
Subgraph Isomorphism

Graphs

Ordered Pair G = (V,E) where
• V is a set of vertices
• E ⊆ V x V set of edges

Common Terminology

• Complete Graph:- A
graph is called
complete when every
pair of vertices is an
edge.

• Connected Graph:- A
graph is connected if
there exists a path
between any two
vertices.

Complete Graph Disconnected Graph Connected Graph

Terminology (contd..)

• Stable Set :- A subset of vertices with no
edge between any two of them.

• Degree :- The degree of a node is the
number of edges incident to it.

• Clique:- A subset of vertices in which every
pair is an edge.

Types of Graphs

• K Connected Graphs
• K Partite Graphs
• Wheel Graphs
• Interval Graphs
• Grid Graph

K-Connected Graph
A graph G is said to be

k-connected if there
does not exist a set of
(k-1) edges whose
removal disconnects
the graphs, i.e. the
vertex connectivity of
G is k.

K-Partite Graphs

• A graph whose vertices can
be partitioned into disjoint
sets so that no two vertices
within the same set are
adjacent.

• Coverable by k independent
sets.

Wheel Graphs

A wheel graph of order n has
a cycle of order n-1, and for
which every graph vertex in
the cycle is connected to
one other graph vertex
called the hub.

The central point of a wheel
graph is called hub and it
has a degree n-1.

Interval Graphs

An undirected graph G whose vertices can be put
into one-to-one correspondence with a set of
intervals of a linearly ordered set(like the real line)
such that two vertices are connected by an edge of
G if their corresponding intervals have non-empty
intersection.

What is graph isomorphism ?

Graph Isomorphism

A graph G = (V, E) is said to be isomorphic to
another graph G’ = (V’,E’) if there exists a
bijective function f:V→V’ such that

For any edge e = (vi, vj) ∈ E, there exists an edge e’
= (f(v1),f(v2)) ∈ E’ and for any e’=(v1’,v2’) ∈ E’
there exists an edge e = (f-1(v1),f-1(v2)) ∈ E

The notation G = G’ is used to indicate that G is
isomorphic to G’.

Class of the problem
• Its in a class of its own, neither into NP complete, co-

NP or into P.
• Its classified in the “Isomorphism Complete” class.

PNP

NP Complete

Co-NP

Co-NP Complete

C1 C1’

Applications

• Computer Chip Intellectual Property rights control

• Identification of similar molecules

• Pattern Recognition and Computer Vision.

Possible Approaches

• Brute Force

• Ulmanns backtracking algorithm (1976)

• Nauty by Brendan McKay (1981)

• VF algorithm by Cordella et all. (1998)

Subgraph Isomorphism

Given a graph G = (V,E) a sub-graph G’ = (V’,E’) is
defined such that

• V’⊆ V
• E’= E∩(V’ X V’)
The notation G ⊆ G’ is used to indicate that G is a

sub-graph of G’
A graph G = (V,E) is said to be subgraph isomorphic

to another graph G’=(V’,E’) if ∃ S such that S ⊆
G’ and S = G.

G’ is called the input graph and G is called the model
graph.

Applications

• Pattern Recognition in Bio-Informatics & Bio-
Computing.

• Image Processing & Computer Vision

• Identification of sub-compound molecules of a

given molecule.

• Recognition of distorted shapes.

Complexity

General graphs NP complete (Manning
(1990))

Special planar graphs Polynomial
• Embedded planar (Manning (1990))
• 3-connected (Hong, McKay, Eades (2002))
• Outerplanar (Manning, Attalah (1992))
• Series-Parallel (Hong, Eades, Li (2000))
• Trees (Manning, Attalah (1989))

Aim of our project

It is well known that subgraph isomorphism is NP complete
for general graphs. The aim of this project is to study the
various algorithms pertaining to the problem, and based on
our study to come up with a heuristic for the problem of
subgraph isomorphism, which runs with high probability
of success000000000

What is meant by heuristic
algorithm

• A problem-solving technique in which the most
appropriate solution is selected at successive
stages of a program for use in the next step of the
program. (Dictionary Definition)

• A rule of the thumb, simplification or educated
guess that reduces or limits the search for
solutions. Heuristics do not guarantee optimal or
even feasible solutions and are often used with no
theoretical guarantee.

Major Algorithms we studied

• Brute-force Enumeration technique
• Ullmann’s Algorithm
• Messmer’s Algorithm
• Eppstein’s Algorithm

Enumeration

The enumeration algorithm aims at finding
isomorphism between the model graph and
subgraph of input graph.

M’ is defined as a matrix of order m x n
where m in the number of nodes in the input
graph and n is the number of nodes in the
model graph.

Enumeration (contd..)

