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ABSTRACT
A binomial is a polynomial with at most two terms. In this
paper, we give a divide-and-conquer strategy to compute bi-
nomial ideals. This work is motivated by the fact that any
algorithm to compute binomial ideals spends a significant
amount of time computing Gröbner basis and that Gröbner
basis computation is very sensitive to the number of vari-
ables in the ring. The divide and conquer strategy breaks
the problem into subproblems in rings of lesser number of
variables than the original ring. We apply the framework on
4 problems – radicals, cellular decomposition, prime decom-
position and saturation.

1. INTRODUCTION
Consider the polynomial ring k[x1, . . . , xn]. A binomial

in such a ring is a polynomial of the form

c · xα + d · xβ ,

where c, d ∈ k and α, β ∈ Nn. An ideal in the polynomial
ring which has a generating set comprising only of binomials
is called a binomial ideal. In this paper, we will be concerned
with computing various binomial ideals.
Binomial ideals, unlike general polynomial ideals, possess

rich combinatorial structure which can be exploited while
computing various structures derived from them, for exam-
ple Gröbner bases, primary decomposition, and associated
primes [15, 9]. Pure difference binomials are binomials of the
form xα − xβ . The varieties of pure difference prime bino-
mial ideals are exactly the toric varieties. Hence, such ideals
are also known as toric ideals [6, 5]. There is a large litera-
ture studying applications and computations of toric ideals
[12, 1]. Moreover, quotients of polynomial rings by pure dif-
ference binomial ideals form commutative semigroup rings
[8].
Apart from a purely academic interest in the subject of

binomial ideals, their study is also motivated by the fact that
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they are often encountered in interesting problems in diverse
fields. These include solving integer programs [10, 2, 16, 14],
computing primitive partition identities [12, Chapters 6,7],
and solving scheduling problems [13]. In algebraic statistics,
closures of discrete exponential families have been identified
with nonnegative toric varieties [7].

The theory of binomial ideals was developed in a semi-
nal paper by Eisenbud and Sturmfels [5]. Their paper not
only showed various properties of binomial ideals – for ex-
ample, the radicals and associated primes of binomial ideals
are themselves binomial ideals – but they also show how to
compute these structures.

In this paper, we present a general framework to compute
several of such binomial ideals, namely radical, saturation,
minimal primes and cellular decompositions. This work is
motivated by two crucial observations – (i) most of these
computations involve computing Gröbner basis of certain
ideals, and (ii) Buchberger’s algorithm to compute Gröbner
basis is very sensitive to the number of variables in the un-
derlying polynomial ring. In light of these observations, we
propose a divide-and-conquer technique to solve the afore-
mentioned problems, with the hope that this strategy can
also be applied to host of other problems related to bino-
mial ideals, like computing associated primes, primary de-
composition, primary component, and so on. The essence of
the strategy is the following. Consider the polynomial ring
k[x1, . . . , xn], and a binomial ideal I ⊆ k[x1, . . . , xn]. We
compute the image of I under the natural homomorphism in
the derived rings k[x2, . . . , xn] and k[x±

1 , x2, . . . , xn] and per-
form the same computation on these ideals. Then we “lift”
the results in the original ring and combine them to com-
pute a solution of the original problem. Both these rings are
isomorphic to polynomial rings with one less variable [11],
hence Gröbner basis (actually such basis does not exist in
these new rings but we use a variant for the computations)
can be computed more efficiently.

The paper has been arranged as follows. Section 2 deals
with some basic facts about rings and ideals, and discusses
irreducible and primary decompositions in the context of
Noetherian rings. In the next section, we define two maps
from ideals of k[x1, . . . , xn] to the ideals of the derived rings,
and state some useful properties. These two maps form the
basis of the reduction of the problem into the subproblems,
discussed earlier. Section 4 contains the main contribution
of the paper – discussion of the proposed divide-and-conquer
framework. In Section 5, we use this framework to compute
radical, cellular decomposition, minimal primes, and satu-
ration of binomial ideals.



2. RINGS AND IDEAL BASICS
In this paper, we will only consider commutative rings

with unity. In this section, we review a few definitions and
results about rings and ideals which will be used later in the
paper. Also, note that k will denote an algebraically closed
field.

Definition 1. [4] An ideal I of a ring R is prime, if I is a
proper ideal, and fg ∈ I implies f ∈ I or g ∈ I.

Definition 2. Radical of an ideal I is an ideal given by√
I = { r | rm ∈ I, m ≥ 0 }. An ideal is said to radical, if

it is its own radical.

We now have two simple observations regarding radical
ideals.

Observation 1. Prime ideals are radical.

Observation 2. I1 ⊆ I2 implies that
√
I1 ⊆

√
I2.

Definition 3. A ring is said to be Noetherian if every
strictly ascending chain of ideals in the ring

I1 ( I2 ( I3 ( . . .

terminates.

The next observation presents an alternate view of Noethe-
rian rings.

Observation 3. A ring is Noetherian if and only if every
ideal of the ring is finitely generated.

Definition 4. Let R be a ring, r ∈ R be a non-zero-divisor
and I ⊆ R be an ideal. Then, saturation of I w.r.t. r is
the ideal given by I : r∞ =

{
s | srj ∈ I, for some j ≥ 0

}
.

Similarly, we define I : rn as the ideal { s | srn ∈ I }.

Definition 5. [4] Given a ring R, and a multiplicatively
closed subset U ⊂ R not containing zero, we define the lo-
calization of R at U , written as R[U−1], to be the set of
equivalence classes of pairs (r, u) with r ∈ R and u ∈ U
with the equivalence relation (r, u) ∼ (r′, u′) if there is an
element v ∈ U such that v(u′r− ur′) = 0 in R. The equiva-
lence class of (r, u) is denoted by r/u. We make R[U−1] into
a ring by defining

r

u
+

r′

u′ =
u′r + ur′

uu′ and r
r′

u
=

rr′

u

for r, r′ ∈ R, and u, u′ ∈ U .

