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1 Introduction

Human language is a unique communication system[1]. It has got a syntacti-
cal structure with properties like compositionality and recursion. This makes
possible the synthesis of an infinite range of expression, which is unique to hu-
mans. Humans have the power to learn the signal-meaning mapping through
the observation of other’s use of language which also is absent in other an-
imals. The interactions between these two have been long studied and the
emergence of syntax has often been attributed to the complex dynamical
learning process found in the humans [1, 2, 3]. This approach proposes that
syntax has evolved without natural selection i.e. without the development of
an innate language acquisition device (LAD).

The dynamical process of language transmission has been modeled in
different social contexts. In [1], the transmission is vertical i.e. from one
individual in a generation to a blank learner in the next generation.

In [2], Kirby and Simon have tried to model horizontal transmission in
same generation of learners. But, in this case the transmission has direction.
Any blank individual entering the pool can learn only from its immediate
neighbours. We argue that such a model is similar to the vertical model.
Now the learner has access to two individuals instead of one. This cannot be
called perfectly horizontal.

In our project we have tried to model perfectly horizontal transmission in
which a blank learner entering the population can access any individual for
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Figure 1: Transmission of language over time

learning. We want to show that compositionality properties of syntax will
inevitably emerge over time in this case also.

When a blank learner has access to only one individual [1] or two in-
dividuals [2], poverty of stimulus plays an important role in the language
transmission process. We wish to see the extent of influence of poverty of
stimulus and role of subsumption rules in the emergence of syntax in our
model.

2 Computational Model

Our model works within the framework shown in the following figure.

Figure 2: Computation Model I

The population consists of individuals called agents. Blank individuals
can enter the population and individuals can also leave. There is a world
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knowledge which is the set of all possible meanings. Subsets of this set are
possessed by agents. There are n iterations in which two agents are picked at
random and made to interact m times. The interaction between two agents
can be modeled as the following diagram.

Figure 3: Computation Model I

Our computational model to imitate interaction between two agents is very
similar to the one in [1]. The simulation implements the following processes:

1. For a particular interaction, the shared knowledge is the meaning set
in context. A set of meaning from this shared knowledge is chosen
randomly and given to speaker to express.

2. The speaker then attempts to express each meaning either using its
own internalized knowledge of language or by some random process of
invention.

3. Now the listener gets this utterance(meaning-signal pair) and tries to
find an already internalized rule which could have been responsible for
this mapping. If a rule is not found the meaning-signal pair is induced.

In our simulations the world is made of predefined atomic concepts like:

john, tiger, eats, fear

These concepts are combined into predicate-argument combinations, which
may have hierarchical structure. For example:
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fears(john, tiger)
knows(john, eats(tiger, john))

An utterance is a meaning-signal pair. For example:

< johneatsmary, eats(john, mary) >

3 Learning

The learning algorithm may be discussed in the following contexts:

3.1 Grammar Representation

The rules internalized are context free grammar, to be more specific they are
definitive clause grammar (DCG) in which semantic arguments are attached
to the non terminals. They could be either holistic or compositional in na-
ture. For example:

1.S/eats(tiger, john)− > tigereatsjohn
(holistic)

2.S/p(x, y)− > N/xV/pN/y
V/eats− > eats
N/tiger− > tiger
N/john− > john
(compositional)

3.2 Rule Subsumption

Initially the grammar of every individual has no rules and utterances induce
rules trivially. For example, the utterance:
< tigereatsmary, eats(tigers, mary) >
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is induced as:

S/eats(tigers, mary)− > tigereatsmary

But, with such rules the internalized grammar will bloat up. So the
learner must have the power to generalize. This is done by the subsumption
rule, whereby new rules are incorporated, general rules are found which sub-
sume two or more rules and then duplicated rules are deleted. For example
the following set of rules:

S/eats(tiger, sausages)− > tigeeatssausages
S/eats(john, sausages)− > johneatssausages

can be replaced by:

S/eats(x, sausages)− > N/xeatssausages
N/tiger− > tiger
N/john− > john

Similarly, subsumption may be applied to a single rule. In many cases, a
simple generatlization might be applied by incorporating one rule within an-
other. For eg. given the following rules:

S/eats(tiger, sausages)− > tigereatssausages
N/tiger− > tiger

a learner might want to combine these two into:

S/eats(x, sausages)− > N/xeatssausages
N/tiger− > tiger

Another subsumption rule is the merging rule. Here rules differing only in
the non terminal are subsumed by a general rule. For example:

N/mary− > mary
M/mary− > mary

can be replaced by single rule with N or M as the non terminal.
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There can be many more subsumption rules apart from the three de-
scribed above. In our simulations we have restricted ourselves to these three
rules, as described in [1].

