
Emergent Adaptive Lexicon 
*Term paper for fullfiling the requirements of the course CS784 
Instructors: Dr. Harish Karnik and Dr. Achala M. Raina 

Authors: Nilesh Mishra and Rishabh Halakhandi 
Dept. of Computer Science and Engineering, IIT Kanpur, India. 

Abstract  
 This paper describes a simulation experiment done on the lines of Luc Steels’ 
experiment on language evolution with software agents. In the experiment a group of 
agents interact with each other in a series of language games. After sufficient number 
of rounds we get a coherent lexicon which gives experimental proof that language is 
an autonomous evolving adaptive system. 

1. Introduction 
Language can be seen as an emergent phenomenon. Language is a mass 

phenomenon actualized by different agents interacting with each other with no 
participant having a central view or control. It could spontaneously form itself once 
the underlying physiological, psychological and social conditions are satisfied and 
could autonomously become more complex based on evolution, co-evolution, and 
self-organization with level formation. In AI traditionally the designer carefully 
designs the rules and provides the ontology. Luc Steels’ work primarily tries to figure 
a mechanism through which language evolves on its own and becomes more complex 
with little outside intervention (self organizes itself).  

In inductive learning (learning by examples) approach the necessary 
conceptualization is done by the teacher and the learning system is given positive and 
negative examples of the concept to be learned. It can be argued that the real 
intelligence in such systems lies in the teacher than the learning system.  Also in many 
scenarios it is not always possible to get sufficient positive and negative examples. In 
Steels’ work the necessary conceptualization is done by the agents themselves when 
they develop new distinctions to discriminate objects in environment. The coherence 
in the system is reached by language interactions. The language emerging from these 
series of experiments has a number of human languages like features, such as 
ambiguity, polysemy and synonymy. The system has positive reinforcement built into 
it which helps the language self organize and the system becomes more coherent as 
the experiment progresses. In these games as the usage of a word increases the 
probability the game being played with this word results into success also increases. 

In the rest of the paper we present an overview of Luc Steels’ work on language 
emergence in a group of software agents interacting with each other via exchange of 
lexical entities. The properties of emergent language can be studied by looking at the 
simulation results. In section 2 we describe language games. In section 3 we give 
details of the simulation and describe the experiment in detail. In sec 4 simulation 
results are given. Section 5 concludes with references in section 6 and definition of 
some keywords in section 7.  

2. Language Games  
Looking at language as an emergent phenomenon we find that interaction amongst 

various entities in the system is very important for language to emerge and self 
organize. Language games are a mechanism through which different actors in the 



system interact with each other exchanging lexical entities (called utterances). These 
utterances are the viewpoint of the actor about a particular scenario. The stage 
consists of a speaker who generates the utterance, a listener who tries to understand 
what the utterance is, a topic which is the entity about which the speaker generates the 
utterance and finally a context which consists of other objects in the environment. The 
context plays an important part in terms of helping to disambiguate between different 
meanings that get attached with a word due to difference in viewpoints of different 
agents. The language game can be played in many different configurations where we 
can have different ways a topic is identified, what a context consists of, how and when 
the speaker and listener share their agreement and disagreement about the topic. Next 
we give detail about a particular type of language game where we choose the topic as 
another agent. The speaker and the listener share the topic with each other through 
extra lingual means e.g. pointing, etc. All the agents in the system have a number of 
properties which can be measured by other agents using sensors. Both the speaker and 
the listener try to identify the topic uniquely from the context. The speaker and the 
listener can differ in the way in which they identify the topic from the context and this 
in one way introduces ambiguity in the system. This differentiation process uses a set 
of features attached to different properties measured by the agents. The different steps 
in the process are given below.  

• The speaker identifies a topic from the context and shares with the listener 
through pointing. 

• The speaker and the listener try to come up with a distinct feature set for the 
topic. 

• The speaker uses its distinct feature set to come up with utterance using its 
lexicon and if it succeeds tells it to the listener. 

• The listener uses the speaker’s utterance and its own lexicon to calculate a 
feature set say F1.  