Definition 6. The quotient ring

k[x1, . . . , xn, y1, . . . , ym]/〈 x1y1 − 1, . . . , xmym − 1 〉,

for 1 ≤ m ≤ n, is called a partial Laurent polynomial ring
and it is denoted by k[x1, . . . , xn, x

−1
1 , . . . , x−1

m ], where x−1
i

corresponds to yi for 1 ≤ i ≤ m. If m = n, then it is called
a Laurent polynomial ring.

We now make a small observation associating localization
and Laurent polynomial rings.

Observation 4. Let R = k[x1, . . . , xn] and U be the set
of all monomials generated by the variables {x1, . . . , xm},
1 ≤ m ≤ n. Then, R[U−1] is isomorphic to the partial Lau-
rent polynomial ring k[x1, . . . , xn, x

−1
1 , . . . , x−1

m ]. It is also
isomorphic to R′[xm+1, . . . , xn] where R

′ is the Laurent poly-
nomial ring k[x1, . . . , xm, x−1

1 , . . . , x−1
m ]

Lemma 1 (corollary 2.3, [4]). A localization of a
Noetherian ring is Noetherian.

The above lemma, and the fact that polynomial rings are
Noetherian implies that partial Laurent polynomial rings are
also Noetherian.

For convenience in describing the algorithm in section 4,
we present an alternative notation for partial Laurent poly-
nomial rings. Let V be the set of variables {x1, x2, . . . , xn},
and L = {xi1 , xi2 , . . . , xim} be a subset of V . Then, we will
denote the partial Laurent polynomial ring k[x1, . . . , xn, x

−1
i1

,

. . . , x−1
im

] by the tuple (k, V, L).

2.1 Irreducible decompositions

Definition 7. [3] Let R be a ring. An ideal I ⊆ R is said
to be irreducible if I = I1

∩
I2 implies I = I1 or I = I2.

Definition 8. An irreducible decomposition of an ideal I
is an expression of I as the intersection of irreducible ideals.

Lemma 2. If an ideal I does not have an irreducible de-
composition, then ∃ an ideal J ) I which also does not have
an irreducible decomposition.

Proof. Let I be an ideal which does not have an irre-
ducible decomposition. This also means that I is not ir-
reducible. Consider the set of decompositions of I as the
intersection of two ideals. This is certainly non-empty as
it has {I

∩
R} . Since I is not irreducible, it has a decom-

position I = I1
∩

I2 s.t. both of them properly contain I.
Moreover, at least one of I1 and I2 does not have an irre-
ducible decomposition, otherwise I will have an irreducible
decomposition. J is that ideal.

Theorem 1. Every ideal in a Noetherian ring has an ir-
reducible decomposition.

Proof. If not, then using Lemma 2, we can build an
strict ascending chain of ideals, each of which is not ex-
pressible as the intersection of irreducible ideals. But this is
not possible as the ring is Noetherian.

2.2 Primary Ideals

Definition 9. An ideal I in a ring R is said to be primary
if fg ∈ I implies either f ∈ I or gn ∈ I, for some n > 0.
Equivalently, I is primary if fg ∈ I implies that either fm ∈
I or gn ∈ I for some m,n > 0.

Lemma 3. Let I be an ideal in a Noetherian ring R. If
fg ∈ I, then there exists an n ≥ 0 such that 〈 f 〉

∩
〈 gn 〉 ⊆ I

Proof. As R is Noetherian, ∃n ≥ 0 s.t. I : gn = I : g∞.
Let h ∈ 〈 f 〉

∩
〈 gn 〉. This implies h = r2g

n = r1f(r1, r2 ∈
R) =⇒ hg = r2g

n+1 = r1fg ∈ I. This shows that r2 ∈ I :
gn+1 = I : gn and hence h ∈ I.

Lemma 4. Every irreducible ideal in a Noetherian ring is
primary.

Proof. Let I be an irreducible ideal, and fg ∈ I, where
f /∈ I. Using Lemma 3, we know that

(I + 〈 f 〉)
∩

(I + 〈 gn 〉) = I.

Since f /∈ I, I + 〈 f 〉 is strictly larger than I. Hence I +
〈 gn 〉 = I, which implies that gn ∈ I.



Definition 10. A primary decomposition of an ideal I is
an expression of I as an intersection of primary ideals –

I =
r∩

i=1

Qi,

where Qis are primary ideals. It is called minimal or irre-
dundant if the

√
Qi are all distinct and Qi +

∩
j 6=i Qj .

Theorem 2. Every ideal in a Noetherian ring has a pri-
mary decomposition.

Proof. This follows from Theorem 1 and Lemma 4.

Lemma 5. Radical of intersection of ideals is intersection
of radicals of the ideals.

Proof. Let the ideals involved be I1, I2, . . . , In, and we
want to show that√

I1
∩

I2
∩

. . .
∩

In =
√
I1
∩√

I2
∩

. . .
∩√

In.

Let f ∈
√∩

i Ii. This implies that fm ∈
∩

i Ii =⇒ fm ∈
Ii,∀i =⇒ f ∈

√
Ii, ∀i. Thus, f ∈

∩
i

√
Ii. So, we have√

I1
∩

I2
∩

. . . In ⊆
√
I1
∩√

I2
∩

. . .
√
In.

To show the converse, let f ∈
∩

i

√
Ii. Then, it is easy to

see that there exists an m ≥ 0, such that fm ∈
∩

i Ii. This

implies that f ∈
√∩

i Ii. Thus, we have

√
I1
∩√

I2
∩

. . .
√
In ⊆

√
I1
∩

I2
∩

. . . In.

