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Introduction 
 
Our simulation is based on modeling the verb and past tense 
mapping through the connectionist approach. 
The connectionist approach is based on neural network theory 
which says that networks are made up of nodes and connections. 
Nodes: The nodes can have any property or no property at all and 
are activated on the basis of threshold values. If the value is greater 
than the threshold then the node is activated otherwise it is 
dormant.  
Connections: The connections are assigned random weights in 
the starting but as they repeatedly experience the pattern, their 
weights are adjusted to give correct output next time. 
 
In a network there are various numbers of input, hidden and output 
nodes. Here we have used a feed-foreword network according to 
which in the same layer 2 nodes have no connection. All other 
nodes are connected to each other. The input nodes are connected 
to output nodes via hidden nodes. Depending on the active nodes 
in the input layer and the weights of the connections, we get the 
desired output. Various algorithms have been developed to adjust 
the weights to give the correct output. 
The connectionist approach is contrary to the dominant symbolic 
approach to learning in the sense that there are no rules and 
exceptions posited in the model to account for an output for a 
given input. This approach has its drawbacks but the biggest 
advantage it has is that it is said to model the brain more closely 
than symbolic model approach. 
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The Simulation 
 

Rumelhart and McClelland’s Model 
 
Various simulations have been done which show same learning 
behavior as humans do. One of the most famous simulation was 
done by J. L. Rumelhart and D. E. McClelland where they used the 
Wickelgren feature to represent the verbs. Wickelgren feature 
consists of a set of trigrams called Wickelphones and which are 
further reduced to phonemic representation called Wickelfeatures. 
Wickelgren features almost permits a differentiation of all root 
form of English and their past tense. 
They used in total 460 nodes for the representation of each word. 
Their success ratio were close to 85% and were able to show the 
same U-shaped pattern of learning that the children show. 
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Our Model 
 
Model 1: Initially we started with a model which consisted of 26 
nodes for representing each verb. For the first utterance each letter 
was assigned a value of 0.5 and for the next utterance the value 
was increased by 0.5. 
Since the values of the nodes could not go beyond 1, verbs having 
utterances of letters more than twice could not be represented by 
this model. Also this model lacked order and precedence of the 
verbs in the final presentation. You cannot infer from the output 
what the verb is unless you know the expected pattern. 
This model also showed some results. When it was trained over 
only regular verbs or only irregular verbs, it showed some kind of 
learning. But when the patter was mixed up the results were not 
good. 
 
 
Model 2: The second model we opted for consisted of 260 nodes 
for each verb. Among each 26 nodes, from the starting, only one 
node was active in accordance with the letter, in precedence order 
of the verbs. That is to say, that the first letter of the verb was 
showed active in the first set of 26 nodes and the rest 25 were 
inactive, the second letter was active in the next set of 26 verbs and 
so on. 
The model had the advantage of order over the first model and 
words having at most 10 alphabets could be represented using this 
model. 
The only problem with that model was the final matrix of 
260Xword size was very scarce and the pattern recognition won’t 
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be easy. But nothing could be concluded as the simulation 
requirements for the model were much more that the 
computational capacity of our computer. 
 
Model 3 and the final model: In all the simulations for each of 
the model we have used, we used the neural network tools of 
MATLAB. We basically used the feed forward network along with 
the Bayesian back propagation algorithm. The reason for choosing 
the Bayesian algorithm was that it learns the pattern in only a few 
epochs, which is actually the case with child learning. 
Coming to final model, we decided to have a phonemic 
representation of the verbs and their past tenses. The classification 
of phonemes was used exactly as it was done by Rumelhart and 
McClleland. The classification was as follows: -  
   
 
      Front   Middle   Back 

    V/L U/S V/L U/S V/L U/S 
stop b p d t g k Interrupted 

Cons. nasal m - n - N - 
fric. v/D f/T z s Z/j S/C Continuous 

Cons. liq/SV w/l - r - y - 
high E i O ^ U u Vowel 
low A e I a/@ W */o 

KEY: N= ng in sing; D= th in the; T= th in with; Z= z in azure; S= 
sh in ship; C=ch in chip; E= ee in beer; i= i in bit; O= oa in boat; 
^=u in but or schwa; U= oo in boot; u= oo in book; A= ai in bait; 
e= e in bet; a= a in bat; @= a in father; W= ow in cow; *= aw in 
saw; o= o in hot. 
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Here we have 2 categories of phonemes and each category has 3 
more classification and each classification has 2 types. This makes 
it 6 on each side of the 2 major categories. 
For each of the 6 types we decide to use 3 bits to represent it. Thus 
each phoneme can be represented in 6 bits. 
Next for each verb, we took each of its phonemes and concatenated 
the phonemes in the order of precedence. We put a restriction on 
the word size to 8 letters keeping into account our capacity of our 
personal computers. That would make up to 48 nodes, i.e. 
maximum of 8 phonemes. The bits for each of the phoneme are as 
follows: -  
 