• The listener compares F1 with the distinct feature set generated by it F2 and if 
they are not disjoint declares the game as success. 

The game fails in the following cases 
• Speaker or listener does not have enough features to discriminate the topic 

from context. In this case the concerned agent calls its feature generation 
module to generate a new feature. This feature generation is random and does 
not necessarily means generation of a feature which can differentiate the 
current topic. It assumes that this new feature may help in future. 

• Speaker does not have a word-feature mapping for the features in the distinct 
feature set. In this case the speaker calls a word generation module with a low 
probability (5%). The word generation module randomly generated a word. 
This module is called with low probability to limit the number of words 
floating in the agent population so that we don’t have a word explosion. This 
can also be interpreted as a mechanism to ensure self organization.  

• Listener does not have enough feature-word mapping to generate a feature set 
for the utterance from speaker. In this case the listener adds the concerned 
word for which it does not have a meaning to all the features in the distinct 
feature set F2 generated by it in its lexicon. This introduces ambiguity as well 



as it acts as a mechanism through which the mapping of one agent’s lexicon 
gets adopted by another agent’s lexicon. 

• The distinct feature set generated by the listener is different from the feature 
set calculated by it from the utterance using the uncover function. 

The game succeeds only when the feature set generated by the listener and the feature 
set calculated from utterance of the speaker are overlapping. Given below are the 
FSM’s for the speaker and listener in a language game. 

  
 

3. Experiment Details 
The simulation environment primarily consists of three entities 

Generate Distinct  
Features 

Generate New  
Features 

Use Cover to 
Generate Utterance 

Generate New Word 
& add to lexicon 

Send Utterance to  
Listener 

Update Lexicon End Game 

Success

Game Failure 

Success 

Game Success 

Game Failure (5%)

Game Failure 

 
Speaker’s FSM 

Game Failure (95%) 

Figure 1: Finite state machine for speaker during a language game

Uncover Utterance 

Generate Distinct  
Features 

Generate New  
Features 

End Game 

Receive Speaker’s 
Utterance Compare Generated  

Distinct Feature set  
and Calculated Set 

Update Lexicon 

Update & add to 
Lexicon 

 
Listener’s FSM 

Failure Success 

Game Success 

Game Failure 

Game Failure due to 
disjoint sets 

Figure 2: Finite state machine for listener during a language game 



• The environment: It is a passive entity which acts as a mediator and also does 
selection of agents for context and as topic, speaker and listener. 

• A group of agents: The agents are the active entities in the system that plays a 
series of language games amongst themselves. Each agent takes the role of 
speaker, listener and as topic from time to time and in a random fashion. 

• A commentator: The commentator keeps track of the system. It has access to 
the internal states of all the agents but no agent can query it. 

The agents play series of language games amongst themselves. The experiment 
tests the hypothesis that language is an autonomous evolving adaptive system 
maintained by a group of distributed agents without central control. The system 
consists of an agent population (say 40 agents). In these 40 agents, at any given time 
only a subset of agents is active. The rest are sleeping (say 20.) At the start of the 
game the agents are clear slates i.e. do not have any inbuilt ontology.  The active 
agent subset plays language games which creates individual lexicons inside each 
agent. With a very small probability an active agent may go to sleep or an inactive 
agent may come alive. The lexicon of the agent coming out of sleep is the lexicon 
with which it went to sleep. (This makes the system an open system). The 
environment acts as the mediator between the agents. It also selects the different 
groups (active, sleeping, context, speaker, topic and listener). An agent has an array of 
sensors attached with it.  Each agent has a value for different sensor readings, which is 
initialized randomly at the start of the simulation. In the original experiment the 
number of sensors is limited and an agent associates a discrimination tree for each 
sensor to divide the sensor domain into non-overlapping, features.  Each feature has 
an attribute and a set of feature values (range) associated with it. In the original paper 
the authors have divided the continuous sensor values into sub-domains using 
discrimination trees. Instead of dividing the sensor domain we have increased the 
number of sensors (original = 5, ours = 10). Every agent has a lexicon associated with 
it which is a mapping of feature sets and words. Each agent has a word generation 
module, a distinct feature discovery module and update modules for language game 
bookkeeping. 

