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Abstract

We study the problem of factoring univariate polynomials over finite fields. Under
the assumption of the Extended Riemann Hypothesis (ERH), Gao [Gao01] designed
a polynomial time algorithm that fails to factor only if the input polynomial satisfies
a strong symmetry property, namely square balance. In this paper, we propose an ex-
tension of Gao’s algorithm that fails only under an even stronger symmetry property.
We also show that our property can be used to improve the time complexity of best
deterministic algorithms on most input polynomials. The property also yields a new
randomized polynomial time algorithm.

1 Introduction

We consider the problem of designing an efficient deterministic algorithm for factoring a
univariate polynomial, with coefficients taken from a finite field. The problem reduces in
polynomial time to the problem of factoring a monic, square-free and completely splitting
polynomial f(x) with coefficients in a prime field Fp (see [Ber70], [LN94]). Although
there are efficient polynomial time randomized algorithms for factoring f(x) (see works
of [Ber70], [CZ81], [vzGS92], [KS95]), as yet there is no deterministic polynomial time
algorithm even under the assumption of the Extended Riemann Hypothesis (ERH). In
this paper we will assume that ERH is true and ξ1, ξ2, . . . , ξn are the n distinct roots of
the input polynomial f ,

f(x) =
n∏
i=1

(x− ξi) where ξi ∈ Fp

In 2001, [Gao01] gave a deterministic factoring algorithm that fails to find nontrivial
factors of f in polynomial time, if f belongs to a restricted class of polynomials, namely
square balanced polynomials. Motivated by the work [Gao01], we have defined a proper
subclass of square balanced polynomials, namely cross balanced polynomials, such that
polynomials that are not cross balanced, can be factored deterministically in polynomial
time, under the assumption of the ERH.

Our contribution can be summarized as follows. Let f be a monic, square-free and
completely splitting polynomial in Fp[x] with n roots ξ1, . . . , ξn. Our factoring algorithm
uses an arbitrary (but deterministically chosen) collection of k = (n log p)O(1) (n = deg(f))
small degree auxiliary polynomials p1(.), . . . , pk(.), and from each pl(·) (1 ≤ l ≤ k) and
f it implicitly constructs a simple n-vertex digraph Gl such that, (for l > 1) Gl is a
subgraph (not necessarily a proper subgraph) of Gl−1. A proper factor of f is efficiently
retrieved if any one of the graphs is either not regular, or is regular with in degree and
out degree of every vertex less than a chosen constant c. This condition of regularity
of all the k graphs imposes a tight symmetry condition on the roots of f , and we point
out that this may be exploited to improve the worst case time complexity of the best
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known deterministic factoring algorithms. Further, we show that if the polynomials pl(·)
(1 ≤ l ≤ k) are randomly chosen then the symmetry breaks with high probability and our
algorithm works in randomized polynomial time. We call the checking of this symmetry
condition a balance test.

We now present a little more details. Define the sets ∆i for 1 ≤ i ≤ n as,

∆i = {1 ≤ j ≤ n : j 6= i, σ((ξi − ξj)2) = −(ξi − ξj)}

where σ is the square root algorithm described in [Gao01] (see section 2.4). The poly-
nomial f is called a square balanced polynomial (by [Gao01]) if #∆1 = . . . = #∆n. For
l > 1, define polynomial fl as,

fl =
n∏
i=1

(x− pl(ξi))

where pl(.) is an arbitrary but deterministically chosen polynomial with degree bounded
by (n log p)O(1). Further, pl1(.) 6= pl2(.) for l1 6= l2, and f1 is taken to be f i.e. p1(y) = y.
Assume that, for a given k = (n log p)O(1), for every l, 1 ≤ l ≤ k, polynomial fl = f̃dll ,
where f̃l is a square-free and square balanced polynomial and dl > 0. Later, we show
that, if fl is not of the above form then a proper factor of f can be retrieved efficiently.
For each polynomial fl, 1 ≤ l ≤ k, define the sets ∆(l)

i for 1 ≤ i ≤ n as,

∆(l)
i = {1 ≤ j ≤ n : pl(ξi) 6= pl(ξj), σ((pl(ξi)− pl(ξj))2) = −(pl(ξi)− pl(ξj))}

Further, define the sets Di
(l) iteratively over l as,

D
(1)
i = ∆(1)

i

For l > 1, D(l)
i = D

(l−1)
i ∩∆(l)

i

If D(l)
i = φ for all i, 1 ≤ i ≤ n, then redefine D(l)

i as D(l)
i = D

(l−1)
i .

For 1 ≤ l ≤ k, let Gl be a directed graph with n vertices v1, . . . , vn, such that there
is an edge from vi to vj if and only if j ∈ D

(l)
i . Note that, Gl is a subgraph of Gl−1

for 1 < l ≤ k. Denote the in degree and out degree of a vertex vi by indeg(vi) and
outdeg(vi), respectively. We say that the graph Gl is regular (or t-regular) if indeg(v1) =
outdeg(v1) = . . . = indeg(vn) = outdeg(vn) = t. Here t will be called the regularity of Gl.
The following theorem is proved in this paper.

