
Subgraph Isomorphism



Graphs

Ordered Pair G = (V,E) where
• V is a set of vertices
• E  ⊆ V x V set of edges



Common Terminology

• Complete Graph:- A 
graph is called 
complete when every 
pair of vertices is an 
edge.

• Connected Graph:- A 
graph is connected if 
there exists a path 
between any two 
vertices.

Complete Graph Disconnected Graph Connected Graph



Terminology (contd..)

• Stable Set :- A subset of vertices with no 
edge between any two of them.

• Degree :- The degree of a node is the 
number of edges incident to it.

• Clique:- A subset of vertices in which every 
pair is an edge. 



Types of Graphs

• K Connected Graphs
• K Partite Graphs
• Wheel Graphs
• Interval Graphs
• Grid Graph



K-Connected Graph
A graph G is said to be 

k-connected if there 
does not exist a set of 
(k-1) edges whose 
removal disconnects 
the graphs, i.e. the 
vertex connectivity of 
G is k.   



K-Partite Graphs

• A graph whose vertices can 
be partitioned into disjoint 
sets so that no two vertices 
within the same set are 
adjacent.   

• Coverable by k independent 
sets. 



Wheel Graphs

A wheel graph of order n has 
a cycle of order n-1, and for 
which every graph vertex in 
the cycle is connected to 
one other graph vertex 
called the hub.

The central point of a wheel 
graph is called hub and it 
has a degree n-1.  



Interval Graphs

An undirected graph G whose vertices can be put 
into one-to-one correspondence with a set of 
intervals of a linearly ordered set(like the real line) 
such that two vertices are connected by an edge of 
G if their corresponding intervals have non-empty 
intersection.



What is graph isomorphism ?



Graph Isomorphism

A graph G = (V, E) is said to be isomorphic to 
another graph G’ = (V’,E’) if there exists a
bijective function f:V→V’ such that 

For any edge e = (vi, vj) ∈ E, there exists an edge e’ 
= (f(v1),f(v2)) ∈ E’ and for any e’=(v1’,v2’) ∈ E’ 
there exists an edge e = (f-1(v1),f-1(v2)) ∈ E

The notation G  = G’ is used to indicate that G is 
isomorphic to G’.    



Class of the problem
• Its in a class of its own, neither into NP complete, co-

NP or into P.
• Its classified in the “Isomorphism Complete” class.

PNP

NP Complete

Co-NP

Co-NP Complete

C1 C1’



Applications

• Computer Chip Intellectual Property rights control

• Identification of similar molecules

• Pattern Recognition and Computer Vision.



Possible Approaches

• Brute Force 

• Ulmanns backtracking algorithm (1976)

• Nauty by Brendan McKay (1981) 

• VF algorithm by Cordella et all. (1998)



Subgraph Isomorphism

Given a graph G = (V,E) a sub-graph G’ = (V’,E’) is 
defined such that 

• V’⊆ V
• E’= E∩(V’ X V’)
The notation G ⊆ G’ is used to indicate that G is a 

sub-graph of G’
A graph G = (V,E) is said to be subgraph isomorphic 

to another graph G’=(V’,E’) if  ∃ S such that S ⊆
G’ and S = G.

G’ is called the input graph and G is called the model 
graph. 



Applications

• Pattern Recognition in Bio-Informatics & Bio-
Computing.

• Image Processing & Computer Vision

• Identification of sub-compound molecules of a 

given molecule.

• Recognition of distorted shapes.



Complexity

General graphs NP complete   (Manning 
(1990))

Special planar graphs Polynomial
• Embedded planar        (Manning (1990))
• 3-connected               (Hong, McKay, Eades (2002))
• Outerplanar                (Manning, Attalah (1992))
• Series-Parallel            (Hong, Eades, Li  (2000))
• Trees                         (Manning, Attalah (1989)) 



Aim of our project

It is well known that subgraph isomorphism is NP complete 
for general graphs. The aim of this project is to study the 
various algorithms pertaining to the problem, and based on 
our study to come up with a heuristic for the problem of 
subgraph isomorphism, which runs with high probability 
of success000000000



What is meant by heuristic 
algorithm

• A problem-solving technique in which the most 
appropriate solution is selected at successive 
stages of a program for use in the next step of the 
program. (Dictionary Definition) 

• A rule of the thumb, simplification or educated 
guess that reduces or limits the search for 
solutions. Heuristics do not guarantee optimal or 
even feasible solutions and are often used with no 
theoretical guarantee.