Lemma 6. An ideal is primary iff its radical is prime.

Proof. (if) Let I be an ideal such that
√
I is prime. Let

fg ∈ I =⇒ fg ∈
√
I. So, either f ∈

√
I or g ∈

√
I.

Hence, either fm ∈ I or gn ∈ I, for m,n ≥ 0. Thus, I
is primary.

(only if) Let I be a primary ideal. Let fg ∈
√
I and f /∈√

I. So for some n > 0, fngn ∈ I and fk /∈ I for all k.
As I is primary, there is some m such that gnm ∈ I.
Hence g ∈

√
I.

Lemma 7. If I and J are primary and
√
I =

√
J , then

I
∩

J is also primary.

Proof. Let fg ∈ I
∩

J , and f j /∈ I
∩

J for all j > 0. We
need to show that gn ∈ I

∩
J , for some n > 0. We claim that

f i /∈ I, ∀i > 0. Otherwise, f ∈
√
I =

√
J implies fm ∈ I

∩
J

for some m > 0, which contradicts the assumption. As
f i /∈ I, ∀i and I is primary, we deduce that gn1 ∈ I for some
n1 > 0. From a similar argument gn2 ∈ J for some n2 > 0.
Hence the proof.

Theorem 3. Every ideal in a Noetherian ring has a min-
imal primary decomposition.

Proof. Theorem 2 gives us a primary decomposition for
any ideal. Repeated application of Lemma 7 gives us a pri-
mary decomposition such that all the radicals are distinct.
Lastly, we can eliminate all the redundant ideals in the in-
tersection to get a minimal primary decomposition.

Theorem 4. Every radical ideal in a Noetherian ring has
a prime decomposition.

Proof. Let I be a radical ideal in a Noetherian ring.
From Theorem 2, I has a primary decomposition –

I = Q1

∩
Q2

∩
. . .
∩

Qn.

Then, applying Lemma 5, we have
√
I =

√
Q1

∩√
Q2

∩
. . .
∩√

Qn.

Now, observing that
√
Qis are prime (Lemma 6), we have

the proof.

3. TWO RING HOMOMORPHISMS

3.1 Modulo Map
Let r be an element of a Noetherian ring R. Then θ : R →

R/〈 r 〉 denotes the natural homomorphism

θ(a) = [a] = a+ 〈 r 〉, ∀a ∈ R.

This induces a map Θ from the ideals in R containing r and
the ideals of R/〈r〉 as follows -

Θ(I) = { [a] | a ∈ I } ,

where I ⊆ R is an ideal containing r.
Similarly, we define a map Θ−1 from the ideals of R/〈 r 〉

to the ideals of R containing r as follows

Θ−1(J) = { x | [x] ∈ J } ,

where J ⊆ R/〈 r 〉 is an ideal.

Lemma 8. Θ is a bijection.

Proof. We will first show that for any ideal I ⊆ R con-
taining r, Θ−1(Θ(I)) = I. From the definitions, we observe
that I ⊆ Θ−1(Θ(I)). Now let x ∈ Θ−1(Θ(I)). So [x] ∈ Θ(I)
and hence, there exists s ∈ I such that x− s = tr, for some
t ∈ R. Since r, s ∈ I, x ∈ I.

To show that Θ(Θ−1(J)) = J for every ideal J in R/〈 r 〉,
observe from the definitions that J ⊆ Θ(Θ−1(J)). Now, let
[x] ∈ Θ(Θ−1(J)). So for some t ∈ R, x + rt ∈ Θ−1(J).
Hence [x+ rt] ∈ J . But, as [x] = [x+ rt], so [x] ∈ J .

It is directly verifiable from the definitions that Θ and
Θ−1 preserve set inclusion.

Lemma 9. Θ and Θ−1 map primes to primes.

Proof. Let I be a prime ideal of R containing r. Also,
let [x][y] ∈ Θ(I). So [xy] ∈ Θ(I) and hence xy ∈ I (Lemma
8). Being a prime ideal, I contains either x or y. Without
loss of generality, let us assume that x ∈ I. So [x] ∈ Θ(I).
This implies that Θ(I) is prime.

Let J be any prime ideal in R/〈 r 〉. Let I = Θ−1(J).
Also, let xy ∈ I. Then, [x][y] = [xy] ∈ J . Since J is
prime, without loss of generality we can assume that [x] ∈ J .
Hence, x ∈ I, establishing that I is also prime.

Lemma 10. Θ distributes over finite intersections. Simi-
larly, Θ−1 also distributes over finite intersections.

Proof. Let R be a ring and I1, I2, . . . , In ⊆ R be ideals,
each containing r. We would like to show that

Θ

(∩
i

Ii

)
=
∩
i

Θ(Ii) .



Let [f ] ∈ Θ
(∩

i Ii
)
. This implies that ∃g ∈

∩
i Ii s.t. [g] =

[f ]. Thus, f = g + hr, for some h ∈ R. So, f ∈
∩

i Ii or
f ∈ Ii, ∀i. Hence [f ] ∈ Θ(Ii) or [f ] ∈

∩
i Θ(Ii).

As for the other direction, let [f ] ∈
∩

i Θ(Ii). Hence [f ] ∈
Θ(Ii) ,∀i =⇒ f ∈ Ii, ∀i (Lemma 8). So, [f ] ∈ Θ

(∩
i Ii
)
.

To prove the second claim, consider the ideal

E = Θ−1(J1

∩
J2

∩
· · · ),

where Jj are ideals in R/〈 r 〉. Let Ij = Θ−1(Jj). So,
we have E = Θ−1(Θ(I1)

∩
Θ(I2)

∩
· · · ). From the preced-

ing discussion, we have E = Θ−1(Θ(I1
∩

I2
∩

· · · )). Fi-
nally, applying Lemma 8, we have E = I1

∩
I2
∩

· · · =
Θ−1(J1)

∩
Θ−1(J2)

∩
· · · .