Theorem 1.1 Polynomial f can be factored into nontrivial factors in time l ·(n log p)O(1)

if Gl is not regular for some l, 1 ≤ l ≤ k. Further, if G1, . . . , Gk are all regular and for
at least dlog2 ne of the graphs we have Gl 6= Gl−1 (1 < l ≤ k), then f can be factored in
k · (n log p)O(1) time.

Note that, G1 is regular if and only if f is square balanced, as ∆(1)
i = ∆i, for 1 ≤ i ≤ n

and G1 is in fact a regular tournament.

Suppose f(y) splits as f(y) = (y − X) · f ′(y) in the quotient ring R = Fp[x]
(f) where

X = xmodf . Our algorithm iteratively tests graphs G1, G2, . . . so on, to check if any one
of them is irregular. If at the lth iteration graph Gl turns out to be irregular, then a proper
factor of f is obtained in polynomial time. However, if Gl is regular, then the algorithm
returns a nontrivial monic factor gl(y) of f ′(y) with degree equal to the regularity of Gl.
Moreover, gl(y) is also a factor of (although may be equal to) gl−1(y), the factor obtained
at the (l − 1)th iteration, and it can be ensured that if gl(y) is a proper factor of gl−1(y)
(which happens iff Gl 6= Gl−1) then deg(gl(y)) ≤ 1

2 · deg(gl−1(y)). Thus, if the graphs
repeatedly turn out to be regular (which in itself is a stringent condition) and for at least
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dlog2 ne times it happen that Gl 6= Gl−1, for 1 < l ≤ k, then we obtain a nontrivial linear
factor g(y) of f ′(y). The element −g(0) defines a nontrivial endomorphism in the ring R,
and by using a result from [Evd94] (lemma 9 in [Evd94]) we can find a proper factor of f
in polynomial time. Further, if for only εdlog2 ne times we get Gl 6= Gl−1 (1 < l ≤ k) for
some ε, 0 < ε ≤ 1, then we obtain a nontrivial factor g(y) of f ′(y) with degree at most
n1−ε

2 . Now if we apply Evdokimov’s algorithm (see appendix B) on g(y) (instead of f ′(y)),

we can get a proper factor of f in time (n
(1−ε)2

2
logn+ε+c1 log p)c2 (c1 and c2 are constants).

For most polynomials ε > 0 (i.e. at least about 1
logn) and this gives an improvement over

the time complexity of (n
1
2

logn+c1 log p)c2 in [Evd94] (c1, c2 are the same constants).
Assuming n << p, all the best known deterministic algorithms (e.g. [Evd94], [CH00])

use computations in rings with large dimensions over Fp to get smaller degree factors of
f ′(y). Unlike these approaches, the balance test is an attempt to exploit an asymmetry
among the roots of the input polynomial to obtain smaller degree factors of f ′(y) without
carrying out computations in rings with large dimensions over Fp. This attribute of our
approach yields a better time complexity for most polynomials in a way as discussed in
the last paragraph.

It is sufficient to choose the auxiliary polynomials pl(y), 1 < l ≤ k, in such a way
that the graphs, if regular, are not all the same for too long, if their regularities are large.
An efficient and deterministic construction of such auxiliary polynomials will immedi-
ately imply that factorization of univariate polynomials over finite fields can be done in
deterministic polynomial time under ERH. In this paper we assume that the auxiliary
polynomials are arbitrary but deterministically chosen polynomials with degree bounded
by (n log p)O(1). (We also show that, if random choices of auxiliary polynomials are al-
lowed then our algorithm works in randomized polynomial time.) For the graphs to be
all regular and equal, the roots of f must satisfy a tight symmetry condition (given by
equal sizes of all the sets D(l)

i , for 1 ≤ i ≤ n and 1 ≤ l ≤ k) and it is only then that our
algorithm fails to factor f .

Definition 1.1 A polynomial f is called k-cross balanced, for k > 0, if for every l,
1 ≤ l ≤ k, polynomial fl = f̃dll , where f̃l is a square-free, square balanced polynomial with
dl > 0, and graph Gl is regular.

It follows from the definition that, 1-cross balanced polynomials form the class of square
balanced polynomials. Let k = (n log p)O(1) be some fixed polynomial in n and log p.
A polynomial f is called cross balanced if it is k-cross balanced and regularity of graph
Gk is greater than c, where c is some fixed constant. From theorem 1.1 and [Evd94] it
follows that, polynomials that are not cross balanced can be factored deterministically in
polynomial time.

In section 2 we discuss the preliminary concepts and in section 3 we state our algorithm
and work out the analysis.