3.3 Invention

If the speaker does not have a way to produce a string given a meaning
i.e. the required rule is absent in the grammar, he or she finds the closest
meaning for which a rule is available. A parse tree for the meaning is then
created. At the wrong part in the tree the string is replaced by a random
sequence.

Let us look at an example from [1]. A speaker is asked to produce a
string for the meaning loves(john, anna). Suppose the speaker doesn’t have
the required grammar but he has the following rules:

S/loves(john, x)− > johnlovesN/x
N/mary− > mary

Thus the nearest meaning for which the speaker can produce a string is
loves(john, mary). A parse tree is created for this meaning:

The wrong part in this parse tree is the node where mary is there. So
this can be replaced by a random sequence of characters. So the invented
string for loves(john, anna) might be johnlovesrtui. Finally, the invented
rule itself is induced in the grammar.

4 Summary of the Simulation Cycle

The simulation goes through the following steps:

1. Initialize a population with no internal language.
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2. Repeat n times:

3. Pick 2 agents randomly from the population. One speaker, other lis-
tener

4. Perform m interactions.

5. Kill a random agent with some probability

5 Results

The results shown here are for two experiments that were carried out. To
show the trend in the grammer learnt over generations, we plotted the average
grammar size against the iteration number.

5.1 Experiment 1

Firstly, we tried the model described above without killing off individuals.
The number of individuals is 10, the number of interactions between a pair of
individuals is 50, and the number of such iterations is 1000. The results show
an explosion in the grammar size, with no sign of stability. The plot here is
for the first 100 iterations only, but a similar trend is seen even beyond this
point. The initial stable grammar obtained in [1] was nowhere to be seen:
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Figure 4: Results for experiment 1
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5.2 Experiment 2

We next varied the probability of killing off individuals. The probability
was set to 0.3 first, keeping the other parameters constant. The results
shown indicate some emergence of syntax, but closer examination of the in-
ner grammatical rules show that although there are rules that result from
the subsumption rules, a stable grammatical system is not reached. The plot
of average grammar size vs. iterations is presented:

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0  10  20  30  40  50  60  70  80  90  100

Average Grammar Length vs Iterations

’e3kill’ using 1:2

Figure 5: Results for experiment 2

A sample of the grammar emerging from 100 iterations is:

S/loves(bob, alice)− > gqjnj
G/alice− > kn
G/mary− > tl
S/eats(x, parker)− > oG/xn
F/mary− > qoloh
S/eats(x, bob)− > F/xl
E/mary− > dcetl
E/alice− > sftdps
S/eats(bob, y)− > E/yg
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5.3 Experiment 3

To show how the probability of killing, which we believe is related to lack of
stimulus and forms a bottleneck in learning, affects the learning, we varied
the probability to 0.6. We obtained the following trend:
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Figure 6: Results for experiment 3

Again, this graph, although showing a slower rate of growth and seemingly
stable grammar size, does not stabilize even into an initial grammar. Again,
a sample of the grammar is listed below. Although a formal measurement of
commonality between the grammars (i.e. by calculating the intersection of
the language produced by the grammar) was not carried out, the following
rules were seen to be repeated in a particular run:

T/alice− > ghb
T/mary− > qdhn
S/hates(bob, y)− > aT/yi
S/alice− > bgga
S/mary− > q
S/loves(john, y)− > aS/yq

There was no formation of rules with the semantics p(x, y), although rules
containing semantics of the form eats(x, y) were seen. Few non-terminals
showed unification, but an overall trend wasn’t seen.
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6 Conclusion

Kirby’s models[1, 2, 3] are intuitive and seemingly straight-forward. It was
our notion that the emphasis Kirby placed on the role of bottlenecks was
not necessary, and wished to prove that horizontal interactions driven by the
subsumption assumption would suffice to evolve syntax. However, results
shown by our experiments were largely disappointing, showing the formation
of certain rules that are relatively stable and used often, but lacking an overall
structure.

Further, the effect of allowing the system to be an open system, i.e.
letting new individuals come in and old ones die out was not very profound.
Increasing the rate to 0.6, which corresponds to killing an individual 6 times
out of every 10, reduced the size of the grammar, but did not affect its growth
substantially.

Although syntax did not emerge from pure horizontal interactions, we do
see the intial traces of the formation of a common grammar set, and perhaps
with vaster subsumption rules (perhaps general unification) and longer itera-
tions, a stable pattern may be achievable, although there is no sure indication
that this will happen.
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