Lemma 11. In a Noetherian ring Θ(
√
I) =

√
Θ(I)

Proof. From Theorem 4, we have I ⊆
√
I =

∩
i Pi,

where Pis are primes. So, we have

Θ(I) ⊆ Θ(
√
I) = Θ(

∩
i

Pi) =
∩
i

Θ(Pi)

Using Lemma 9 and the fact that intersection of prime ideals
is radical, we know that Θ(

√
I) is a radical ideal. So, we have√

Θ(I) ⊆ Θ(
√
I).

Conversely, as
√

Θ(I) is radical, we have√
Θ(I) =

∩
i

Pi,

where the Pi’s are some primes in the modulo ring. So,
we have Θ−1(

√
Θ(I)) =

∩
i Θ

−1(Pi). This, shows that

Θ−1(
√

Θ(I)) is radical and contains I. Hence Θ(
√
I) ⊆√

Θ(I).

Lemma 12. Θ−1(〈 [f1], . . . , [fn] 〉) = 〈 f1, . . . , fn 〉+ 〈 r 〉

Proof. Let f ∈ Θ−1(〈 [f1], . . . , [fn] 〉). So, we have [f ] ∈
〈 [f1], . . . , [fn] 〉. So, f can be expressed as f−

∑
i gifi = gr,

for some gis and r in the ring. This shows that f belongs
to the R.H.S. The other direction can be shown in a similar
fashion.

3.2 Localization map
Let r be a nonzero-divisor of a Noetherian ring R. Let U

denote the set of all powers of r

U =
{

ri | i ≥ 0
}
.

Since r is not nilpotent, U does not contain zero. U is also
multiplicatively closed. Therefore R[U−1] is well defined.
Let φ : R → R[U−1] be the natural homomorphism given

by φ(a) = a/1, ∀a ∈ R. We define a map, Φ, induced by
φ, from the ideals in R saturated w.r.t. r to the ideals of
R[U−1] as follows

Φ(I) = 〈 { a/1 | a ∈ I } 〉,

where I ⊆ R is an ideal saturated w.r.t. r. We now present
some properties of Φ.

Lemma 13. For any ideal I ⊆ R saturated w.r.t. r, x/rn ∈
Φ(I), for some n ≥ 0 implies x ∈ I. Conversely, x ∈ I im-
plies x/rn ∈ Φ(I), ∀n ≥ 0.

Proof. Let x/rn ∈ Φ(I). Then, by the construction of
Φ(I), there exists bi’s in I such that x/rn =

∑
i(ci/r

ki)(bi/1)
for some ci’s in R and non-negative kis. As r is a nonzero-

divisor, the above identity implies that rmx−
∑

i r
k′
icibi ∈ I,

for suitable m, k′
is ∈ N. This implies that rmx ∈ I, and us-

ing the fact that I is saturated with respect to r, we have
x ∈ I.

To prove the converse, let x ∈ I. Then we have φ(x) =
x/1 ∈ Φ(I) and hence, x/rn ∈ Φ(I), ∀n ∈ N.

Now, we will define a map, Φ−1, from the ideals in R[U−1]
to the ideals in R which are saturated with respect to r.

Φ−1(J) =
{

a | a

rk
∈ J, k ≥ 0

}
.

From their respective definitions, it is trivial to see that Φ
and Φ−1 preserve set inclusion.

Observation 5. Φ−1 is a map from the ideals of R[U−1]
to the ideals of R which are saturated with respect to r.

Proof. Suppose rmc ∈ Φ−1(J). So from the definition
of the map rmc/rk ∈ J , for some k ≥ 0. Since J is an ideal
in R[U−1], c/1 ∈ J . Hence, from the definition of Φ−1, we
have c ∈ Φ−1(J).

We will now establish that Φ is a bijection.

Lemma 14. Φ(Φ−1(J)) = J for all ideals J in R[U−1].

Proof. Let a/rk ∈ J . Then, a ∈ Φ−1(J) and hence
a/1 ∈ Φ(Φ−1(J)). But Φ(Φ−1(J)) is an ideal in R[U−1], so
a/rk ∈ Φ(Φ−1(J)).

Now suppose a/rk ∈ Φ(Φ−1(J)). From Lemma 13, we
have a ∈ Φ−1(J) or a/rn ∈ J , for some n ∈ N. So a/rk ∈
J .

Lemma 15. Φ−1(Φ(I)) = I for all ideals I in R which
are saturated with respect to r.

Proof. If a ∈ I, then a/1 ∈ Φ(I). So, a ∈ Φ−1(Φ(I)).
Now, suppose a ∈ Φ−1(Φ(I)). So a/rk ∈ Φ(I) for some

k ∈ N. From Lemma 13, we have a ∈ I.

Lemma 16. Φ and Φ−1 map primes to primes.

Proof. Let I ( R be a prime ideal which is saturated
with respect to r. We want to show that Φ(I) is prime. Let
(x/rm) (y/rn) ∈ Φ(I). So xy ∈ Φ−1(Φ(I)) = I. Since I
is prime, I contains x or y. Without loss of generality, let
us assume that x ∈ I. Hence, from Lemma 13, we have
x

rm
∈ Φ(I).

Now suppose J is a prime ideal in R[U−1]. Let xy ∈
Φ−1(J). So for somem, we have (xy)/rm ∈ J or (x/rm)(y/1)
∈ J . As J is prime, without loss of generality, let us assume
that x

rm
∈ J . This implies x ∈ Φ−1(J).

Lemma 17. Φ and Φ−1 distribute over intersections.