2 Preliminaries

Assume that f is a monic, square-free and completely splitting polynomial over Fp and
R = Fp[x]

(f) is the quotient ring consisting of all polynomials modulo f .

2.1 Primitive Idempotents

Elements χ1, . . . , χn of the ring R are called the primitive idempotents of R if,
∑n

i=1 χi = 1
and for 1 ≤ i, j ≤ n, χi · χj = χi if i = j and 0 otherwise. By Chinese Remaindering

3



theorem, R ∼= Fp ⊕ . . . ⊕ Fp (n times), such that every element in R can be uniquely
represented by an n-tuple of elements in Fp. Addition and multiplication between two
elements in R can viewed as componentwise addition and multiplication of the n-tuples.
Any element α = (a1, . . . , an) ∈ R can be equated as, α =

∑n
i=1 aiχi where ai ∈ Fp. Let

g(y) be a polynomial in R[y] given by,

g(y) =
m∑
i=0

γiy
i where γi ∈ R and

γi =
n∑
j=1

gijχj where gij ∈ Fp for 0 ≤ i ≤ m and 1 ≤ j ≤ n.

Then g(y) can be alternatively represented as,

g(y) =
n∑
j=1

gj(y)χj where gj(y) =
m∑
i=0

gijy
i ∈ Fp[y] for 1 ≤ j ≤ n.

The usefulness of this representation is that, operations on polynomials in R[y] (multi-
plication, gcd etc.) can be viewed as componentwise operations on polynomials in Fp[y].

2.2 Characteristic Polynomial

Consider an element α =
∑n

i=1 aiχi ∈ R where ai ∈ Fp, 1 ≤ i ≤ n. α defines a linear
transformation on the vector space R (over Fp), mapping an element β ∈ R to αβ ∈ R.
The characteristic polynomial of α (viewed as a linear transformation) is independent of
the choice of basis and is equal to

cα(y) =
n∏
i=1

(y − ai),

In order to construct cα one can use 1, X,X2, . . . , Xn−1 as the basis in R and form the
matrix (mij) where α · Xj−1 =

∑n
i=1mijX

i−1, mij ∈ Fp, 1 ≤ i, j ≤ n. Then cα is
constructed by evaluating det(y · I − (mij)) at n distinct values of y and solving for the
n coefficients of cα using linear algebra. The process takes only polynomial time. The
notion of characteristic polynomial extends even to higher dimensional algebras over Fp.
2.3 GCD of Polynomials

Let g(y) =
∑n

i=1 gi(y)χi and h(y) =
∑n

i=1 hi(y)χi be two polynomials in R[y], where
gi, hi ∈ Fp[y] for 1 ≤ i ≤ n . Then, gcd of g and f is defined as,

gcd(g, f) =
n∑
i=1

gcd(gi, hi)χi

The following lemma was shown in [Gao01].

Lemma 2.1 ([Gao01]) Given two polynomials g, h ∈ R[y], gcd(g, h) can be computed in
time polynomial in the degrees of the polynomials, n and log p.

2.4 Gao’s Algorithm

Let R = Fp[x]
(f) = Fp[X] where X = xmodf and suppose that f(y) splits in R as, f(y) =

(y − X)f ′(y). Define quotient ring S as, S = R[y]
(f ′) = R[Y ] where Y = ymodf ′. S is

an elementary algebra over Fp with dimension n′ = n(n− 1). Gao [Gao01] described an
algorithm σ for taking square root of an element in S. If p− 1 = 2ew where e ≥ 1 and w
is odd, and η is a primitive 2e-th root of unity, then σ has the following properties:
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1. Let µ1, . . . , µn′ be primitive idempotents in S and α =
∑n′

i=1 aiµi ∈ S where ai ∈ Fp.
Then, σ(α) =

∑n′

i=1 σ(ai)µi.

2. Let a = ηuθ where θ ∈ Fp with θw = 1 and 0 ≤ u < 2e. Then σ(a2) = a iff u < 2e−1.

When p = 3 mod 4, η = −1 and property 2 implies that σ(a2) = a for a ∈ Fp iff a is a
quadratic residue in Fp.

Algorithm 1 [Gao01]
Input: A polynomial f ∈ Fp[x].
Output: A proper factor of f or output that “f is square balanced”.
1. Form X, Y , R, S as before.
2. Compute C = 1

2(X + Y + σ((X − Y )2)) ∈ S.
3. Compute the characteristic polynomial c(y) of C over R.
4. Decompose c(y) as c(y) = h(y)(y −X)t, where t is the largest possible.
5. If h(X) is a zero divisor in R then find a proper factor of f , otherwise output that “f
is square balanced”.