stop 001 

nasal 010 

fric. 011 

Liq/SV 100 

high 101 

low 110 

 
F v/l 001 

F u/s 010 

M v/l 011 

M v/l 100 

B v/l 100 

B u/s 110 
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Data Set 
 
Our data set consisted of 110 verbs both regular and irregular. 
Initial training was done on a set of 100 verbs which has all the 
regular verbs (around 75) and around 25 irregular verbs. 
Then we made two test files one which had the 10 irregular verbs 
already shown to the network. 
The other file had 10 remaining new verbs that both regular and 
irregular. 
For the whole data set we manually calculated the coded format for 
each of the verbs, and using Inp_Prin.java we created the required 
format for the input to the simulation. 
The input file was named Input.txt, target file (which had the past 
tense of verbs in input file), was named Output.txt. The test file 
was named as TestData.txt, its target file as TestOp.txt. The file 
which had 10 irregular verbs was named irregular.txt and its past 
tense file was named irregularout.txt. 
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Final Simulation 
 
In the simulation we trained the network for 100 epochs. After 
every 10 epoch, we tested the data for the irregular verbs and the 
new set of verbs. 
For testing the correctness, we made two programs, namely, 
Convert.java and test1.java. The first one converted the output file 
such that for values less than 0.5 the node value was made 0 and 
for values greater than equal to 0.5 it was made 1. 
The second one, test1.java, compared the two output files we got 
after converting was compared to TestOp.txt and irregularout.txt. 
The output files were named oui (for ith iteration) and iri. 
The results we got have been presented in the form of two graphs. 
The first graph showed the learning of the irregular verbs and is as 
follows: 
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The second graph showed the results on new verbs and here is the 
graph that we got: 
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To compare the above graph we used a reference graph that we got 
from a link of a thesis done at MIT. The link is as follows:- 
http://genesis.csail.mit.edu/papers/Molnar.pdf 
 
And the graph that they have given for overgeneralization was: 
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Further Testing 
 
We did further testing on our simulation to check the robustness of 
the system. For the created another program Randomize.java 
which randomly picked up 10 verbs out of the data set of 110 verbs 
and created 4 following files:  

1) 100 remaining verbs 
2) Past tense of those 100 verbs 
3) 10 randomly picked up files 
4) Past tense of those 10 verbs 

We created this kind of data set 10 times and tested on each of 
them starting from a fresh network each time. 
The output file was named wed.txt and its converted format (using 
Convert.java) was named tue.txt in each of the data format. The 
results we got have been tabulated in here: 
 
S.No. Name Number of 

Nodes correct 
Total number 
of nodes 

Percentage 
correctness 

1 TEST0 429 480 89.4 
2 TEST1 444 480 92.5 

3 TEST2 437 480 91 

4 TEST3 384 480 80 

5 TEST4 426 480 88.8 

6 TEST5 437 480 91 

7 TEST6 436 480 90.8 

8 TEST7 438 480 91.2 
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9 TEST8 427 480 89 

10 TEST9 424 480 88.3 

 
 
The average percentage of node that were correct are: 89 
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Conclusion 
 

 Our simulation has correctly learned the past tense of the 
given input. 
 For the case when the input had new verbs the results were 
found to be correct up to 89%. 
 From the 2nd graph in the final simulation we can see that it 
first over generalizes and then it is partially recovering which 
approximates the characteristic of child learning. 
 On further testing our simulation shows a consistent 
character and average number of correct nodes in the testing 
was 89% again. 
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Disadvantages of our Model 
 

 The word length is limited which deviates from the fact that 
children learn words of even larger lengths. 
 Our error (SSE) reaches to a critical point (1-3%) after 
sometime and does not tend to minimize the error further. 
 There may be possibility that two verbs may have same 
phonemic representation. 
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