Proof. Let I1, I2, . . . be ideals in R, each saturated with
respect to r. Then, x/rn ∈

∩
i Φ(Ii) ⇐⇒ x/rn ∈ Φ(Ii), ∀i

⇐⇒ x ∈ Φ−1(Φ(Ii)) = Ii,∀i ⇐⇒ x ∈
∩

i Ii ⇐⇒ x/rn ∈
Φ(
∩

i Ii).
Next consider the ideals J1, J2, . . . in R[U−1]. So,

Φ−1(
∩

i Ji) = Φ−1(
∩

i Φ(Φ
−1(Ji))) = Φ−1(Φ(

∩
i Φ

−1(Ji))) =∩
i Φ

−1(Ji), where the second equality is due to the result
in the previous paragraph.



Lemma 18. Φ(I : x∞) = Φ(I) : x∞.

Proof. It follows directly from the definitions.

Lemma 19. In a Noetherian ring Φ(
√
I) =

√
Φ(I)

Proof. The proof is identically same as that of Lemma
11 when Θ is replaced by Φ and references are suitably re-
placed.

Lemma 20. Φ−1(〈 f1/ra1 , . . . , fn/r
an 〉) = 〈 f1, . . . , fn 〉 :

r∞

Proof. Let f ∈ Φ−1(〈 f1/r
a1 , . . . , fn/r

an 〉). This im-
plies that f/rk ∈ 〈 f1/r

a1 , . . . , fn/r
an 〉, for some suitable

k. Hence, f/rk =
∑

i(gi/r
bi)(fi/r

ai). By suitable cross-
multiplication, we will have f ∈ 〈 f1, . . . , fn 〉 : r∞. One
must observe that the ideal being saturated w.r.t. to r is
being crucially exploited in the proof.
The other direction can be similarly proved.

4. A DIVIDE-AND-CONQUER METHOD
In this section, we focus on the main objective of this pa-

per. We present a general algorithm (Algorithm 1) based
on divide-and-conquer technique which is useful in comput-
ing several binomial ideals associated with a given binomial
ideal. The algorithm takes as input the following 3 objects
(i) A ring (k,X,L), (ii) A set of binomials, S, generating an
ideal I, and (iii) A set of variables V ⊆ X\L called forbidden
set. The objective of the algorithm is to compute A(〈 S 〉),
where A is some object associated with the binomial ideal
I. In this paper, we demonstrate how to use Algorithm 1
to solve the following 4 problems – (i) Radical of a bino-
mial ideal, (ii) Cellular decomposition of a binomial ideal,
(iii) Minimal Primes of a binomial ideal, and (iv) Saturation
of a binomial ideal w.r.t. all the variables in the ring.
We will restate, from the introduction, the two crucial

observations behind this algorithm – (i) most computations
involving binomial ideals compute Gröbner basis of certain
ideals, and (ii) Buchberger’s algorithm to compute Gröb-
ner basis is very sensitive to the number of variables in the
underlying polynomial ring. The motivation behind the al-
gorithm is to divide the problem suitably into smaller sub-
problems, solve these subproblems in rings with less vari-
ables than the original ring, and combine these results to
solve the original problem.
Let x ∈ (X \ L) \ V , and consider the maps (i) Θ :

(k,X,L) → (k,X\{x} , L), (ii) Φ : (k,X,L) → (k,X,L
∪

{x}),
and (iii) f : (k,X,L) → (k,X,L) which depends on the
problem A(). The reduction step involves solution of the
subproblems (i) A(Θ(I + 〈 x 〉)), in ring (k,X \ {x}, L) and
forbidden set V , (ii) A(Θ(I : x∞)), in ring (k,X,L

∪
{x})

and forbidden set V , (iii) A(f(I)) in ring (k,X,L) and for-
bidden set V ∪ {x}. The first subproblem is in a ring with
one less variable compared to the original ring. In the case
of the second subproblem, Gröbner bases are not defined
in the context of partial Laurent polynomial rings (k,X,L).
But pseudo Gröbner bases [11], briefly discussed later in
this section, can effectively substitute for Gröbner bases for
binomial ideal computations. The time complexity of the
algorithm to compute pseudo Gröbner basis was shown in
that paper to be dependent on the number of variables in
X \ L. Hence, this subproblem is also justifiably “smaller”.
The role of the forbidden set of variables is that reduc-

tion must not be done with respect to these variables. If

V = X \ L, then the computation A(I) must be easy to
perform without further reduction. In addition, the third
subproblem should be such that it does not require the com-
putation of a Gröbner basis since in this case the ring is same
as in the original problem and involves no reduction in ring
size. Here is a motivating example to justify the use of for-
bidden set. Suppose we want to compute the saturation,
I : (x1 · · ·xn)

∞, while I is already saturated w.r.t. x1, x2.
Then reduction with these variables is futile. Hence we can
put these variables in the forbidden set.

Next, the algorithm computes the inverse images of A(Θ(I+
〈 x 〉)) and A(Φ(I : x∞)) in the original ring (k,X,L). In
the applications discussed in the next section, A(I) is either
an ideal (as in the case of radical of I) or a set of ideals (as
in the case of minimal primes of I). Hence these images are
well defined. Abusing the notations, we denote these images
respectively by Θ−1(A(Θ(I + 〈 x 〉)) and Φ−1(A(Φ(I : x∞)).

Finally in step 14, A(I) is to be constructed from these
images and A(f(I)). One can easily observe that the al-
gorithm terminates, as in each step either cardinality of X
decreases, or that of L or V increases. This algorithm is a
general method and can be tuned to a particular problem
by specifying the following three steps in the context of that
problem.
(steps 4, 6) V = X \L: Give the method to compute A(I)
in these base cases.
(step 13): Specify function f .
(step 14): Show how to combine the results of the subprob-
lems.