It was shown in [Gao01] that algorithm 1 fails to find a proper factor of f if and only if
f is square balanced. Moreover, it follows from the analysis in [Gao01] (see theorem 3.1
in [Gao01]) that, when f is square balanced the polynomial h(y) takes the form,

h(y) =
n∑
i=1

∏
j∈∆i

(y − ξj)

χi
where ∆i = {j : j 6= i, σ((ξi − ξj)2) = −(ξi − ξj)} and #∆i = n−1

2 for all i, 1 ≤ i ≤ n.

3 Our Algorithm and Analysis

In this section, we describe our algorithm for factoring polynomial f . We show that the
algorithm fails to factor f in k · (n log p)O(1) time if and only if f is k-cross balanced and
regularity of Gk is greater than c. The algorithm involves k polynomials, f = f1, . . . , fk,
where polynomial fl, 1 < l ≤ k, is defined as,

fl =
n∏
i=1

(x− pl(ξi))

pl(.) is an arbitrary but deterministically fixed polynomial with degree bounded by (n log p)O(1)

and pl1(.) 6= pl2(.) for l1 6= l2. The polynomial fl can be constructed in polynomial time
by considering the element pl(X) in R = Fp[x]

(f) = Fp[X], where X = xmodf , and then
computing its characteristic polynomial over Fp.

Lemma 3.1 If fl is not of the form fl = f̃l
dl, where f̃l is a square-free, square balanced

polynomial and dl > 0, then a proper factor of f can be retrieved in polynomial time.

Proof: See appendix A

Therefore, assume that fl = f̃l
dl , where f̃l is a square-free, square balanced polynomial

and dl > 0. Let,

f̃l =
ml∏
j=1

(
x− pl(ξsj )

)
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where pl(ξs1), . . . , pl(ξsml ) are all distinct and ml = n
dl

. Algorithm 1 works with f̃l as the
input polynomial and returns a polynomial hl(y) such that,

hl(y) =
ml∑
j=1

 ∏
r∈∆̃

(l)
j

(y − pl(ξsr))

χ(l)
j (1)

where χ(l)
j ’s are the primitive idempotents of the ring Rl = Fp[x]

(f̃l)
,

∆̃(l)
j = {1 ≤ r ≤ ml : r 6= j, σ((pl(ξsj )− pl(ξsr))2) = −(pl(ξsj )− pl(ξsr))}

and #∆̃(l)
j = ml−1

2 for 1 ≤ j ≤ ml. Assume that p > n2 and n is odd, as even degree
polynomials can be factored in polynomial time. In the following algorithm, parameter k
is taken to be a fixed polynomial in n and log p and c is a fixed constant.

Algorithm 2 Cross Balance
Input: A polynomial f ∈ Fp[x] of odd degree n.
Output: A proper factor of f or “Failure”.

• Choose k − 1 distinct polynomials p2(y), . . . , pk(y) with degree greater than unity
and bounded by a polynomial in n and log p. (We can use any arbitrary, efficient
mechanism to deterministically choose the polynomials.) Take p1(y) = y.

• for l = 1 to k do.

1. Compute the characteristic polynomial, cα(x), of element α = pl(X) ∈ R, over
Fp and let fl = cα(x).

2. Check if fl is of the form fl = f̃l
dl, where f̃l is a square-free, square balanced

polynomial and dl > 0. If not, then find a proper factor of f as in lemma 3.1.

3. Else, f̃l is square balanced and algorithm 1 returns a polynomial hl(y) = yt +
α1y

t−1 + . . .+αt (as in equation 1), where t = ml−1
2 and αu ∈ Rl for 1 ≤ u ≤ t.

4. Each αu ∈ Rl is a polynomial αu(x) ∈ Fp[x] of degree less than ml. Compute
α′u as, α′u = αu(pl(x))modf for 1 ≤ u ≤ t, and construct the polynomial
h′l(y) = yt + α′1y

t−1 + . . .+ α′t ∈ R[y].

5. If l = 1 then assign gl(y) = h′l(y) ∈ R[y] and continue the loop with the next
value of l. Else, compute gl(y) as,

gl(y) = gcd(gl−1(y), h′l(pl(y))) ∈ R[y].

6. Let gl(y) = βt′y
t′ + . . . + β0, where t′ is the degree of gl(y) and βu ∈ R for

0 ≤ u ≤ t′. If t′ = 0 then make gl(y) = gl−1(y) and continue the loop with the
next value of l.

7. Else, t′ > 0. If βt′ is a zero divisor in R, construct a proper factor of f from
βt′ and stop.

8. Else, if t′ ≤ c then use Evdokimov’s algorithm ([Evd94]) on gl(y) to find a
proper factor of f in (n log p)O(1) time.

9. If t′ > c, evaluate gl(y) ∈ R[y] at n ·t′ distinct points y1, . . . , ynt′ taken from Fp.
Find the characteristic polynomials of elements gl(y1), . . . , gl(ynt′) ∈ R over Fp
as c1(x), . . . , cnt′(x) ∈ Fp[x], respectively.
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10. Construct the polynomial r(x) = xnt
′
+ r1x

nt′−1 + . . . + rnt′ ∈ Fp[x] such that
r(yi) = −ci(0) for 1 ≤ i ≤ nt′. Solve for ri ∈ Fp, 1 ≤ i ≤ nt′, using linear
algebra.