M’ is a matrix which is generated by
systematically assigning 0’s and 1’s each
row contains exactly one 1 and no column
contains more than one 1. This matrix M' =
[m'ij] can be used to permute rows and
columns of B to produce a further matrix C.
Specifically, we define C = [cij] =
M'(M'B)T.
(∀ i∀ j)(aij = 1) ⇒(cij = 1) [Condition 1]

Enumeration Algorithm

• Step1 : M = M0, d = 1; H1 = 0; for all i
= 1, .. , m, , set Fi= 0;

• Step2 : If there is no value of j such that
mdj = l a n d Fj = 0 then go to step 7; Md
= M, i f d = 1 then k= H1 else k = 0,

• Step3 : k = k + 1, if mdk = 0 or Fk = 1
then go to step 3; for all j != k set mdj = 0,

• Step4 : If d < m then go to step 6 else use
condition (1) and give output if an
isomorphism is found;

Enum. Algorithm(contd..)

• Step5 : If there is no j >k such that mdj
= l and Fj = 0 then go to step 7; M =
Md , go to step 3;

• Step6 : Hd=k, Fk=1; d=d+1; go to
step 2,

• Step7 : If d=1 then terminate
algorithm, Fk=0 ; d=d-1, M = Md,
k=Hd go to step 5

Ullmann’s Algorithm

• Ullmann algorithm is basically a
modification of enumeration technique.

• It follows the branch and bound paradigm.
• A constraint is devised which inhibits the

generation of those matrices M’ which
gives unsuccessful mappings.

Ullmann’s Algorithm

• Step1 : M = M0, d = 1; H1 = 0; for all i
= 1, .. , m, , set Fi= 0; Refine M if exit FAIL
then terminate algorithm.

• Step2 : If there is no value of j such that
mdj = l a n d Fj = 0 then go to step 7; Md
= M, i f d = 1 then k= H1 else k = 0,

• Step3 : k = k + 1, if mdk = 0 or Fk = 1
then go to step 3; for all j != k set mdj = 0
if exit FAIL then go to step 5

Ullmann Algorithm(contd..)

• Step4 : If d < m then go to step 6 else use
condition (1) and give output if an
isomorphism is found;

• Step5 : If there is no j >k such that mdj = l
and Fj = 0 then go to step 7; M = Ma , go to
step 3;

• Step6 : Hd=k, Fk=1; d=d+1; go to step 2,
• Step7 : If d=1 then terminate algorithm,

Fk=0 ; d=d-1, M = Md, k=Hd go to step 5

Decomposition Heuristic

• Optimal decomposition of the of a graph takes
exponential time.

• An heuristic approach using decomposition was
suggested by Messmer[1].

• It does not guarantee the optimal solution but
finds a nearly optimal decomposition in much
less time.

• This heuristic gives best results for multiple
model graphs.

Messmer’s Algorithm

• This is an algorithm which uses the
dynamic programming paradigm.

• A graphs is decomposed into two graphs
Smax and G – Smax where Smax is the largest
subgraph of G already memoized.

• If no Smax exists then G is randomly divided
into two graphs each consisting of equal
vertices.

Polynomial Algorithm

• Enumerating all sub-graphs of a given graph takes
exponential time.

• Thus for a general graph it is not possible do
subgraph isomorphism in polynomial time.

• Some constraints needs to be evolved in order to
solve subgraph isomorphism in polynomial time
even if it is only for some restricted class of
graphs.

Eppstein’s Algorithm

• Constraints:
– Input graph is planar or has a wheel symmetry.
– Model graph is K3 or K4

• Methodology
– Decomposition into bounded trees of fixed

width

What is Bounded Tree

• A tree decomposition of a graph G consists
of a tree T, in which each node N∈ T has a
label L(N) ⊂ V(G) , such that the set of tree
nodes whose label contain any particular
vertex of G forms a contiguous subtree of T,
such that any edge of G connects two
vertices belonging to the same label L(N)
for at least one node N of T.Width of tree is
one less than minimum width of any label.

Eppstein An Example

Eppstein(contd…)

• Lemma 1
– Let planar Graph G have a rooted snapping tree T in

which the longest path has length l.Then a tree
decomposition of G with width at most 3l can be found
in time O(ln).

• Theorem
– We can count the isomorphs of any Wheel Wk in a

planar text graph G with n verticies in time O(nk2).By
applying a dynamic programming approach on the
generated trees to lookup for the isomorphism.

Original Work

Naming Scheme

• This approach is motivated by the fact that
rate of information retrieval is influenced by
the representation of data.

• The matrix representation which is currently
the norm for graphs contains a lot of
redundant information is which is not
relevant to the problem under consideration.

Naming Scheme Possible ?

• A naming scheme is possible for trees and
planar graphs.

• It is not possible to come up encoding
which maps a string to a general graph in
such a manner that the implicit details
regarding the graph is coded into the string.

Better Base Case (BBC)

• In all the approaches that are presently
being used the basis of comparison are two
nodes with an edge in between.

• A better base case will lead to a
asymptotically better algorithm.

Problems with BBC

• For a effective utilization of this technique for
subgraph isomorphism domain knowledge is
required.

• For example in the case of K3 all the possible
graphs containing 3 nodes maybe used as a base
case.

• Thus this method cannot be used as a general
paradigm but can be used in order to improve the
performance of a a given algorithm.

Problems with Current Methods

• Finally going through all the above mentioned
algorithms we found, that the bottleneck was the
number of edges in the model graph.

