
Learning of Past Tense using the Connectionist
Approach

CS784
LANGUAGE ACQUISTION

Instructors: Dr. Achla M. Raina
Dr. Harish Karnick

Submitted by: Abhishek Kumar Mall
Varun Sharma

 1

Acknowledgement

We take this opportunity to thank our instructors Dr. Achla M.
Raina and Dr. Harish Karnick. Without their help and guidance it
would be impossible to finish the project under the given
constraints of time. The project required enough background on
verbs and their past tense, phonemes and phonemic representation
of the verbs in the simulation. Due to their continuous help, text
and reference material were easily available to us and we did not
waste time searching for the correct reference.

 2

Contents

1. Introduction 4
2. The Simulation
 a. Rumelhart and McClelland’s Model 5
 b. Our Model 6

c. Data Set 9
d. Final Simulation 10
e. Further Testing 13

3. Conclusion 15
4. Disadvantages of our Model 16
5. Bibliography 17

 3

Introduction

Our simulation is based on modeling the verb and past tense
mapping through the connectionist approach.
The connectionist approach is based on neural network theory
which says that networks are made up of nodes and connections.
Nodes: The nodes can have any property or no property at all and
are activated on the basis of threshold values. If the value is greater
than the threshold then the node is activated otherwise it is
dormant.
Connections: The connections are assigned random weights in
the starting but as they repeatedly experience the pattern, their
weights are adjusted to give correct output next time.

In a network there are various numbers of input, hidden and output
nodes. Here we have used a feed-foreword network according to
which in the same layer 2 nodes have no connection. All other
nodes are connected to each other. The input nodes are connected
to output nodes via hidden nodes. Depending on the active nodes
in the input layer and the weights of the connections, we get the
desired output. Various algorithms have been developed to adjust
the weights to give the correct output.
The connectionist approach is contrary to the dominant symbolic
approach to learning in the sense that there are no rules and
exceptions posited in the model to account for an output for a
given input. This approach has its drawbacks but the biggest
advantage it has is that it is said to model the brain more closely
than symbolic model approach.

 4

The Simulation

Rumelhart and McClelland’s Model

Various simulations have been done which show same learning
behavior as humans do. One of the most famous simulation was
done by J. L. Rumelhart and D. E. McClelland where they used the
Wickelgren feature to represent the verbs. Wickelgren feature
consists of a set of trigrams called Wickelphones and which are
further reduced to phonemic representation called Wickelfeatures.
Wickelgren features almost permits a differentiation of all root
form of English and their past tense.
They used in total 460 nodes for the representation of each word.
Their success ratio were close to 85% and were able to show the
same U-shaped pattern of learning that the children show.

 5

Our Model

Model 1: Initially we started with a model which consisted of 26
nodes for representing each verb. For the first utterance each letter
was assigned a value of 0.5 and for the next utterance the value
was increased by 0.5.
Since the values of the nodes could not go beyond 1, verbs having
utterances of letters more than twice could not be represented by
this model. Also this model lacked order and precedence of the
verbs in the final presentation. You cannot infer from the output
what the verb is unless you know the expected pattern.
This model also showed some results. When it was trained over
only regular verbs or only irregular verbs, it showed some kind of
learning. But when the patter was mixed up the results were not
good.

Model 2: The second model we opted for consisted of 260 nodes
for each verb. Among each 26 nodes, from the starting, only one
node was active in accordance with the letter, in precedence order
of the verbs. That is to say, that the first letter of the verb was
showed active in the first set of 26 nodes and the rest 25 were
inactive, the second letter was active in the next set of 26 verbs and
so on.
The model had the advantage of order over the first model and
words having at most 10 alphabets could be represented using this
model.
The only problem with that model was the final matrix of
260Xword size was very scarce and the pattern recognition won’t

 6

be easy. But nothing could be concluded as the simulation
requirements for the model were much more that the
computational capacity of our computer.

Model 3 and the final model: In all the simulations for each of
the model we have used, we used the neural network tools of
MATLAB. We basically used the feed forward network along with
the Bayesian back propagation algorithm. The reason for choosing
the Bayesian algorithm was that it learns the pattern in only a few
epochs, which is actually the case with child learning.
Coming to final model, we decided to have a phonemic
representation of the verbs and their past tenses. The classification
of phonemes was used exactly as it was done by Rumelhart and
McClleland. The classification was as follows: -

 Front Middle Back

 V/L U/S V/L U/S V/L U/S
stop b p d t g k Interrupted

Cons. nasal m - n - N -
fric. v/D f/T z s Z/j S/C Continuous

Cons. liq/SV w/l - r - y -
high E i O ^ U u Vowel
low A e I a/@ W */o

KEY: N= ng in sing; D= th in the; T= th in with; Z= z in azure; S=
sh in ship; C=ch in chip; E= ee in beer; i= i in bit; O= oa in boat;
^=u in but or schwa; U= oo in boot; u= oo in book; A= ai in bait;
e= e in bet; a= a in bat; @= a in father; W= ow in cow; *= aw in
saw; o= o in hot.