11. For 0 ≤ i < t′, if f i(x) divides r(x) then compute gcd
(
r(x)
f i(x)

, f(x)
)
∈ Fp[x]. If

a proper factor of f is found, stop. Else, continue with the next value of l.

endfor

• If a proper factor of f is not found in the above for loop, return “Failure”.

Theorem 3.1 Algorithm 2 fails to find a proper factor f in k · (n log p)O(1) time if and
only if f is k-cross balanced and regularity of graph Gk is greater than c.

Proof: We show that, algorithm 2 fails to find a proper factor of f at the lth iteration
of the loop iff f is l-cross balanced and regularity of Gl is greater than c. Recall the
definitions of the sets ∆(l)

i and D(l)
i , 1 ≤ i ≤ n, from section 1. The set ∆(l)

i is defined as,

∆(l)
i = {1 ≤ j ≤ n : pl(ξi) 6= pl(ξj), σ((pl(ξi)− pl(ξj))2) = −(pl(ξi)− pl(ξj))}

And set D(l)
i is defined iteratively over l as,

D
(1)
i = ∆(1)

i

For l > 1, D(l)
i = D

(l−1)
i ∩∆(l)

i

If D(l)
i = φ for all i, 1 ≤ i ≤ n, then D

(l)
i is redefined as D(l)

i = D
(l−1)
i .

Graph Gl, with n vertices v1, . . . , vn, has an edge from vi to vj iff j ∈ D(l)
i .

Algorithm 2 fails at the first iteration (l = 1) if and only if f is square balanced. In
this case, D(1)

i = ∆(1)
i = ∆i, the polynomial g1(y) is,

g1(y) = h(y) =
n∑
i=1

 ∏
j∈D(1)

i

(y − ξj)

χi
and G1 is regular with in degree and out degree of a vertex vi equal to #D(1)

i = #∆i =
n−1

2 . Thus, polynomial f is 1-cross balanced and deg(g1(y)) = n−1
2 . If algorithm 2 fails

at the lth iteration, then we can assume that the polynomials f = f̃1, . . . , f̃l are square
free and square balanced (by lemma 3.1).

Suppose that, algorithm 2 fails at the lth iteration. Then, f̃l =
∏ml
j=1

(
x− pl(ξsj )

)
is

square free and square balanced, and algorithm 1 returns the polynomial hl(y) ∈ Rl[y]
such that,

hl(y) =
ml∑
j=1

 ∏
r∈∆̃

(l)
j

(y − pl(ξsr))

χ(l)
j (2)

where χ(l)
j ’s are the primitive idempotents of the ring Rl = Fp[x]

(f̃l)
and,

∆̃(l)
j = {1 ≤ r ≤ ml : r 6= j, σ((pl(ξsj )− pl(ξsr))2) = −(pl(ξsj )− pl(ξsr))}

Let, hl(y) = yt + α1y
t−1 + . . . + αt, where t = ml−1

2 and αu ∈ Rl for 1 ≤ u ≤ t. Each
αu ∈ Rl is a polynomial αu(x) ∈ Fp[x] with degree less than ml and if αu =

∑ml
j=1 aujχ

(l)
j
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for auj ∈ Fp, then by Chinese Remaindering theorem (and assuming the correspondence
between χ

(l)
j and the factor (x− pl(ξsj )) of f̃l) we get,

αu(x) = q(x)(x− pl(ξsj )) + auj for some polynomial q(x) ∈ Fp[x]
⇒ αu(pl(x)) = q(pl(x))(pl(x)− pl(ξsj )) + auj

⇒ αu(pl(x)) = auj mod (x− ξ) for every ξ ∈ {ξ1, . . . , ξn} such that pl(ξ) = pl(ξsj )

Suppose that, for a given i (1 ≤ i ≤ n), j(i) (1 ≤ j(i) ≤ ml) is a unique index such that,
pl(ξi) = pl(ξsj(i)). Then, the polynomial α′u(x) = αu(pl(x))modf has the following direct
sum (or canonical) representation in the ring R,

α′u(x) =
n∑
i=1

auj(i)χi

This implies that the polynomial h′l(y) = yt + α′1y
t−1 + . . .+ α′t ∈ R[y] has the canonical

representation,

h′l(y) =
n∑
i=1

 ∏
r∈∆̃

(l)
j(i)

(y − pl(ξsr))

χi (3)

Inductively, assume that gl−1(y) has the form,

gl−1(y) =
n∑
i=1

 ∏
j∈D(l−1)

i

(y − ξj)

