
 1

USING DEFECT ANALYSIS FEEDBACK FOR
IMPROVING QUALITY AND PRODUCTIVITY IN

ITERATIVE SOFTWARE DEVELOPMENT

Pankaj Jalote
Department of Computer Science and Engineering

Indian Institute of Technology Kanpur
Kanpur – 208016; India

Naresh Agrawal

Infosys Technologies Limited
Electronics City, Hosur Road
Bangalore – 561 229; India

Abstract

In today’s business where speed is of essence, an iterative development
approach that allows the functionality to be delivered in parts has become a
necessity and an effective way to manage risks. Iterative development allows
feedback from an iteration to influence decisions in future iterations, thereby
making software development more responsive to changing user and business
needs. In this paper we discuss the role of defect analysis as a feedback
mechanism to improve the quality and productivity in an iteratively developed
software project. We discuss how analysis of defects found in one iteration
can provide feedback for defect prevention in later iterations, leading to
quality and productivity improvement. We give an example of its use and
benefits on a commercial project.

Introduction
A project using the traditional waterfall model of developing software
assumes that that requirements are stable, and delivers the entire software at
one shot in the end. Unchanging requirements, unfortunately, do not exist in
reality, and the “big bang” approach of delivery entails heavy risks, as the
users do not know till the very end what they are getting. To alleviate these
two key limitations, an iterative development model can be employed. In an
iterative development, software is built and delivered to the customer in
iterations – each iteration delivering a working software system that is
generally an increment to the previous delivery. Iterative enhancement [1]

 2

and spiral [6] are two well-known process models that support iterative
development. More recently, RUP[15], agile methods [10], and XP [4] also
promote iterative development. The timeboxing process model for shortening
delivery times is also an iterative approach [19, 20].

The commonly used iterative development approach is organized as a
sequence of iterations, with each of the iterations delivering parts of the
functionality. With this type of iterative development, as working software is
released in stages, feedback from one release is available for next iterations.
Quick feedback is one of the key aspects of XP [4].

Most often the feedback taken from an iteration is on the functionality
and user aspects of the software. However, iterative development also renders
itself to feedback about the process, which opens the possibility of process
improvement in later iterations of the project. That is, it can allow for
software process improvement within a project itself. Note that this approach
is distinct from process improvement across the organization – something that
is the focus of frameworks like the CMM [13], and ISO9000 [21].

In this paper we focus on how analysis of defect data from an
iteration can provide valuable feedback for preventing defects in later
iterations of the project. The premise of defect prevention is that there are
some causes behind the defects that get injected. If the causes can be
understood, then efforts can be made to eliminate them, thereby reducing the
number of defects getting injected. In other words, by analyzing the defect
data to find the root causes for the defects getting injected, and then
developing solutions that attack the root causes found, the level of defect
injection can be reduced.

Defect prevention can improve both quality and productivity. If the
number of defects injected reduces, then the quality improves as the number
of residual defects in the delivered software reduces. Furthermore, if we inject
fewer defects, fewer defects need to be removed, leading to a reduction in the
effort required to remove defects, thereby increasing productivity. Defect
prevention has been used by organizations with good benefits [18]. DP is a
Key Process Area at the level 5 of the CMM, hence all high-maturity
organizations employ it.

The common approach for employing defect prevention is to have an
organization-wide program where experience from different projects can be
employed for other projects. Leveraging the learning from past defects to
avoid future defects is somewhat harder across projects with different
characteristics, and also requires a much wider program to support it. On the
other hand, learning from defects from within a project and then leveraging
the lessons in the project itself is likely to offer more focused and effective
solutions. Such an approach can be deployed quickly as it is applied within
the limited context of a project and is hence easier to implement. Projects
employing iterative development offer a platform as each iteration is complete
in itself and can be analyzed as a project.

 3

In this paper we describe an approach to exploit this potential. In this
approach, at the end of each iteration, the defect data is compiled and then
analyzed for identifying root causes. Based on this analysis, defect prevention
actions are proposed, which are then employed in the project for future
iterations. We give a detailed example of how this approach has been
implemented on a commercial project at Infosys Technologies Ltd, a large
software house headquartered in Bangalore, and describe the results.