Major Algorithms we studied 

• Brute-force Enumeration technique
• Ullmann’s Algorithm
• Messmer’s Algorithm
• Eppstein’s Algorithm



Enumeration

The enumeration algorithm aims at finding 
isomorphism between the model graph and 
subgraph of input graph. 

M’ is defined as a matrix of order m x n 
where m in the number of nodes in the input 
graph and n is the number of nodes in the 
model graph. 



Enumeration (contd..)

M’ is a matrix which is generated by 
systematically assigning 0’s and 1’s each 
row contains exactly one 1 and no column 
contains more than one 1. This matrix M' = 
[m'ij] can be used to permute rows and 
columns of B to produce a further matrix C. 
Specifically, we define C = [cij] = 
M'(M'B)T.
(∀ i∀ j)(aij = 1) ⇒(cij = 1)   [Condition 1]



Enumeration Algorithm

• Step1 :  M  =  M0,  d  = 1;  H1 =  0; for  all i  
=  1,  ..  , m,  , set  Fi=  0; 

• Step2 :   If there  is no  value of j such  that
mdj =  l a n d Fj =  0 then  go to step  7; Md
=  M, i f  d  = 1  then  k= H1 else k =  0, 

• Step3 :    k  =  k  +  1, if mdk =  0  or Fk =  1 
then  go  to  step  3; for all j  != k set mdj =  0, 

• Step4 :    If d  <  m then go to step 6 else use 
condition  (1)  and  give output  if an 
isomorphism is found; 



Enum. Algorithm(contd..)

• Step5 :    If there is no j >k such that mdj
=  l and Fj =  0 then  go to step  7; M = 
Md , go to  step  3; 

• Step6 : Hd=k, Fk=1;  d=d+1; go to  
step  2, 

• Step7 :    If d=1 then terminate 
algorithm, Fk=0 ;   d=d-1,  M  = Md,  
k=Hd go  to  step  5



Ullmann’s Algorithm

• Ullmann algorithm is basically a 
modification of enumeration technique. 

• It follows the branch and bound paradigm.
• A constraint is devised which inhibits the 

generation of those matrices M’ which 
gives unsuccessful mappings. 



Ullmann’s Algorithm

• Step1 :  M  =  M0,  d  = 1;  H1 =  0; for  all i  
=  1,  ..  , m,  , set  Fi=  0; Refine M if exit FAIL 
then terminate algorithm. 

• Step2 :   If there  is no  value of j such  that
mdj =  l a n d Fj =  0 then  go to step  7; Md
=  M, i f  d  = 1  then  k= H1 else k =  0, 

• Step3 :    k  =  k  +  1, if mdk =  0  or Fk =  1 
then  go  to  step  3; for all j  != k set mdj =  0 
if exit FAIL then go to step 5 



Ullmann Algorithm(contd..) 

• Step4 :    If d  <  m then go to step 6 else use 
condition  (1)  and  give output  if an 
isomorphism is found; 

• Step5 :    If there is no j >k such that mdj =  l 
and Fj =  0 then  go to step  7; M = Ma , go to  
step  3; 

• Step6 : Hd=k, Fk=1;  d=d+1; go to  step  2, 
• Step7 :    If d=1 then terminate algorithm,

Fk=0 ;   d=d-1,  M  = Md,  k=Hd go  to  step  5



Decomposition Heuristic

• Optimal decomposition of the of a graph takes 
exponential time.

• An heuristic approach using decomposition was 
suggested by Messmer[1].

• It does not guarantee the optimal solution but 
finds a nearly optimal decomposition in much 
less time.

• This heuristic gives best results for multiple 
model graphs.  