χi
Then,

gl(y) = gcd
(
gl−1(y), h′l(pl(y))

)
=

n∑
i=1

gcd

 ∏
j∈D(l−1)

i

(y − ξj),
∏

r∈∆̃
(l)
j(i)

(pl(y)− pl(ξsr))

χi

=
n∑
i=1

 ∏
j∈D(l−1)

i ∩∆
(l)
i

(y − ξj)

χi (as r ∈ ∆̃(l)
j(i) ⇔ sr ∈ ∆(l)

i )

Therefore,

gl(y) =
n∑
i=1

 ∏
j∈D(l)

i

(y − ξj)

χi
= βt′y

t′ + . . .+ β0 (say)

where t′ = maxi

(
#D(l)

i

)
and βu ∈ R for 1 ≤ u ≤ t′ ≤ n−1

2 . The element βt′ is not a

zero divisor in R if and only if #D(l)
1 = . . . = #D(l)

n = t′. If t′ ≤ c then a factor of f
can be retrieved from gl(y) in polynomial time using already known methods ([Evd94]).
The condition #D(l)

i = t′ for all i, 1 ≤ i ≤ t′, makes the out degree of every vertex in Gl
equal to t′. However, this may not necessarily imply that the in degree of every vertex
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in Gl is also t′. Checking for identical in degrees of the vertices of Gl is handled in steps
(10)− (12) of the algorithm. Consider evaluating the polynomial gl(y) at a point ys ∈ Fp.

gl(ys) =
n∑
i=1

 ∏
j∈D(l)

i

(ys − ξj)

χi ∈ R
The characteristic polynomial of gl(ys) over Fp is,

cs(x) =
n∏
i=1

x− ∏
j∈D(l)

i

(ys − ξj)


⇒ −cs(0) =

n∏
j=1

(ys − ξj)kj (since n is odd)

where kj is the in degree of vertex vj in Gl. Let r(x) = xnt
′
+ r1x

nt′−1 + . . .+ rnt′ ∈ Fp[x]
be a polynomial of degree nt′, such that,

r(ys) = −cs(0) =
n∏
j=1

(ys − ξj)kj

for nt′ distinct points {ys}1≤s≤nt′ taken from Fp. Since we have assumed that p > n2 >
n(n−1)

2 ≥ nt′, we can solve for the coefficients r1, . . . , rnt′ using any nt′ distinct points
from Fp. Then,

r(x) =
n∏
j=1

(x− ξj)kj

If kj 6= t′ for some j, then there is an i = min{k1, . . . , kn} < t′ such that f i(x) divides

r(x) and gcd
(
r(x)
f i(x)

, f(x)
)

yields a nontrivial factor of f(x). This shows that the graph

Gl is regular if the algorithm fails at the lth step. Since deg(gl(y)) equals the regularity
of Gl, hence if the latter quantity is less than c then we can apply Evdokimov’s algorithm
[Evd94] on gl(y) and get a non trivial factor of f in polynomial time.

Let Hl (1 ≤ l ≤ k) be a digraph with n vertices v1, . . . , vn such that there is an edge
from vi to vj iff j ∈ ∆(l)

i . Then, graphGl = Gl−1∩Hl orGl = Gl−1 (ifGl−1∩Hl = Φ, where
Φ is the null graph with n vertices but no edge). Here ∩ denotes the edge intersection
of graphs defined on the same set of vertices. (An example in appendix D illustrates the
working of algorithm 2.) Algorithm 2 fails to find a proper factor of f in polynomial time
if and only if there exists an l ≤ k such that Gl is t-regular (t > c) and Gl ∩ Hj = Gl
or Φ for all j, l < j ≤ k. It is therefore important to choose the polynomials pj(·) in
such a way that very quickly we get a graph Hj with Gl ∩Hj 6= Gl or Φ. We say that a
polynomial pl(·) is good if either Hl is not regular or Gl 6= Gl−1 (1 < l ≤ k). We show
that, only a few good polynomials are required.

Lemma 3.2 Algorithm 2 (with a slight modification) requires at most dlog2 ne good aux-
iliary polynomials to find a proper factor of f .