Measurements for Defect Analysis
In some sense the goal of all methodologies and guidelines is to prevent
defects. For example, a design methodology gives a set of guidelines that if
used will give a good design. In other words, the design methodology aims to
prevent the designer from introducing design defects by guiding him along a
path that produces good and correct designs.

However, by defect prevention (DP) we mean learning from actual
defect data from a project with the goal of developing specific plans to
prevent defects from occurring in the future. As the main goal of DP is
reduction in defect injection and consequent reduction in rework effort, it is
best if suitable measurements are made such that impact of DP can be
quantitatively evaluated. That is, a project employing DP should be able to
see the impact of DP in the injection rate and on the rework effort on the
project. For both of these proper metrics have to be collected. Furthermore,
suitable data needs to be collected to facilitate the root cause analysis for DP.

The measurements needed for evaluating the effectiveness are defects
and effort. For defects, data on all the defects found and their types is needed.
This data is easily available if projects follow the practice of defect logging,
as is the case in most mature organizations. To facilitate defect analysis, for
each defect, its categorization in a fixed set of categories should also be
recorded. A classification like the one proposed by the IEEE standards [23],
or by the orthogonal-defect classification scheme [22] can be used.
Frequently, organizations log information like detection stage, injection stage,
etc to facilitate different types of analyses. Details about the different
parameters recorded during defect logging are given in [9].

For understanding the impact of DP on rework, the effort spent on the
project needs to be recorded with suitable granularity such that rework effort
can be determined. Specifically, for each quality control activity, the rework
effort should not be clubbed together with the activity effort but must be
recorded separately. Effort logging generally requires that each member of the
project team record the effort spent on different tasks in the project in some
effort monitoring system. Frequently, different codes are used for different
categories of tasks and for most of the major tasks the effort is divided into
three separate categories – activity, review, and rework. With this type of

 4

categorization, rework effort for each phase can be determined. Details about
the system and codes used for effort reporting are given in [9].

These measurements about defects and effort are sufficient to do
defect analysis and prevention, as well as quantify the impact of DP. Note that
DP can be done, and its impact on the defect injection rate can be determined,
even if the effort data is not available. However, without the effort data, the
impact of DP on rework cannot be determined.

Deploying Defect Analysis and Prevention
In a project, to use DP, all the DP related activities should be planned, like
any other major task. We propose that the project planning stage be
augmented by the following tasks to support defect prevention activities:

• Identify defect prevention team within the project
• Have a kick-off meeting and identify existing solutions
• Set defect prevention goals for the project
• Get the DP team trained on DP and causal analysis, if needed

Most of the activities relating to DP planning are self-explanatory. A project
identifies a team that will do perform the DP analysis (obviously, the actual
solutions that are to be executed to prevent defects will have to be performed
by everyone in the project.) A kick-off meeting is held in the start to raise the
awareness and identify the solutions that may be available somewhere in the
organization. The training for DP team on DP and causal analysis is done, if
needed.

DP is a strategy to achieve higher quality and productivity in future
iterations by leveraging the experience of an earlier iteration. As with many
tasks, setting suitable goals helps in focusing the effort and monitoring the
progress. In a project, the DP goal can be in terms of reduction in the defect
injection rate in later iterations. For example, projects in Infosys frequently
aim to achieve 20% to 30% reduction in the injection rate with the feedback
from the first iteration. Note, however, that setting a DP goal is not essential
for performing DP – it, however, helps set a target and evaluate the
performance against it. The steps for performing defect analysis and
prevention in an iterative project are:

• At end of an iteration, collate defects data
• Identify most common types of defects by doing Pareto analysis
• Perform causal analysis and prioritize root causes
• Identify and develop solutions for root causes
• Implement solutions
• Review the status and benefits of DP at end of next iteration

 5

Collating defect data is a simple task if a suitable defect tracking tool is used.
The next step for defect prevention is to draw a Pareto chart from the defect
data. Pareto analysis is a common statistical technique used for analyzing
causes, and is one of the seven primary tools for quality management. In this
step, the number of defects found of different types is computed from the
defect data and is plotted as a bar chart in the decreasing order. Frequently,
with the bar chart, a line chart is also plotted on the same graph showing the
cumulative number of defects as we move from types of defects given on the
left of the x-axis to the right of the x-axis. The Pareto chart makes it
immediately clear in visual as well as quantitative terms which are the main
types of defects, and also which types of defects together form 80-85% of the
total defects.