Distinct feature set 
A distinct feature is a minimal set of features which uniquely identifies the topic 

from the context. The distinct feature set is found in an iterative manner where we 
generate different feature sets from the feature set of the topic in a combinatorial 
fashion.  We stop at the level at which we get a distinct feature. E.g. If the distinct 
feature is a single feature then we calculate all the single feature distinct feature sets 
and do not go for distinct feature sets consisting of two or more features. The distinct 
feature set may consist of more then one feature when one feature cannot discriminate 
the topic from the context. If there exist more than one ‘feature sets’ in the distinct 
feature set then we need to choose only one of them for further use in the language 
games. The selection criterion is in the following order: 

• The feature set having the least number of features used, i.e. the smallest set is 
preferred. This is taken care at the time of generation of feature sets when we 
do not go for higher order feature sets when we find a distinct feature. 

• In case of equal size the set in which the feature imply the smallest number of 
segmentation is preferred. Thus we prefer features higher in the discrimination 



tree. This ensures that the most abstract features are chosen, thus more agents 
can share the feature region. 

• For equal depth of segmentation, we use the set for which the features have 
been used the most. This ensures that we develop a minimal set. 

Discrimination Tree  
Due to the grounding experiments where Steels uses physical robotic agents for 

simulation the number of sensors is limited. The goal of this mechanism is to provide 
an agent an adequate repertoire of features to discriminate between different agents in 
background. An elaborate mechanism is thus provided to generate enough features to 
distinguish the agent population. The mechanism starts with the association of a 
discrimination tree with each of the sensors. The discrimination tree divides the 
continuous domain into sub-domains mapping the sensory inputs to discrete 
categories represented as features. Whenever the agent fails to get a distinct feature 
set, a new feature is created. The new feature is created by randomly selecting a 
sensor channel and extending the discrimination tree associated with it by subdividing 
a distinction further. It should be noted that each sensor has a separate discrimination 
tree of its own inside an agent. Also the corresponding discrimination tree for a given 
sensor in two different agents are not correlated i.e. may be totally different in terms 
of branching. This algorithm is adaptive as it selects new features for future success. It 
is also top down as general distinctions are created before refinements are made. Also 
it is selectionist as distinctions are created and then subjected to pressure coming from 
success in discrimination. 

Lexicon 
The lexicon is a mapping between the different attribute-value pairs associated 

with an agents feature space (i.e. features generated by discrimination trees of 
different sensors) and words. Each lexicon is agent specific i.e. no two agents have the 
same lexicon. The lexicon has a bidirectional association from feature space to words 
and vice versa thus we have a many to many mapping. For each word entry there are 
pointers to different features associated with that word. Similarly for each feature 
entry there are pointers to different words associated with that feature. The pointer 
entries also contain the number of times that word/feature has been used as well as the 
number of time the word’s/feature’s use has resulted in success. Thus we maintain the 
status of each edge in the lexicon’s mapping. These values are used for giving 
preference to different words in case of a conflict as well as to introduce a positive 
feedback loop into the system where the more successful a word is the more is its 
usage and vice versa. This leads to self-organization of the lexicon. 

Cover and Uncover functions 
The cover and uncover functions are used for generating utterances from distinct 

feature set and feature sets from utterances respectively. Let A be the set of active 
agents, D be the distinct feature set and La the lexicon of agent a and Fw,L the feature 
set of word w in L. Then we have 

• Cover function 
cover (F, L) generating set of utterances U such that  

}|{, , uwandFffUu Lw ∈∈∈∀  

• Uncover function 



uncover (u, L) generates a feature set F such that 
}|{ , uwandFffF Lw ∈∈=  

The cover function is used by the speaker and it uses the mapping from feature set 
to words in the lexicon. The uncover function on the other hand uses the reverse 
mapping i.e. the mapping from words to feature sets and is used by the listener of a 
language game.  