Proof: Consider the following modification of algorithm 2. At step 5 of algorithm 2,
for l > 1, take gl(y) to be either gcd(gl−1(y), h′l(pl(y))) or gl−1(y)/gcd(gl−1(y), h′l(pl(y))),
whichever has the smaller nonzero degree. Accordingly, we modify the definition of graph
Gl. Define the set ∆̄(l)

i (1 ≤ i ≤ n) as,

∆̄(l)
i = {1 ≤ j ≤ n : j 6= i, σ((pl(ξi)−pl(ξj))2) = (pl(ξi)−pl(ξj))} = {1 ≤ j ≤ n : j 6= i}−∆(l)

i

9



and modify the definition of the sets D(l)
i (1 ≤ i ≤ n) as,

D
(1)
i = ∆(1)

i

For l > 1, Di
(l) = Di

(l−1) ∩∆(l)
i if gl(y) = gcd(gl−1(y), h′l(pl(y)))

= Di
(l−1) ∩ ∆̄(l)

i else if gl(y) = gl−1(y)/gcd(gl−1(y), h′l(pl(y)))

As before, an edge (vi, vj) is present in Gl iff j ∈ D(l)
i . This modification ensures that, if

gl(y) 6= gl−1(y) has an invertible leading coefficient (i.e if gl(y) is monic) then the degree
of gl(y) is at most half the degree of gl−1(y). Hence, for every good choice of polynomial
pl(·) if Gl−1 and Gl are tl−1-regular and tl-regular, respectively, then tl ≤ tl−1

2 . Therefore,
at most dlog2 ne good choices of polynomials pl(·) are required by the algorithm.

Theorem 1.1 follows as a corollary to theorem 3.1 and lemma 3.2. As already pointed
out in section 1, if only εdlog2 ne good auxiliary polynomials are available for some ε,
0 < ε ≤ 1, then we obtain a nontrivial factor g(y) of f ′(y) with degree at most n1−ε

2 . If
we apply Evdokimov’s algorithm on g(y) instead of f ′(y), then the maximum dimension

of the rings considered is bounded by n
(1−ε)2

2
logn+ε+O(1) instead of n

logn
2

+O(1) (as is the
case in [Evd94]).

In the following discussion we analyze the performance of algorithm 2 based on uniform
random choices of the auxiliary polynomials pl(.) (1 < l ≤ k).

Lemma 3.3 If p = 3 mod 4 and p ≥ n622n then about (1+o(1))n

(π
2
n)
n
2

fraction of all completely

splitting, square-free polynomials of degree n are square balanced.

Proof: See appendix C.

Corollary 3.1 If p = 3 mod 4, p > n622n and pl(y) is a uniformly randomly chosen
polynomial of degree (n − 1) then the probability that fl is either not square-free or is a
square-free and square balanced polynomial is upper bounded by (1+o(1))n

(π
2
n)
n
2

.

It follows that, for p = 3 mod 4 and p > n622n, if the auxiliary polynomials pl(·)′s
are uniformly randomly chosen then algorithm 2 works in randomized polynomial time.
However, the arguments used in the proof of lemma 3.3 do not immediately apply to the
case p = 1 mod 4. Therefore, we resort to a more straightforward analysis, although in
the process we get a slightly weaker probability bound.

Lemma 3.4 If Gl (1 ≤ l < k) is regular and pl+1(y) ∈ Fp[y] is a uniformly randomly
chosen polynomial of degree (n− 1) then Gl+1 6= Gl with probability at least 1− 1

20.9n−2 .

Proof: See appendix C.

Thus, if polynomials pl(y), 1 < l ≤ dlog2 ne, are randomly chosen, then the probability
that f is not factored by algorithm 2 within dlog2 ne iterations is less than dlog2 ne

20.9n−2 .

4 Conclusion

In this paper, we have extended the square balance test by [Gao01] and showed a direction
towards improving the time complexity of the best previously known deterministic factor-
ing algorithms. Using certain auxiliary polynomials, our algorithm attempts to exploit an

10



inherent asymmetry among the roots of the input polynomial f in order to efficiently find
a proper factor. The advantage of using auxiliary polynomials is that, unlike [Evd94], it
avoids the need to carry out computations in rings with large dimension, thereby saving
overall computation time to a significant extent. Motivated by the stringent symmetry
requirement from the roots of f , we pose the following question:

• Is it possible to construct good auxiliary polynomials in deterministic polynomial
time?

An affirmative answer to the question will immediately imply that factoring polynomials
over finite fields can be done in deterministic polynomial time under ERH.
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A Proof of Lemma 3.1

Lemma A.1 If fl is not of the form fl = f̃l
dl, where f̃l is a square-free, square balanced

polynomial and dl > 0, then a proper factor of f can be retrieved in polynomial time.

Proof: By definition, fl =
∏n
i=1 (x− pl(ξi)). Define the sets Ei, for 1 ≤ i ≤ n, as

Ei = {1 ≤ j ≤ n : pl(ξj) = pl(ξi)}. Consider the following gcd in the ring R[y],

g(y) = gcd (pl(y)− pl(X), f(y))

=
n∑
i=1

∏
j∈Ei

(y − ξj)

χi
The leading coefficient of g(y) is a zero-divisor in R, unless #E1 = . . . = #En = dl (say).
Therefore, we can assume that,

fl =
ml∏
j=1

(
x− pl(ξsj )

)dl where pl(ξs1), . . . , pl(ξsml ) are all distinct and ml =
n

dl

= f̃l
dl where f̃l =

ml∏
j=1

(
x− pl(ξsj )

)
is square-free.