In the next few subsections we show how to compute Θ, Φ,
and their inverses using a generating set of the input ideal.

4.1 Computing Modulo
Let L = {y1, . . . , yk} and X = {x1, . . . , xl}

∪
{z}

∪
L.

Maps θ and Θ from (k,X,L) → (k,X\{z} , L) are computed
as follows. Consider an arbitrary polynomial in (k,X,L),

f =
∑
i

xαiyβi +
∑
j

xαjyβj zcj .

Then, θ(f) =
∑

i x
αiyβi . Further, suppose S ⊂ (k,X,L)

is a set of binomials. Then, Θ(〈 S 〉) = 〈 θ(f) | f ∈
S 〉. Conversely, if S′ ⊂ (k,X \ {z} , L), thenΘ−1(〈 S′ 〉) =
〈 S′∪ {z} 〉, from Lemma 12.

4.2 Computing Localization
Consider the ring (k,X,L) as defined in the previous sub-

section. If f ∈ (k,X,L), then φ(f) = f/1.
Computing Φ and Φ−1 is also easy. For any S ⊂ (k,X,L),

Φ(〈 S 〉) = 〈 { f/1 | f ∈ S } 〉. In the reverse direction,
for any S′ ⊂ (k,X,L

∪
{z}), we define Φ−1(〈 S′ 〉) as fol-

lows. Let S′ = {f1/za1 , . . . , fk/z
ak}. Then Φ−1(〈 S′ 〉) =

〈 f1, . . . , fk 〉 : z∞ The correctness follows from Lemmas 13
and 20.

To see how we can compute saturation with respect to z
in a partial Laurent polynomial ring, we briefly revisit the
results on pseudo-Gröbner basis in [11].

4.3 pseudo-Gröbner Basis
Gröbner bases are defined for ideals in rings k[x1, . . . , xn]

([3, Chapter 2]). This notion has been generalized for bi-
nomial ideals in partial Laurent polynomial rings, called
pseudo-Gröbner bases in [11, Section 5]. Here we reproduce
some relevant results.



Algorithm 1: A framework for computing binomials
ideals - A

Data: A ring (k,X,L), where k is algebraically
closed, and char(k) = 0; forbidden set
V ⊆ X \ L; a binomial generating set S of an
ideal in the ring.

Result: A(〈 S 〉)
1 if X = φ then // The ring is a field

2 Nothing to do ;

3 else if X = L then // Laurent polynomial ring

4 Compute A(〈 S 〉) and return ;
5 else if V = X \ L then // No more reductions

6 Compute A(〈 S 〉) and return ;
7 end
8 Let x ∈ (X \ L) \ V ;

/* computing A(Θ(〈 S 〉+ 〈 x 〉)) and lift */

9 Call A with ideal Θ(〈 S 〉+ 〈 x 〉), ring
(k,X \ {x} , L) and forbidden set V ;

10 Compute Θ−1(A(Θ(〈 S 〉+ 〈 x 〉))) ;
/* computing A(Φ(〈 S 〉 : x∞)) and lift */

11 Call A with ideal Φ(〈 S 〉 : x∞), ring (k,X,L
∪

{x})
and forbidden set V ;

12 Compute Φ−1(A(Φ(〈 S 〉 : x∞)))) ;
/* computing A(f(〈 S 〉 : x∞)) */

13 Call A with ideal f(〈 S 〉), ring (k,X,L) and
forbidden set V

∪
{x} ;

/* Computing A(〈 S 〉) */

14 Combine Θ−1(A(Θ(〈 S 〉+ 〈 x 〉))),
Φ−1(A(Φ(〈 S 〉 : x∞)))) and A(f(〈 S 〉)) to get
A(〈 S 〉) ;
/* Return */

15 return A(〈 S 〉) ;

Definition 11. A binomial axα + bxβ ∈ (k,X,L) is said
to be balanced if xi ∈ X \ L implies αi = βi.

Definition 12. For every finite binomial set G, G1 and G2

will denote its partition, where the former will represent the
set of non-balanced binomials and the latter will represent
the set of balanced binomials of G.

Definition 13. A binomial basis G = (G1, G2) of a bi-
nomial ideal I will be called a pseudo Gröbner basis with
respect to a given term-order if G1 reduces every binomial
of I to 0(mod(G2)).

Theorem 5. [11, Theorem 3] Every binomial ideal in
(k,X,L) has a Gröbner basis with respect to any term-order.

The Buchberger’s algorithm to compute Gröbner basis has
been adopted to compute pseudo-Gröbner basis in [11, Al-
gorithm 4]. Finally, the following theorem shows that satu-
ration can be computed in similar way as in k[x1, . . . , xn].

Theorem 6. [11, Theorem 3] Let (G1, G2) be a pseudo
Gröbner basis of a homogeneous binomial ideal in (k,X,L)
with respect to a graded reverse lexicographic term order with
the variable xi /∈ L being the least. Then (G′

1 = G1 ÷
x∞
i , G′

2 = G2 ÷ x∞
i ) is a pseudo Gröbner basis of I : x∞

i .

Here S÷x∞ is the result of the division of each polynomial
in S by the largest possible power of x.

5. COMPUTING A(I)

As mentioned in the previous section, we will describe
the steps 4, 6, 13 and 14 of the algorithm in context of four
problems – (i) radical of a binomial ideal, (ii) cellular decom-
position of a binomial ideal, (iii) the minimal prime ideals of
a binomial ideal, and (iv) the saturation of a binomial ideal
with respect to all variables in the ring.

5.1 Radical Ideal

Theorem 7. Let R be an Noetherian ring, r ∈ R a non-
zero-divisor, and I ⊆ R be an ideal. Then,√

I + 〈 r 〉
∩√

I : r∞ =
√
I,

for some r ∈ R.