The Pareto chart helps identify the main types of defects that have
been found in the project so far. For reducing these defects in future, we have
to find the main causes for these defects and then try to eliminate these
causes. Cause-effect (CE) diagram is a technique that can be used to
determine the causes of the observed effects [16]. The main purpose of the CE
diagram is to graphically represent the relationship between an effect and the
various causes that can cause that effect to occur. The understanding of the
causes helps identify solutions to eliminate them.
 The building of a cause effect diagram starts with identifying an
effect whose causes we wish to understand. For defect prevention, an effect is
of the form “too many errors of type X”. To identify the causes, first some
major categories of causes are established. In manufacturing, for example,
these major causes often are manpower, machines, methods, materials,
measurement, and environment. For software, the standard set of major causes
defined for causal analysis of defects can be process, people, technology, as
these are the main factors that impact the quality and productivity [9, 13].
With the effect and major causes, the main structure of the diagram is made –
effect as a box on the right connected by a straight horizontal line, and an
angular line for each major cause connecting to the main line.
 For analyzing the causes, the key is to continuously ask the question
“why does this cause produce this effect?” For example, for a project with too
many GUI defects the questions are of the type “why do people cause too
many GUI defects” or “why do processes cause too many GUI defects.” This
is done for each of the major causes. The answers to these questions become
the sub-causes and are represented as short horizontal lines joining the line for
a major cause in the CE-diagram. Then the same question is asked for the
causes identified. This “Why-Why-Why” process is repeated till all the root
causes have been identified, i.e. we have reached the causes for which asking
a “Why” does not make sense. When all the causes are identified and marked
in the diagram, the final picture looks like a fish-bone structure and hence the
cause-effect diagram is also called the fish-bone diagram, or Ishikawa
diagram after the name of its inventor.

 6

 Once this diagram is finished, we have identified all the causes for the
effect under study. However, most likely the initial fishbone diagram will
have too many causes. Clearly, some of the causes have a larger impact than
others. Hence, before completing the root cause analysis, the top few causes
are identified. This is done largely through discussion. For defect prevention,
this whole exercise can be done for the top one or two categories in the Pareto
analysis.
 Once the root causes are known, then the next step is to think of what
can be done to attack the root causes, such that their manifestation in form of
defects reduces. That is, think of preventive actions for the causes. The basic
paradigm is the age old adage “prevention is better than cure”. Some common
prevention actions are building/improving checklists, training programs,
reviews, use of some specific tool. Sometimes, of course, drastic actions like
changing the process or the technology might also be taken.

To see the impact of DP, and to exploit further opportunities that may
exist, we suggest that DP exercise be done after each iteration, for the first
few iterations. Once the results indicate that that benefits are tapering off, the
DP activities may be stopped.
 The preventive solutions are action items which someone has to
perform. Hence, the implementation of the solutions is the key. Unless the
solutions are implemented, they are of no use at all. At Infosys, along with the
solution, the person responsible for implementing the solution is also
specified. These action items are then added to the detailed schedule of tasks
for the project and their implementation is then tracked like other tasks.
An important part of implementing these solutions is to see if it is having the
desired effect – namely, reducing the injection of defects and thereby
reducing the rework effort expended in removing the defects. Further analysis
of defects found after the solutions have been implemented can give some
insight into this question. The next analysis for defect prevention done at the
end of the next iteration can be used for this purpose. Besides tracking the
impact, such follow-up analysis has tremendous reinforcing value – seeing the
benefits convinces people like nothing else. Hence, besides implementation,
the impact of implementation should also be analyzed.

An Example
Let us illustrate the whole process through an example of a commercial
project executed at Infosys. This project used a variation of RUP [11] for
execution and had three construction iterations (using the RUP terminology.)
Summary of the analysis of defect data after the first construction iteration is
shown in Table 1 – this is a simple type-wise breakup of defects. The Pareto
chart for this defect data is shown in Figure 1.

 7

Table 1: Summary of defect data for the first iteration

Defect

Type

Logic Standards Redundant

code

User

Interface

Architecture

No of

Defects

19 17 11 8 2

Figure 1: Pareto Chart for Defects

In the first iteration we know that at least 57 defects were injected.
The effort for that phase is also known from the effort data for the project.
From these two, we get the defect injection rate for just the build phase as
0.33 defects per hour. The project goal was to achieve a reduction in the
defect injection rate to about half this level.