Messmer’s Algorithm

• This is an algorithm which uses the 
dynamic programming paradigm.

• A graphs is decomposed into two graphs 
Smax and G – Smax where Smax is the largest 
subgraph of G already memoized.

• If no Smax exists then G is randomly divided 
into two graphs each consisting of equal 
vertices.



Polynomial Algorithm

• Enumerating all sub-graphs of a given graph takes 
exponential time.

• Thus for a general graph it is not possible do 
subgraph isomorphism in polynomial time.

• Some constraints needs to be evolved in order to 
solve subgraph isomorphism in polynomial time 
even if it is only for some restricted class of 
graphs. 



Eppstein’s Algorithm

• Constraints:
– Input graph is planar or has a wheel symmetry.
– Model graph is K3 or K4

• Methodology
– Decomposition into bounded trees of fixed 

width



What is Bounded Tree

• A tree decomposition of a graph G consists 
of a tree T, in which each node N∈ T has a 
label L(N) ⊂ V(G) , such that the set of tree 
nodes whose label contain any particular 
vertex of G forms a contiguous subtree of T, 
such that any edge of G connects two 
vertices belonging to the same label L(N) 
for at least one node N of T.Width of tree is 
one less than minimum width of any label.



Eppstein An Example 



Eppstein(contd…)

• Lemma 1
– Let planar Graph G have a rooted snapping tree T in 

which the longest path has length l.Then a tree 
decomposition of G with width at most 3l can be found 
in time O(ln).

• Theorem
– We can count the isomorphs of any Wheel Wk  in a 

planar text graph G with  n verticies in time O(nk2).By 
applying a dynamic programming approach on the 
generated trees to lookup for the isomorphism.



Original Work



Naming Scheme

• This approach is motivated by the fact that 
rate of information retrieval is influenced by 
the representation of data.

• The matrix representation which is currently 
the norm for graphs contains a lot of 
redundant information is which is not 
relevant to the problem under consideration.



Naming Scheme Possible ?

• A naming scheme is possible for trees and 
planar graphs.

• It is not possible to come up encoding 
which maps a string to a general graph in 
such a manner that the implicit details 
regarding the graph is coded into the string.



Better Base Case (BBC)

• In all the approaches that are presently 
being used the basis of comparison are two 
nodes with an edge in between.

• A better base case will lead to a 
asymptotically better algorithm.



Problems with BBC

• For a effective utilization of this technique for 
subgraph isomorphism domain knowledge is 
required.

• For example in the case of K3 all the possible 
graphs containing 3 nodes maybe used as a base 
case.

• Thus this method cannot be used as a general 
paradigm but can be used in order to improve the 
performance of a a given algorithm.



Problems with Current Methods

• Finally going through all the above mentioned 
algorithms we found, that the bottleneck was the 
number of edges in the model graph.

• Every algorithm tries to overcome this bottleneck 
by decomposing the model graph into smaller 
instances and finally recombining them in order to 
form the final solution.  



Bottleneck in Subgraph

• This process though ingenious, does not 
prove effective in most cases and can be 
efficiently used  only in specific domains.

• So we propose to remodel the given model 
graph into a using a new data structure, 
called a constrained BFSC tree.



Constrained BFS Tree

• This is fundamentally a BFS (Breadth First 
Search) tree with a added constraint that for each 
pair of nodes in the resulting tree we allow for 
only for one (cross/forward/backward) edge which 
will henceforth be referred to as special edge(SE). 
So from its definition it is quite evident that for a 
BFSC T  with n nodes we can have only have a 
maximum of [n/2] such SE edges



Lemma 1

– Given a k–connected graph G , with set of 
vertices V and edges E  such that |V|=n , we can 
decompose such a graph into maximum of (K-
1) such unique BFSC trees, or in other words 
these (k-1) trees would cover the graph

– ⇔ G(E,V) ≡ U(k-1)BFSC



Proof

– Given a k-connected graph G with |V|=n , so by 
the graph property we have maximum of [Kn/2] 
number of edges

– For a tree with n vertices has maximum of (n-1) 
tree edges.