Proof. From Theorem 4, we know that every radical in
a Noetherian ring has a prime decomposition. Let the prime
decomposition of

√
I be

√
I = P1

∩
P2

∩
. . .
∩

Pn.

Let the collection of the primes in the decomposition be
denoted by P. Define two ideals

Pr =

( ∩
r∈P∈P

P

)
,Pr =

( ∩
r/∈P∈P

P

)

It is easy to see that I+〈 r 〉 ⊆ Pr. Hence,
√

I + 〈 r 〉 ⊆ Pr.

Next, we want to show that
√
I : r∞ ⊆ Pr.

Let f ∈ I : r∞. Then, rnf ∈ I for some n ≥ 0. This
implies that for all P ∈ P, rnf ∈ P . In particular, if r /∈ P ,
then f ∈ P . We deduce that I : r∞ ⊆ Pr, and hence√
I : r∞ ⊆ Pr. Putting the two observation together we

have √
I + 〈 r 〉

∩√
I : r∞ ⊆ Pr

∩
Pr =

√
I

The converse containment
√
I ⊆

√
I + 〈 r 〉

∩√
I : r∞ is

obvious.

This theorem leads to the following result which will help
us in the formulation of step 14.

Theorem 8. Let R be an Noetherian ring, r ∈ R a non-
zero-divisor, and I ⊆ R be an ideal. Then,√

I = Θ−1
(√

Θ(I + 〈 r 〉)
)∩

Φ−1
(√

Φ(I : r∞)
)
.

Proof. We will continue to use the notations defined in
the previous theorem. From the proof of Theorem 7, we
have

I + 〈r〉 ⊆ Pr (1)

From the containment preserving property and the commu-
tation with intersection property of Θ, we have

Θ (I + 〈r〉) ⊆ Θ

( ∩
r∈P∈P

P

)
=

∩
r∈P∈P

Θ(P ) .

Similarly√
Θ(I + 〈r〉) ⊆

√ ∩
r∈P∈P

Θ(P ) =
∩

r∈P∈P

√
Θ(P ).

The last equality is due to Lemma 5.



As the P ’s are primes, from Lemma 9 we know that the
Θ(P )s are primes and hence from observation 1, we have√

Θ(I + 〈r〉) ⊆
(∩

r∈P∈P Θ(P )
)
. Hence

Θ−1
(√

Θ(I + 〈r〉)
)
⊆ Pr.

Similarly, starting from the following relation given in the
proof of theorem 7

I : r∞ ⊆ Pr

we can deduce that

Φ−1
(√

Φ(I : r∞)
)
⊆ Pr.

Combining the two results gives

Θ−1
(√

Θ(I + 〈r〉)
)∩

Φ−1
(√

Φ(I : r∞)
)
⊆

√
I.

To prove the converse, from Lemmas 11 and 19 we have√
I ⊆ Θ−1(

√
Θ(I + 〈 r 〉

∩
Φ−1(

√
Φ(I : r∞).

First thing to note is that we will not use the A(f(I))
branch of the reduction for this problem. Thus, Theorem 7
shows that the combine step (step 14) is intersection. Also,
we will have V = ∅. The base case computation in step
4 of the algorithm is trivial because all binomial ideals in a
Laurent polynomial ring are already radical as shown below.

Theorem 9 (Corollary 2.2, [5]). Let J be a binomial
ideal in the ring (k,X, φ). Then, if k is algebraically closed
and char(k) = 0, then J : (Πx∈Xx)∞ is radical.

Corollary 1. Let k be an algebraically closed field, with
char(k) = 0. Then, all binomial ideals in (k,X,X) are rad-
ical.

Proof. Let J be a binomial ideal in the ring (k,X,X),
where X = {x1, . . . , xn}. Consider the ideal localization
map, Φn, from (k,X,X \ {xn}) to (k,X,X). Under this
map, we know that Φ−1

n (J) is saturated w.r.t xn. Similarly,
if we consider the map Φn−1 from (k,X,X \ {xn−1, xn}) to
(k,X,X \ {xn}), then the ideal Φ−1

n−1(Φ
−1
n (J)) is saturated

w.r.t. xn−1. So we have

Φ−1
n (J) = Φ−1

n (J) : x∞
n

=⇒ Φ−1
n−1(Φ

−1
n (J)) = Φ−1

n−1(Φ
−1
n (J) : x∞

n )

= Φ−1
n−1(Φ

−1
n (J)) : x∞

n ( Lemma 18)

Thus, Φ−1
n−1(Φ

−1
n (J)) is saturated w.r.t. {xn−1, xn}. Con-

tinuing this argument we see that Φ−1
1 (· · · (Φ−1

n (J)) · · · ), in
the ring (k,X, φ), is saturated w.r.t. {x1, . . . , xn}. From the
previous theorem Φ−1

1 (· · · (Φ−1
n (J))) is radical. Now, by re-

peated application of Lemma 19 we deduce that J is radical
too.

5.2 Cellular Decomposition: A = Cellular

In this section we will generalize the notion of cellular ide-
als to partial Laurent polynomial rings, establish that every
ideal has a cellular decomposition, and use our framework
to compute such a decomposition.
Let (k,X,L) be a partial Laurent polynomial ring. For

a given set of variables E ⊆ (X \ L) and a vector d =

(di)i∈(X\L)\E , we define the ideal M(E )(d) as –

M(E )(d) := 〈
{

xdi
i | i ∈ (X \ L) \ E

}
〉.

Now, we are ready to define cellular ideals.

Definition 14. We define an ideal I of (k,X,L) to be cel-
lular, if for some some E ⊆ (X \ L), we have I =

I :
(∏

i∈E xi

)∞
, and I contains M(E )(d) for some vector d.

