Artificial agent

Artificial agent schematic

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dimensions of variation of task environment

- ► Fully observable env. vs partially observable env.
- ▶ Deterministic vs stochastic ((s, a) → s₁, s₁ completely determined by s and a except for other agents). Called strategic if deterministic except for other agents.
- Episodic (indp. sense-act chunks) vs sequential (curr. action affects future)
- Dynamic (env. can change even durin sense-act cycle) vs static. Called semi-dynamic if environment does not change with time but agents performance does.
- Discrete vs continuous nature of time applied to state, env., actions.

Single agent vs multiple agents.

Examples: Dimensions of variation

Task Env	Obs(F/P)	Det.(D/S)	Epis(E/S)	Static(S/D)	Disc.(D/C)	No. of Ags(1/M)
Crossword	F	D	S	S	D	1
Tournament chess	F	Str.	S	Semi	D	М
Self driving car	Р	S	S	D	С	М
Med. diagnosis	Р	S	S	D	С	1
Part picking	Р	S	E	D	С	1
Image analysis	F	D	E	Semi	D	1
Plant controller	Р	S	S	D	С	1
Tutor	Р	S	S	D	D	М
Chem. struc.	Р	S	S	S	D	1

<□ > < @ > < E > < E > E のQ @

Al: science of agent design in different task environments. Formally, construct function $f : S \times P \times K \rightarrow A$, where S is set of states, P is set of percepts, K is the knowledge base (history), A set of actions.

f is the *findAction* function which takes as argument: current state, percepts (from sensing), knowledge (past history, other information) and outputs an action.

Agent types

Agents can be classified into some broad agent types.

- Reactive or reflex agents. Modelled by table driven representations.
- ► Rule driven agents. Modelled by situation-action rules.
- Model driven agents. Constructs models of env. and effect of actions on env. and autonomous changes in env.
- Goal driven agents. Have models and also goals. Typically, one goal.
- Utility based agents. Generalization of goal driven agents. Optimize utility in the presence of multiple conflicting goals using trade-offs.
- Learning agents. f can keep changing based on changing dependencies. Even when dependencies are assumed constant they are not known a priori so must be learnt from data.