Words and Utterances 
The words are fixed length concatenation of alphabets. The utterances are 

concatenated words (separated by a separator). In the current simulation a multi word 
utterance has no syntactic information, i.e. word order has no significance. Multi word 
utterances are significant of the fact that the speaker could not find a singleton distinct 
feature and hence is using multiple features to distinguish topic from context. 

4. Results  
Experiment

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000 2500 3000

number of language games

av
er

ag
e 

cu
m

m
un

ic
at

iv
e 

su
cc

es
s

Series1

 
Figure: The above figure plots the formation of language. 3000 language games are 
shown, involving 10 agents and 10 meanings.  
The above experiment was done as a java program. Our simulation results matches 
with Luc Steels experiment.  

 
5. Conclusion  

Steels in his series of experiments with robotic and software agents has tried to 
model rudimentary language systems to study the evolution of language. The 
significant features of these experiments are: 
• Open system: The agents in the system can go in and out of the active region. 

Also new words and meanings are created in the system. No agent or entity 
has the control over the simulation environment and the complete process 
happens in a distributed fashion.  



• Creation of new meanings: New meanings are created and introduced into the 
system when the current meaning set cannot describe it sufficiently. 

• Only relevant meanings are lexicalized: Only those meanings are lexicalized 
which are used by the agents. 

• Incoherence exists: The system can at times have incoherence in terms of 
same object having multiple representations and meanings in the system.  This 
incoherence is resolved at the time of finer disambiguation. 

• Meanings are not necessarily identifiable from context. 
• Context plays a role in disambiguation of a given sentence. 
• Multiple sentence words emerge in order to disambiguate single words. 

The experiments highlight that language is an adaptive system which changes 
with change in the system (e.g. introduction of new agents). It is self-organizing in 
the sense that the final coherence emerges from within the system and without any 
outer intervention. It is also selectionist i.e. only the more successful and widely 
used words get domination.  

The above series of experiments have been expanded later by a number of 
people. Some researchers have introduces learning and forgetting mechanisms to 
make it more real life. Additionally we can also study the model with introduction 
of genetic and other evolutionary algorithms. 

6. References 
• Steels, L. (1996), Emergent Adaptive Lexicons.  In: Maes, P. (ed.) (1996) 

Proceedigns of the Simulation of Adaptive Behavior Conference. The MIT 
Press, Cambridge Ma. 

• Steels, L. (1996), The spontaneous self-organization of an adaptive language. 
Muggleton, S. (ed.) Machine Intelligence 15. Oxford University Press, Oxford. 

• Steels, L. (1996), Perceptually grounded meaning creation. ICMAS 1996, 
Kyoto. 

• Steels, L. (1997), Constructing and sharing perceptual distinctions. van 
Someren, M. and G. Widmer (eds.), 1997 Proceedings of the European 
Conference on Machine Learning  (ECML), Springer-Verlag, Berlin. 

• David DeAngelis (2005), The Origins of Syntax In Visually Grounded 
Robotic Agents 

7. Terms 
• Feature: Concept created by the agents to distinguish/discriminate between 

objects and other agents present in the environment 
• Discrimination tree: A graph which divides the continuous sensor values into 

subdomains leading to creation of features. The path taken gives the attribute 
and the node gives the value to the feature. 

• Distinguishing feature set: A minimal set of features which will discriminate a 
topic from similar objects in the context. 

• Word: A combination of alphabets. 



• Utterance: A concatenation of words, where the word order is not important. 
It is the entity used for communication between agents 

• Synonymy: More than one word mapped to a meaning (here attribute value 
pairs) in the agents lexicon.  

• Ambiguity: Different agents associating different meanings to a word. 
• Polysemy: More than one meaning attached to a word which can be narrowed 

down using the context. It is different from ambiguity in the sense that in case 
of ambiguity it is different set of agents who attach different meanings with 
the word while in case of polysemy it is the same agent which introduces the 
different meanings for the word. 

• Co-evolution: Evolution in two or more interacting agents in which the 
evolutionary changes of each agent influence the evolution of the other agent.  

 


