammar may give rise to various conflicts while generating the parser. To avoid this 

problem we left factor the grammar. After left factoring the above grammar is transformed into 

 

A →αA1 

A1 →β1 | β2 | β3  . . . 

 

This grammar is correct and is free from conflicts. 

 

As discussed before, the new rule added in the grammar may also define some new symbols. The 

user must also define these symbols. So, after adding the rule a check is performed to identify and 

list all the grammar symbols that are used but are not defined. The definition for these symbols 

must then be retrieved from the Knowledge Base, and if not found they must be entered by the 

user in the mapping that is speicified. 

 

After performing the above operations and making the required changes in the grammar, the 

parser can be regenerated. Now the parsing of the program restarts from the beginning of the 

program using the new parser. If the changes made to the grammar are not correct or another new 

construct is found in the program, the parser will again declare an error and the whole process 
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will be repeated. This process continues till the regenerated parser successfully parses the 

program. At this point it is assumed that a correct grammar for the language has been obtained. 

 
4.4  Redundant Rules and Symbols 
 
The grammar obtained from the procedure we described above is to be used for reengineering 

purposes. So, we must make sure that it is free from ambiguities and is easy to use. As a result of 

repeated modifications, some redundant rules may creep in the grammar. Also, the grammar may 

contain some symbols that are defined but never used by any other rule. It is desirable to remove 

these redundant rules and symbols to make the grammar short and precise. A simple analysis of 

the grammar would expose all the symbols that are defined but not used. These can be removed 

from the grammar.  

 

Note that we can only analyze the grammar for its internal structure. We cannot delete rules that 

are not used by a set of programs being parsed, as these programs may simply not have used these 

rules. In other words, we use the programs to find new rules, but cannot use them to identify any 

redundant rules.  

 

As we parse the given programs one by one (and each program in a linear fashion) and add rules 

every time an error string is encountered, it is possible that the set of rules added after parsing a 

set of programs may not be minimal. The set of rules added can also depend on the order in which 

programs are parsed. The only way to eliminate such redundancies is to  analyze the grammar to 

make it more compact. For this grammar analysis and compaction techniques may be applied [6]. 

5 Implementation and Experience 
 
We have developed a tool called GramEx, which implements the approach discussed above. Here 

we present a brief overview of the design and working of the tool. We also give an example from 

COBOL for illustration. We have chosen COBOL since most legacy systems are written in 

COBOL and it has many dialects. 

 

The system has three main components -  

1. The Parser  

2. The Rule Knowledge Base, and 

3. The Driver (User Interface) 



  12 

 
5.1 The Parser 
 
We use a LALR (1) parser to parse the source programs. We use the tools Lex and Yacc to 

generate the parser from the grammar specifications. So, the starting grammar is nothing but 

approximate Lex and Yacc specifications for the language. The modifications to the grammar are 

made in both the specification files, and the correct grammar obtained as the result is also in the 

form of Lex and Yacc specifications. It is easy to get the grammar rules from these specifications, 

as the syntax is very similar to BNF. 

 
5.2 The Rule Knowledge Base 
 
The Knowledge Base is a plain text file containing record for one grammar rule in each line. Each 

record contains the fields - search keyword(s) for the rule, category of the statement and the 

grammar rule itself. For example, a record for the PERFORM statement in COBOL would look 

like.  

Keyword(s) Category  Rule 
perform, 

thru 
Control perform_st: PERFORM proc_name THRU 

                    proc_name perform_until_phrase 
 
This rule can be retrieved either by using the keywords perform and thru or the category Control. 

Similarly , if the records for the iterative and selection  statements in the C language added to the 

Knowledge Base then Knowledge Base will contain the rules of the form shown in Figure 2. 

 

Rule 

No. 