In the defect analysis meeting, it was decided that to reduce the defect
injection rate significantly, all the top three categories of defects – logic,
standards, and redundant code – will be tackled. A brainstorming session was
held to identify the root causes and the preventive actions that are possible. A
standard brainstorming procedure was followed – first all the possible causes
that anyone suggested were listed, then the ones that were identified as the
main culprits were separated out. For these causes, possible preventive actions
were discussed and finally agreed. (At Infosys, the brainstorming meetings for
the root cause analysis and for determining the solutions are done in the same
session, and the final result is generally reported in a tabular form, even if a
fish-bone diagram is drawn during the brainstorming session.) The final result

Defects Pareto

0

5

10

15

20

Logic Standards Redundant
Code

UI Architecture
0
20
40
60
80
100
120

 8

of the causal analysis meeting was a table giving the main root causes and the
preventive actions that have to be implemented. Part of this table is shown in
Table 2. Note that most of these preventive actions are schedulable activities
and hence were scheduled in the project schedule and then later executed and
monitored like other project tasks.

Table 2: Root causes and preventive actions for ACIC project

Defect Type
(number of
defects)

Root Cause Preventive Action

Standards
(17)

Oversight Do a walkthrough of the standards with
developers.

 Coding Standards not
updated

Update coding standards for imports,
naming, and user interface

Redundant
Code (11)

Lack of understanding of
object model and database

i) Training on Database structure ii)
Conduct a short training on the object
model.

 lack of understanding of
existing code

Arrange code reading sessions.

Logic (19) lack of understanding of
existing code

Arrange code reading sessions.

 Lack of understanding of
database and object mode.

Same as earlier.

 Lack of understanding of
use cases

Do a requirement walkthrough.

 The preventive actions were implemented for the next iteration.
Whether these measures are reducing the defect injection rate or not can only
be checked through the measurement data in future iterations in which these
DP solutions have been implemented. In this example which had three
iterations, the defect injection rate after the next two iterations was also
determined. The result of the analysis done after the other two iterations is
shown in Figure 2.
 This chart clearly shows the impact of implementing the preventive
actions on the defect injection rates in the second and third iterations – the
defect injection rates fell from over 0.33 defects per person-hour to less than
0.1! The reduction in injection rate from 2nd to 3rd iteration was small,
suggesting that feedback through defect analysis from early iterations is more
valuable and scope for improvement reduces after one set of actions has been
implemented. In other words, it suggests that detailed root-cause analysis and
determination of preventive actions perhaps need to be done only for early
iterations – for future iterations just keeping track of the injection rate might
suffice.

 9

Figure 2: Defect Injection Rate in Different Iterations

 Reduction in defect injection implies that there are fewer defects to be
detected and fixed. Consequently, there should be a reduction in the rework
effort in later iterations. The rework effort as a percent of overall iteration-
development cost is shown in Figure 3. As we can see, the pattern of
reduction in rework effort is similar to the pattern of reduction in the defect
injection rate – the rework effort reduced from about 15% to less than 5% in
the second iteration and reduced further to about 3% in the third iteration.
This rework effort is obtained from the effort and the rework effort data. This
clearly illustrates the power of defect analysis feedback from one iteration
into future iterations.

Figure 3: Rework reduction in ACIC due to defect prevention

Summary

Iterative development models are now the preferred approaches for
developing software as such models avoid some of the problems of the
waterfall model and are better suited for the fast changing world of today. In
an iterative development, the software is developed in a series of iterations,

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

1 2 3

DIR
Project Goal

Rework as a fraction of Development effort

0.00
0.05
0.10
0.15
0.20

1 2 3

Rework as a
Percentage of
Development
effort

 10

each iteration delivering a working system which is then used to build the
next version of the system with more capabilities. Besides delivering working
systems quickly, in iterative development the feedback from the software
developed in one iteration becomes an invaluable input for development in the
next iterations.