Next, we will state a trivial observation characterizing cel-
lular ideals.

Observation 6. An ideal I is cellular iff ∃E ⊆ (X \ L)
and d = (di)i∈(X\L)\E , such that

I =
(
I +M(E )d

)
:

(∏
i∈E

xi

)∞

.

In such a case, we will denote I by I
(d)
E .

This observation helps us to make the following claim re-
garding cellular ideals and Φ−1.

Lemma 21. Φ−1 preserves cellular ideals.

Proof. Let Φ−1 be a map from (k,X,L) to (k,X,L \
{x}), where x ∈ L, and consider the cellular ideal I = I

(d)
E

in (k,X,L). As Φ−1(I) is saturated w.r.t. x, it corresponds

to the cellular ideal Φ−1(I)
(d′)
E

∪
{x}, where d′ is the same vec-

tor as d, except that it does not contain the component
corresponding to x.

Lemma 22. Let s ∈ N be such that I : rs = I : r∞ in
some Noetherian ring R. Then,

I = (I + 〈 rs 〉)
∩

(I : rs) .

Proof. Let f ∈ (I + 〈 rs 〉)
∩

(I : rs). Then

f = i+ grs ∈ I : rs for some i ∈ I, g ∈ R

=⇒ frs = irs + gr2s ∈ I.

This, coupled with the fact that I : r2s = I : rs, we have
f ∈ I.

Now, we are ready to state how to compute a cellular de-
composition of I. The computation will not use A(Θ(I))
branch of the reduction. f(I) is defined as I + 〈 xs 〉, where
s ∈ N is such that I : xs = I : x∞. By using Lemma 21, we
see that cellular decomposition of Φ(I : x∞) gives us a cellu-
lar decomposition of I : xs. To combine the decompositions
of A(I : xs) and A(f(I)), we use Lemma 22.

What remains is to specify the computations at the base
cases, i.e., X = L

∪
V . Ideals in the base cases are already

cellular because variables in V = X \L are nilpotents of the
ideals. Hence, there is no computation required in steps 4
and 6.

5.3 Prime Decomposition: A = Prime

In this case, as in the computation of a radical, the A(f(I))
branch will not be used. We will first handle the base case,
i.e. how to compute the minimal primes of a binomial ideal
in a Laurent polynomial ring (step 4). To do this, we will
mention (without proof) a set of results from [5].

Definition 15. A partial character on Zn is a homomor-
phism ρ from a sublattice Lρ of Zn to the multiplicative
group k∗. A partial character will always refer to the tuple
(ρ, Lρ).



For a binomial ideal I in (k,X,X), let us define a partial
character (ρ, L(I)). It is easy to verify that

L(I) = { α | xα − c ∈ I } .

is a lattice. The function ρ is given by

ρ(α) = c, where xα − c ∈ I.

Conversely, given a partial character (ρ, L), we will define a
binomial ideal as

I(ρ) = 〈 { xα − c | α ∈ L, ρ(α) = c } 〉.

Theorem 10. For any proper binomial ideal in (k,X,X),
there is a unique partial character ρ on Zn such that I =
I(ρ).

Definition 16. If L is a sublattice of Zn, then the satura-
tion of L is the lattice

Sat(L) = { m ∈ Zn | dm ∈ L for some d ∈ Z } .

We can compute Sat(L) for any lattice L by simple change
of variables in (k,X,X).

Definition 17. If (ρ, Lρ) is a partial character, any partial
character (ρ′, Sat(Lρ)) is called a saturation of (ρ, Lρ) if ρ′

coincides with ρ when restricted to Lρ.

Theorem 11. If g is the order of the group Sat(Lρ)/Lρ,
then there are g distinct saturations of ρ: ρ1, . . . , ρg. Also

I(ρ) =

g∩
j=1

I(ρj).

Theorem 12. The radical of a cellular ideal is of the
form I(ρ) +M(E )(d) (d is vector with all 1s), and its min-
imal primes are the lattice ideals with the saturations of ρ.

So in a Laurent polynomial ring, to determine the set of
minimal primes of a binomial ideal I = I(ρ), all we need
to do is to compute the saturations of ρ. The lattice ideals
corresponding to these saturations are the associated primes
of I(ρ). The minimal of these ideals constitute the prime
decomposition.
Now, let us discuss how we can combine the results from

the modulo and the localization branch (step 14). From
the recursive calls of the algorithm we have computed the
minimal primes of Θ(I + 〈 r 〉) and Φ(I : r∞). Let the set
of minimal primes be denoted by PΘ and PΦ, respectively.
So, we have √

Θ(I + 〈 r 〉) =
∩

P∈PΘ

P

√
Φ(I : r∞) =

∩
P∈PΦ

P.

From Theorem 8, we have
√
I = Θ−1

(√
Θ(I + 〈 r 〉)

)∩
Φ−1

(√
Φ(I + 〈 r 〉)

)
=

 ∩
P∈PΘ

Θ−1(P )

∩ ∩
P∈PΦ

Φ−1(P )


We know that Θ and Φ map primes to primes (Lemmas 9
and 16). The desired set of prime ideals is{
Θ−1(P ) | P ∈ PΘ

}∪{
Φ−1(P ) | P ∈ PΦ

}
. We just need

to remove the redundant ones.

5.4 Saturation : A = Saturation

Suppose I is saturated with respect to
{
xi1 , . . . , xij

}
then

we begin the computation with V =
{
xi1 , . . . , xij

}
. For this

problem, we only use the A(I : x∞) branch of the reduction.
The base case for this algorithm will be X \L = V (step 6).
As Φ preserves saturation (Lemma 18), the ideal is already
saturated in this ring. Since the algorithm uses only one
branch of the reduction, step 14 is redundant.
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