– Now applying the constraint property we can 
have maximum of [n/2] special SE edges in our 
BFSC tree which are unique.



Proof (contd..)

– So in the worst case of a completely k-
connected graph, we will need to have (k-1) 
such BFSC trees each having maximum of 
unique[n/2] SE edges .

– As (n-1)+(k-1)*[n/2]≡[Kn/2]
• Hence proved.



Completeness

• We can show that such a construction of BFSC tree 
will cover the complete graph.
– This follows directly from the proof of lemma 1 , as 

during the construction of the BFSC  trees we have 
shown (k-1) such trees will cover all the edges of the 
graph G uniquely , ie there would be no duplication of 
SE edges in two different BFSC trees.

– So we are not missing my edge of the graph if we 
consider all such (k-1) trees.



Lemma 2

• If a subgraph is present in a input graph Gi, then it 
equivalent to say it exists at the point where all of 
these (k-1) BFSC tress map to.

• Proof
– Again from lemma 1 we get that (K-1) trees have 

covered all the edges of the Model Graph Gm , so the 
place where each of these BFSC trees map , would mean 
the union of all the SE and tree edges of all the tress 
which is finally our model graph.



Better Performance

• This technique of decomposition works faster than 
an implementation of Ullmann Algorithm, because 
the time required for our algorithm during its 
comparison phase would be lesser than its 
counterpart as it has to look for more sparse 
structure.

• The time required to arrive at the successful node 
where the pattern exists would also be lesser due 
to the faster rejection of unsuccessful nodes



• In the comparison module of Ullmann, has 
to modified by the virtue of which it would 
not be checking for the internal 
connections.This further enhances the 
performance.

• The model graph will be compared using 
the relaxed standards of comparisons used 
for BFSc 



New Algorithm

• Inputs:
– A Input graph Gi 

– A Model graph Gm

• Output
– The location of the subgraph isomorphic structure in the 

input Graph if it exists

• Step 1:
– Perform vertex testing on the two graphs, if it fails then 

exit.



NA (contd1..)

• Step 2:
– Generate the set of BFSC tress of model Graph 

Gm as described in lemma 1. The generation is 
to be done in lexicographic order.

• Step 3:
– Perform modified NA on the first BFSC tree and 

the input graph, and keep the track of the vertex 
correspondence of the structure if any found in 
form of a matrix.



NA (contd2..)

• Step 4:
– The found pattern is fed into a different running thread 

which checks for the remaining edges , with the (k-2) 
left BFSC tree, with the pattern discarded if it is not 
matched with even one of the BFSC tree. While the 
other execution continues in the main thread. 

• Step 5
– If the pattern found is matched with all the (k-2) BFSC 

trees, then both the thread exits , and a Exact Sub graph 
isomorphicstructure is found. Otherwise it will continue 
the main thread till all the possible cases are exausted.



References

[1] Bruno T. Messmer and Horst Bunke. Efficient
Subgraph Isomorphism Detection: A 
Decomposition Approach, IEEE Transactions on 
Knowledge and Data Engineering. March 2000. 
isomorph\iam-95-003.ps

[2] Ron Shamir and Dekel Tsur. Faster Subtree
Isomorphism. isomorph\shamir97faster.pdf

[3] Arvind Gupta and Naomi Nishimura. Complexity 
of Subgraph Isomorphism: Duality results for 
graphs of   bounded path and tree width. 
isomorph\gupta95complexity.ps



[4] Combinatorial Algorithms.
[5] Max Peysakhov and William Regli. Genetic 

Algorithms for the Sub-Graph Isomorphism 
Problem isomorph\genetic.pdf.

[6] J. R. Ullmann. An Algorithm for Subgraph 
Isomorphism. JACM 1976. isomorph\p31-
ullmann.pdf

[7] David Eppstein. Subgraph Isomorphism in Planar 
Graphs and Related Problems. 
isomorph\eppstein99.3.3.pdf



A heartfelt thanks to Prof. 
R.K.Ghosh

A special mention for Mr. B. V 
Raghavendra Rao.


