Problem Statement

- Discovering state space
- Discovering reward function
- Bring in spatio-temporal features
- Formulation of joint manifolds and random projections
- Path planning for visual servoing

Abstract

Problems in Robot motion planning
- High dimensional state space
- High dimensional sequential decision making
- High dimensional sensorimotor state space
- High computation cost
- Multiple domain receptor of a single scene

Solution
- Construction of low dimensional representation of robot’s state space
- All computations for robot’s decision making in reduced space

Random Projections and Joint Manifolds

- The set of all K-sparse signals are a non-linear union of $\binom{[N]}{K}$ dimensional subspaces
- The theory of compressed sensing states that every K-sparse signal can be recovered from just $M = O(K \log(N/K))$ measurements
- The basis matrix Φ_{MN} is a homomorphism, that is no two signals in \mathbb{R}^N are mapped to same point in \mathbb{R}^M
- This mapping is ensured with probability 1 if i has i.i.d entries and $M \geq 2K$, not guaranteed a stable embedding
- Random Projection theorem: Let \mathcal{M} be a compact K-dimensional Riemannian submanifold of \mathbb{R}^N having condition number $1/\varepsilon$, volume V and a geodesic covering regularity R.
- Fix $0 < \varepsilon < 1$ and $0 < \rho < 1$. Let Φ be a random orthonormal projector from \mathbb{R}^N to \mathbb{R}^M with $M = O\left(K \log(NV R^{-1} \varepsilon^{-1}) \log(1/\rho)\right)$

If $M \leq N$, then with probability at least $1 - \rho$ the following statement holds: For every pair of points $x, y \in \mathcal{M}$,

$$\frac{1}{N} \left| \frac{\phi x - \phi y}{\| \phi x - \phi y \|} \right| \leq (1 + \varepsilon) \frac{1}{N} \left| \frac{x - y}{\| x - y \|} \right|$$

- Joint Manifolds:
 - Cameras: J.Dimension N. Total Dimension space: JN
 - Assumption Manifold alignment is present
 - $\mathcal{M}^* = \{ \varphi \in \mathcal{M} : \varphi = \psi(p_j), 2 \leq j \leq f \}$
 - $\mathcal{M} = \mathcal{M}^1 \times \mathcal{M}^2 \times \ldots \times \mathcal{M}^J$
 - Random Projections used in Joint manifold creation

Grassberger –Procaccia algorithm

- Suppose $X = \{x_1, x_2, \ldots, x_n\}$ is a finite dataset of underlying dimension K. Define

$$G_n(r) = \frac{1}{n(n-1)} \sum_{i=1}^{n-1} \|x_i - x_j\| < r$$

The scale-dependent correlation dimension of X is defined as

$$D(r_1, r_2) = \frac{\log G_n(r_2) - \log G_n(r_1)}{\log r_2 - \log r_1}$$

Manifold Learning using Random Projections

- $M \leftarrow 1$
- $\Phi \leftarrow$ Random orthonormal projector of size MN
- While residual variance $\geq \gamma$ do
 - Run the GP algorithm on ϕx
 - Use intrinsic dimension (K) estimate to perform Isomap on ϕx
 - Calculate residual variance
 - $M \leftarrow M + 1$
 - Add one row to ϕ
- End while
- Return M
- Return \mathcal{K}

Path Planning for Visual Servoing

- 4 main constraints
 - Target continuously within camera’s field of view
 - Avoiding visual occlusions of target by workspace’s obstacles or robot’s body
 - Avoiding collision with physical obstacles or self collision
 - Joint limits

ST Isomap

- Isomap and PCA don’t include time dependency, hence miss proximal data points
- Windowed MDS was able to get proximal data points but fails for corresponding spatially distal points which are equivalent phases in temporal process

NuMax

- Given a dataset $X \subset \mathbb{R}^N$, we aim to find a linear embedding $\mathcal{P} : \mathbb{R}^N \rightarrow \mathbb{R}^M, M \ll N$. Form the secant set $S(X) = \{v_1, v_2, \ldots, v_N\}$ and find a measurement matrix $\Psi \in \mathbb{R}^{MN \times M}$ that satisfies the RIP on secant set
- $P = \Psi^T \Psi \in \mathbb{S}^{NN \times MN}$, rank($P$) = M
- $\mathcal{A} : X \rightarrow \{v_i^T X v_i\}_{i=1}^{MN}$
- Instead of rank minimization, minimize nuclear norm, which for a positive semi-definite matrix is equal to its trace
- Minimize $\|P\|_*$
- Subject to $P = P^T$, $\|\mathcal{A}(P) - 1\|_\infty \leq \delta$
- $P^* = \mathcal{U} \mathcal{D} \mathcal{U}^T$, $\Psi = \mathcal{A}_M \mathcal{U}^T$

References

Contact

Divyanshu Bhartiya
IIT Kanpur
Email: divbhar@iitk.ac.in
Phone: 7855708734