• Every algorithm tries to overcome this bottleneck
by decomposing the model graph into smaller
instances and finally recombining them in order to
form the final solution.

Bottleneck in Subgraph

• This process though ingenious, does not
prove effective in most cases and can be
efficiently used only in specific domains.

• So we propose to remodel the given model
graph into a using a new data structure,
called a constrained BFSC tree.

Constrained BFS Tree

• This is fundamentally a BFS (Breadth First
Search) tree with a added constraint that for each
pair of nodes in the resulting tree we allow for
only for one (cross/forward/backward) edge which
will henceforth be referred to as special edge(SE).
So from its definition it is quite evident that for a
BFSC T with n nodes we can have only have a
maximum of [n/2] such SE edges

Lemma 1

– Given a k–connected graph G , with set of
vertices V and edges E such that |V|=n , we can
decompose such a graph into maximum of (K-
1) such unique BFSC trees, or in other words
these (k-1) trees would cover the graph

– ⇔ G(E,V) ≡ U(k-1)BFSC

Proof

– Given a k-connected graph G with |V|=n , so by
the graph property we have maximum of [Kn/2]
number of edges

– For a tree with n vertices has maximum of (n-1)
tree edges.

– Now applying the constraint property we can
have maximum of [n/2] special SE edges in our
BFSC tree which are unique.

Proof (contd..)

– So in the worst case of a completely k-
connected graph, we will need to have (k-1)
such BFSC trees each having maximum of
unique[n/2] SE edges .

– As (n-1)+(k-1)*[n/2]≡[Kn/2]
• Hence proved.

Completeness

• We can show that such a construction of BFSC tree
will cover the complete graph.
– This follows directly from the proof of lemma 1 , as

during the construction of the BFSC trees we have
shown (k-1) such trees will cover all the edges of the
graph G uniquely , ie there would be no duplication of
SE edges in two different BFSC trees.

– So we are not missing my edge of the graph if we
consider all such (k-1) trees.

Lemma 2

• If a subgraph is present in a input graph Gi, then it
equivalent to say it exists at the point where all of
these (k-1) BFSC tress map to.

• Proof
– Again from lemma 1 we get that (K-1) trees have

covered all the edges of the Model Graph Gm , so the
place where each of these BFSC trees map , would mean
the union of all the SE and tree edges of all the tress
which is finally our model graph.

Better Performance

• This technique of decomposition works faster than
an implementation of Ullmann Algorithm, because
the time required for our algorithm during its
comparison phase would be lesser than its
counterpart as it has to look for more sparse
structure.

• The time required to arrive at the successful node
where the pattern exists would also be lesser due
to the faster rejection of unsuccessful nodes

• In the comparison module of Ullmann, has
to modified by the virtue of which it would
not be checking for the internal
connections.This further enhances the
performance.

• The model graph will be compared using
the relaxed standards of comparisons used
for BFSc

New Algorithm

• Inputs:
– A Input graph Gi

– A Model graph Gm

• Output
– The location of the subgraph isomorphic structure in the

input Graph if it exists

• Step 1:
– Perform vertex testing on the two graphs, if it fails then

exit.

NA (contd1..)

• Step 2:
– Generate the set of BFSC tress of model Graph

Gm as described in lemma 1. The generation is
to be done in lexicographic order.

• Step 3:
– Perform modified NA on the first BFSC tree and

the input graph, and keep the track of the vertex
correspondence of the structure if any found in
form of a matrix.

NA (contd2..)

• Step 4:
– The found pattern is fed into a different running thread

which checks for the remaining edges , with the (k-2)
left BFSC tree, with the pattern discarded if it is not
matched with even one of the BFSC tree. While the
other execution continues in the main thread.

• Step 5
– If the pattern found is matched with all the (k-2) BFSC

trees, then both the thread exits , and a Exact Sub graph
isomorphicstructure is found. Otherwise it will continue
the main thread till all the possible cases are exausted.

References

[1] Bruno T. Messmer and Horst Bunke. Efficient
Subgraph Isomorphism Detection: A
Decomposition Approach, IEEE Transactions on
Knowledge and Data Engineering. March 2000.
isomorph\iam-95-003.ps

[2] Ron Shamir and Dekel Tsur. Faster Subtree
Isomorphism. isomorph\shamir97faster.pdf

[3] Arvind Gupta and Naomi Nishimura. Complexity
of Subgraph Isomorphism: Duality results for
graphs of bounded path and tree width.
isomorph\gupta95complexity.ps

[4] Combinatorial Algorithms.
[5] Max Peysakhov and William Regli. Genetic

Algorithms for the Sub-Graph Isomorphism
Problem isomorph\genetic.pdf.

[6] J. R. Ullmann. An Algorithm for Subgraph
Isomorphism. JACM 1976. isomorph\p31-
ullmann.pdf

[7] David Eppstein. Subgraph Isomorphism in Planar
Graphs and Related Problems.
isomorph\eppstein99.3.3.pdf

A heartfelt thanks to Prof.
R.K.Ghosh

A special mention for Mr. B. V
Raghavendra Rao.