The iterative development renders itself to the possibility of
leveraging the experience of one iteration for improving the development
process of next iterations. In general, software process improvement tries to
leverage the experience of an organization for the benefit of the projects. Such
an improvement model uses experience from past projects for future projects.
Though very useful, frequently experience from one set of projects is not
directly usable in a new project. On the other hand, experience from one
iteration of a project should be directly useful and relevant to the other
iterations, leading to the possibility of improving a project’s process by in-
process data and experience.

In this paper we propose the use of defect data from one iteration for
defect prevention in future iterations. The defect data is collected during the
development. At the end of an iteration, the defect data is analyzed using a
structured analysis process leading to identification of root causes of defects
and suggestions for attacking the root causes to prevent the occurrence of
such defects in future. These suggestions are the process improvement
possibilities actions for future iterations.

We have applied the technique to many projects and have shown the
application in detail on one project. This example clearly illustrates how
defect injection rate falls rapidly through the use of this technique. The
rework effort as a percentage of total effort also falls significantly, leading to
an improvement in productivity also. Experience with other projects
strengthens the hypothesis that structured feedback from one iteration can be
very effective in improving quality and productivity in future iterations.

This concept of using a project’s data for improving the process of the
project itself can also be applied to other process models, though not as
naturally as in iterative development. In a waterfall type model, some
checkpoints will have to be established at which analysis is done and results
fed back. In long running projects, such an analysis can be done at regular
intervals. At Infosys we have seen benefits of applying this technique in these
projects as well.

References
1. V. R. Basili and A. Turner, Iterative enhancement, a practical technique for software

development, IEEE Transactions on Software Engg., 1(4), Dec 1975.

2. V. R. Basili, Ed., Tutorial on Models and Metrics for Software Management and
Engineering, IEEE Press, 1980.

3. V. R. Basili and H. D. Rombach, The experience factory, The Encyclopedia of Software
Engineering, John-Wiley and Sons, 1994.

 11

4. K. Beck, Extreme Programming Explained, Addison Wesley, 2000.

5. E. J. Chikofsky, Changing your endgame strategy, IEEE Software, Nov. 1990, pp. 87, 112.

6. Cockburn, Agile Software Development, Addison Wesley, 2001.

7. Collier, T. DeMarco, and P. Fearey, A defined process for project postmortem review,
IEEE Software, pp. 65-72, July 96.

8. J. L. Hennessy and D. A. Patterson, Computer Organization and Design, Second Edition,
Morgan Kaufmann Publishers, Inc., 1998.

9. P. Jalote, CMM in Practice – Processes for Executing Software Projects at Infosys, SEI
Series on Software Engineering, Addison Wesley, 2000.

10. C. Jones, Strategies for managing requirements creep, IEEE Computer, 29 (7): 92-94.

11. P. Kruchten, The Rational Unified Process – An Introduction, Addison Wesley, 2000.

12. W. W. Royce, Managing the development of large software systems, IEEE Wescon, Aug.
1970, reprinted in Proc. 9th Int. Conf. on Software Engineering (ICSE-9), 1987,
IEEE/ACM, pp. 328-338.

13. Software Engineering Institute, The Capability Maturity Model for Software: Guidelines
for Improving the Software Process, Addison Wesley, 1995.

14. C. Larman, Applying UML and Patterns, 2nd Edition, Pearson Education, 2002.

15. C. Larman and V. R. Basili, "Iterative and Incremental Development: A Brief History",
June 2003, IEEE Computer.

16. D. N. Card, “Learning from our mistakes with defect causal analysis”, IEEE Software,
Jan-Feb 1998.

17. D. N. Card, “Defect causal analysis drives down error rates”, IEEE Software, July 1993.

18. R. Mays et al., “Experiences with defect prevention”, IBM Systems Journal, 29:1, 1990.

19. P. Jalote et. al., “Timeboxing: A process model for iterative software development”,
Journal of Systems and Software, 2004, 70:117-127.

20. P. Jalote et. al., “The Timeboxing process model for iterative software development”, in
Advances in Computers, 2004, Vol 6, pp 67-103.

21. International Standards Organization, ISO900-1, Quality Systems – Model for Quality
Assurance in Design/Development, Production, Installation, and Services, 1987.

22. R. Chillarege et. al. Orthogonal defect classification – a concept for in-process
measurements. IEEE Transactions on Software Engineering, 18(11):943:956, Nov 1992.

23. IEEE, Std. 1044-1993. IEEE standard classification for software anomalies, IEEE.