Keyword Category Rule  

1. if selection selection_statement : IF ‘(‘ expression ‘)’ statement 

2. else selection selection_statement : IF ‘(‘ expression ‘)’ statement 

                                       ELSE statement 

3. switch selection selection_statement : SWITCH ‘(‘ expression ‘)’    

                                      statement 

4. while iteration iteration_statement : WHILE ‘(‘ expression_opt  ‘)’   

                                     statement 

5. do iteration iteration_statement : DO    statement  

                                     WHILE  ‘(‘ expression ‘)’ ‘;’ 

6. repeat iteration iteration_statement : REPEAT ‘(‘ statement ‘)’ 
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                                      UNTIL  expression 

7. for  iteration iteration_statement : FOR ‘(‘ expression_opt  ‘;’ 

        expression_opt ‘;’ expression_opt ‘)’ statement 

8. for  iteration iteration_statement : FOR ‘(‘  declaration           

expression_opt  ‘;’expression_opt ‘;’ expression_opt ‘)’ 

statement 

 

Fig 2. Knowledge Base  with selection and iteration rules added.  

 

The current approach of using a flat file for Knowledge Base should suffice for most situations as 

we expect that the approximate grammar to be almost complete and the Knowledge Base will 

need to contain very few rules. In our experience the Knowledge Base has of the order of about 

20 rules. If , however, Knowledge Base increases to thousands, then it would be better to 

maintain it as a  database. For that we will have to suitably modify the interfacing of the system 

with the Knowledge Base. 

 
5.3 The Driver  
 
The Driver that controls the application provides a graphical interface for user interaction. It 

accepts the grammar specifications and source programs from the user and generates the parser. It 

then feeds the source program to the parser. The searching of the Knowledge Base for a matching 

rule in case of an error and modification of the grammar and Knowledge Base are all taken care 

of by the driver itself. Help from the user is taken when a matching rule is not found in the 

Knowledge Base or when some unprecedented error occurs. It maintains the list of all terminals 

and non-terminals in the grammar and also of newly added rules so that any changes can be 

undone. After the successful parsing of one program, it parses another program starting with the 

grammar obtained from the previous program. In this way the grammar for a set of programs is 

obtained. 

 

The tool has GUI interface and is written in Java. Some of the features the tool provides are : 

 
1. At the start the tool asks the user for the source program, the Lex and Yacc specifications 

of the grammar, and the mapping of the nonterminals. 

2. On encountering an “error”, it shows the source code with the error portion highlighted. It 

also gives all the matching rules and allows the user to select any of these. 
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3. If no matching rules exist in the Knowledge Base then the user is provided with a GUI to 

create a new rule. 

4. A separate window is provided for browsing the Knowledge Base. 

5. A command to allow user to undo changes made to the grammar. That is, if after some 

rule has been added , if the user does not find the modification satisfactory, he can revert 

back to the grammar before this addition was made. 

6. Once one program has been successfully parsed (with the new grammar) , the user can 

specify the next file to be parsed. 

 
 
5.4 An Example 
 
We take an example source program and trace the major events that take place while extracting 

the grammar from it. The example program is written in a hypothetical dialect of COBOL. The 

input program is shown in figure 3. 

 

 

Fig 3: Example program in COBOL 
 

The COBOL-74 grammar is used as the starting grammar. There are two constructs used in the 

program which are not there in this grammar, namely the PERFORM construct (line 11) and the 

1. IDENTIFICATION DIVISION. 
2. PROGRAM-ID. GRAMEX-TEST. 
3. ENVIRONMENT DIVISION. 
4. DATA DIVISION. 
5. WORKING-STORAGE SECTION. 
6.    01 VAR1 PIC 9(4). 
7.    01 VAR2 PIC 9(4). 