 7

Here we have 2 categories of phonemes and each category has 3
more classification and each classification has 2 types. This makes
it 6 on each side of the 2 major categories.
For each of the 6 types we decide to use 3 bits to represent it. Thus
each phoneme can be represented in 6 bits.
Next for each verb, we took each of its phonemes and concatenated
the phonemes in the order of precedence. We put a restriction on
the word size to 8 letters keeping into account our capacity of our
personal computers. That would make up to 48 nodes, i.e.
maximum of 8 phonemes. The bits for each of the phoneme are as
follows: -

stop 001

nasal 010

fric. 011

Liq/SV 100

high 101

low 110

F v/l 001

F u/s 010

M v/l 011

M v/l 100

B v/l 100

B u/s 110

 8

Data Set

Our data set consisted of 110 verbs both regular and irregular.
Initial training was done on a set of 100 verbs which has all the
regular verbs (around 75) and around 25 irregular verbs.
Then we made two test files one which had the 10 irregular verbs
already shown to the network.
The other file had 10 remaining new verbs that both regular and
irregular.
For the whole data set we manually calculated the coded format for
each of the verbs, and using Inp_Prin.java we created the required
format for the input to the simulation.
The input file was named Input.txt, target file (which had the past
tense of verbs in input file), was named Output.txt. The test file
was named as TestData.txt, its target file as TestOp.txt. The file
which had 10 irregular verbs was named irregular.txt and its past
tense file was named irregularout.txt.

 9

Final Simulation

In the simulation we trained the network for 100 epochs. After
every 10 epoch, we tested the data for the irregular verbs and the
new set of verbs.
For testing the correctness, we made two programs, namely,
Convert.java and test1.java. The first one converted the output file
such that for values less than 0.5 the node value was made 0 and
for values greater than equal to 0.5 it was made 1.
The second one, test1.java, compared the two output files we got
after converting was compared to TestOp.txt and irregularout.txt.
The output files were named oui (for ith iteration) and iri.
The results we got have been presented in the form of two graphs.
The first graph showed the learning of the irregular verbs and is as
follows:

 10
445

450

455

460

465

470

475

480

485

0 50 100 150

N
um

be
r o

f c
or

re
ct

 n
od

es
 fo

r
irr

eg
ul

ar
 v

er
bs

Series1
Series2

The second graph showed the results on new verbs and here is the
graph that we got:

418

420

422

424

426

428

430

432

434

436

0 50 100 150

Number of Iterations

N
um

be
r o

f C
or

re
ct

 N
od

es
 fo

r t
he

 T
es

t
ca

se Series1

To compare the above graph we used a reference graph that we got
from a link of a thesis done at MIT. The link is as follows:-
http://genesis.csail.mit.edu/papers/Molnar.pdf

And the graph that they have given for overgeneralization was:

 11

 12

Further Testing

We did further testing on our simulation to check the robustness of
the system. For the created another program Randomize.java
which randomly picked up 10 verbs out of the data set of 110 verbs
and created 4 following files:

1) 100 remaining verbs
2) Past tense of those 100 verbs
3) 10 randomly picked up files
4) Past tense of those 10 verbs

We created this kind of data set 10 times and tested on each of
them starting from a fresh network each time.
The output file was named wed.txt and its converted format (using
Convert.java) was named tue.txt in each of the data format. The
results we got have been tabulated in here:

S.No. Name Number of

Nodes correct
Total number
of nodes

Percentage
correctness

1 TEST0 429 480 89.4
2 TEST1 444 480 92.5

3 TEST2 437 480 91

4 TEST3 384 480 80

5 TEST4 426 480 88.8

6 TEST5 437 480 91

7 TEST6 436 480 90.8

8 TEST7 438 480 91.2

 13

9 TEST8 427 480 89

10 TEST9 424 480 88.3

The average percentage of node that were correct are: 89

 14

Conclusion

 Our simulation has correctly learned the past tense of the
given input.
 For the case when the input had new verbs the results were
found to be correct up to 89%.
 From the 2nd graph in the final simulation we can see that it
first over generalizes and then it is partially recovering which
approximates the characteristic of child learning.
 On further testing our simulation shows a consistent
character and average number of correct nodes in the testing
was 89% again.

 15

Disadvantages of our Model

 The word length is limited which deviates from the fact that
children learn words of even larger lengths.
 Our error (SSE) reaches to a critical point (1-3%) after
sometime and does not tend to minimize the error further.
 There may be possibility that two verbs may have same
phonemic representation.

 16

Bibliography

 McClelland, J.E. & Rumelhart, D.E. Learning the Past Tense.
Parallel Distributed Processing (Vol. 2), 216-271.
 Pinker, S. & Prince, A. Analysis of Parallel Distribute
Processing Model of Language Acquisition

 17