 
8. PROCEDURE DIVISION. 
9. PARA-ONE. 
10.    MOVE 10 TO VAR1. 
11.    PERFORM PARA-TWO 10 TIMES SETTING VAR1 TO 0. 
12. PARA-TWO. 
13.    ADD 1 TO VAR1. 
14.    MULTIPLY VAR1 TO VAR1 GIVING VAR2. 
15.    DISPLAY VAR1, VAR2. 
16.    REPEAT PARA-THREE UNTIL VAR2 > 1. 
17. PARA-THREE. 
18.    DISPLAY VAR2.  
19.    SUBTRACT 10 FROM VAR2. 
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REPEAT construct (line 16). Once we get the grammar for these constructs, our grammar would 

be correct and complete as far as the given program is concerned. 

 

The processing starts by taking the grammar specification and generating the parser for the 

grammar. The generated parser then parses the given program. On line 11, the parsing fails. At 

this point, the rule Knowledge Base is searched for a matching rule using the keywords given in 

the line containing the error. As a result all the rules for keyword PERFORM are listed. If there 

are multiple rules, the system asks the user to choose the most appropriate rule from the list. 

Suppose the exact rule for the construct is not there in the Knowledge Base, but some similar 

rules exist. These will be displayed. From these rules suppose the closest rule is the following: 

 

perform_st :  PERFORM  proc_name  int_var  TIMES  

 

As this rule is not capable of parsing the statement on line 11, the user modifies it so that it gives 

the correct syntax of the statement causing the error.  

 

perform_st :  PERFORM  proc_name  int_var  TIMES  SETTING  var  TO  int_var 

 

This rule has to be added to the grammar. Before adding the rule, if needed, the symbols names in 

the rule should be changed to equivalent names defined in the existing grammar. The lexical 

definitions for the new keywords that do not exist in the grammar will also have to be added in 

the lexical specifications for the grammar. 

 

The driver searches for the appropriate position in the grammar where this rule should be added. 

In this case, the grammar is searched for a rule for the perform_stmt, on finding such a rule, the 

RHS of the new rule is added to the RHS of the existing rule. The grammar now looks like 

 

perform_stmt :   . . .  /* existing grammar rules */ 

                                    |   . . . /*  for perform */ 

                                    |  PERFORM proc_name int_var TIMES SETTING var TO int_var 

 

The parser is regenerated now with this new grammar and the source program is parsed again 

from the first line. This time the PERFORM statement is successfully parsed. The parsing fails 

for the REPEAT statement on line 16 and the process described above is repeated. If no rule is 
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found in the database, the user can search for similar constructs using suitable constructs and then 

pick a rule and suitably modify it. For example, suppose there is no rule with keyword REPEAT 

in the Knowledge Base. By looking at the statement it is easy to observe that the REPEAT 

construct is very similar to the PERFORM construct, so the user can search the Knowledge Base 

for the keyword PERFORM. Suppose one of the rules found by searching is: 

 

perform_st :  PERFORM  proc_name  UNTIL  condition 

 

Appropriate changes are made to this rule, so that it becomes: 

 

clause :  REPEAT  proc_name  UNTIL  condition 

 

This rule is capable of parsing the REPEAT statement and is added in the grammar as well as the 

Knowledge Base. The lexical definition for the new keyword REPEAT is added in the lexical 

specifications and the parser is regenerated. The source program is parsed again from the 

beginning, this time the parsing is successful. The extracted grammar can be taken as the correct 

grammar for the input program.  

 
5.4 Experience 
 
We have applied our approach for extracting grammar from a set of COBOL-85 programs. We 

took 65 COBOL-85 source programs of varying sizes. A partial COBOL-74 grammar was chosen 

as the starting grammar. There were fourteen constructs in the programs that were new to the 

COBOL-74 grammar. Using our tool, it took us about five hours to obtain the correct grammar 

for the programs. This time includes the time spent in generating the parser, parsing the programs, 

and modifying the grammar, all of which were done automatically. 

 

We have also used our approach for programs written in C and C++. We took the complete 

grammar from [13] and deleted rules for some constructs. Then we gave programs using the 

deleted construct and used our system to identify and add the necessary rules to the grammar to 

make it complete. 

 

For example , with C, we created an initial Knowledge Base with 8 entries for statements like if, 

for, while , etc.This Knowledge Base is shown earlier in Fig. 2. We deleted the rules  relating to 

iteration(a total of 4 rules) .We then gave the program shown in Fig.4 as input. 
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Fig. 3. Sample C program 

 

When the first while loop (line 4) is handled by the parser (as no rule exists in the grammar) , our 

modified parsing technique and heuristic for selection of rules from Knowledge Base is applied. 

This selection throws up two rules – one for while and one for do-while  (rules 4 and 5 in Fig 2. 

The user selected the while statement , and the rule was added to the grammar after replacing its 

nonterminals with that of the grammar[13]. Only one rule needs to be added to the grammar. 

Then the parsing is restarted by the user. This time the parser successfully parses the while  loops 

and  halts at the first for loop (line 15). The same process is repeated and the rule for for is added. 

Next time when the parser is restarted  the whole program is successfully parsed. This whole 

process of parsing, selecting the rules, and reparsing took less than 15 minutes to complete. 

 

6 Conclusion 
 
For maintenance of large legacy software systems, some kind of support in the form of automated 

tools is necessary. The most important resource for building such tools is the grammar of the 

language in which the legacy software is written, which is frequently not available. Hence, there 

is a need for extracting grammar from programs. Ideally one would like the grammar extractor to 

1.int get_next_tok(char e[MAXOP]) 
2. { 
3. int c,i=0; 
4. while ((c = postr[ind++] ) == ‘ ‘) 
5.   ; 
6. if (c == ‘\0’) return ENDEXPR; 
7. ind--; 
8. if(!isdigit(c) && c != ‘.’ && !isspace(c) ) { 
9.  e[i++] = c = postr[ind++]; 
10.   e[i-1] = ‘\0’;ind--; 
11.   if (i>2) return UNARYOP; 
12.   else return BINARYOP; 
13.  } 
14.        if (isdigit(c)) 
15.   for(;isdigit(e[i++] = c = postr[ind++]);) 
16.    ; 
17.        if (c == ‘.’) 
18.   while(isdigit(e[i++] = c = postr[ind++]) 
19.    ; 
20.        e[i-1] = ‘\0’;ind--; 
21.        return OPERAND; 
22. } 
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be fully automatic. Unfortunately, this is not possible. In this paper, we have presented an 

approach for obtaining grammar from programs using an approximate grammar and some 

assistance from the user. 

 

Starting with an approximate grammar, we obtain the correct grammar in an iterative manner. 

The key idea behind this approach is that the constructs found in programming languages are 

limited in number and one can create a Knowledge Base of the commonly found constructs and 

their grammar. After the creation of such a Knowledge Base, one needs to insert a matching 

grammar rule from the Knowledge Base in the approximate grammar for the unparseable 

constructs found in the programs. Help from the user is taken when the construct has no matching 

rule in the Knowledge Base. The Knowledge Base is dynamic and grows with time as the user 

adds new rules. As the Knowledge Base becomes larger, the process tends to be more and more 

automatic and the need for user interaction lessens. 

 

The paper also presented a brief overview of a tool called GramEx, which we have developed to 

implement our approach. The preliminary results that we have obtained by working on C, C++, 

and COBOL grammars are highly encouraging. 

 

The current approach works well when single  missing constructs are not nested. For multiple 

missing constructs, which are nested the help provided by the current system will be minimal and 

the user will probably have to provide most of the inputs. We are examining ways of handling 

nested constructs and an initial approach has been proposed to handle nested constructs in [14]. 

 

This work is a part of a larger research project aimed at automatically generating tools to help in 

maintenance and reengineering of legacy systems. Currently we are developing approaches for 

automatic generation of test coverage analyzer, code analysis tools etc. from the extracted 

grammar. 
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