Moreover, f̃l can be obtained by square-freeing fl (using gcd of fl with its derivative) in
polynomial time. If f̃l is not square balanced then a proper factor g̃l of f̃l is returned by
algorithm 1. But then,

gcd (g̃l(pl(x)), f(x)) =
∏

j:g̃l(pl(ξj))=0

(x− ξj)

is a proper factor of f .

B Review of Evdokimov’s Algorithm

Evdokimov [Evd94] proposed the first deterministic sub-exponential time factoring algo-
rithm that works in time (n

1
2

logn+c1 log p)c2 (where c1 and c2 are constants), under the
assumption of the ERH. We describe this algorithm briefly. It is already known (from
[Rón88]) that a nontrivial factor of f(x) can be computed in polynomial time, if deg(f)
is even. If deg(f) is odd, consider the ring R1 = R = Fp[x]

(f(x)) and factor f(y) in R[y] as,

f(y) = (y −X) · f ′(y) where f ′(y) ∈ R[y] and X = x mod f

Now that deg(f ′) is even, factor f ′(y) ∈ R[y] using a generalization of the result by
[Rón88] (see Lemma 8 in [Evd94]). The process either yields a zero-divisor in R or it
factors f ′(y) into two nontrivial factors h′(y) and g′(y) such that f ′(y) = h′(y) · g′(y). If
both h′(y) and g′(y) are of odd degree, repeat the above procedure by considering the
ring R2 = R[y]

(h′(y)) (assuming deg(h′) < deg(g′)) and expressing h′(z) as,

h′(z) = (z − Y ) · h′′(z) where h′′(z) ∈ R2[z] and Y = y mod h′

By considering a hierarchy of higher dimension rings over Fp (R1, R2 and so on), Evdoki-
mov’s algorithm either finds a zero-divisor in R or it constructs a linear factor (y−φ(X))
of f ′(y) in R[y]. [Evd94] further showed that φ(X), which defines an endomorphism in

12



R, can in turn be used to find a nontrivial factor of f(x) efficiently (see lemma 9 in
[Evd94]). Although, Evdokimov’s algorithm works in sub-exponential time, the inherent
disadvantage of algorithms using higher dimensional rings over Fp is that, by nature such
algorithms incur the cost of operating with elements belonging to these large rings; the
cost being polynomial in the dimension of the ring over Fp. In Evdokimov’s algorithm the
largest ring used is of dimension n

1
2

(logn+O(1)) over Fp, thereby justifying the complexity
term (n

1
2

logn+c1 log p)c2 .

C Proofs of Lemma 3.3 and 3.4

Lemma C.1 If p = 3 mod 4 and p ≥ n622n then about (1+o(1))n

(π
2
n)
n
2

fraction of all com-

pletely splitting, square-free polynomials of degree n are square balanced.

Proof: With every completely splitting, square-free polynomial f =
∏n
i=1 (x− ai), we

can associate a tournament H on n vertices {v1, . . . , vn} with the natural correspondence
between vertex vi and root ai for all i, 1 ≤ i ≤ n, such that (vi, vj) is an edge in
H iff (ai − aj) is a quadratic non-residue. Such a tournament is also known as Paley
tournament. Since p = 3 mod 4, f is a square balanced polynomial iff H is a labeled
regular tournament on n vertices. We bound the fraction of polynomials that can be
associated to a particular labeled tournament.

Let T be a fixed labeled tournament. Suppose that, for some i > 1, the elements in
Si−1 = {a1, . . . , ai−1} are already chosen in a way that is compatible to the subgraph of
T induced by the vertices v1, . . . , vi−1. Let ni be the number of possible values of ai such
that the edge constraints from vi to vertices v1, . . . , vi−1 are maintained. Then ni can be
equated as,

2i−1 · ni =
∑

xi∈F×p \Si−1

i−1∏
j=1

(1 +j χ(xi − aj))

where χ is the quadratic character and the symbol +j is + if (vj , vi) is an edge in T and
− if (vi, vj) is an edge in T . By expanding the inner product we get,

2i−1 · ni =
∑

xi∈F×p \Si−1

∑
0≤e1,...,ei−1≤1

sign(e1, . . . , ei−1) · χ

i−1∏
j=1

(xi − aj)ej


=

∑
0≤e1,...,ei−1≤1

sign(e1, . . . , ei−1) ·
∑

xi∈F×p \Si−1

χ

i−1∏
j=1

(xi − aj)ej


The term corresponding to e1 = . . . = ei−1 = 0 is (p− i). For any other fixed e1, . . . , ei−1,
the inner sum is of the form,

sign(e1, . . . , ei−1) ·
∑

xi∈F×p \Si−1

χ(q(xi))

where q(xi) =
∏i−1
j=1 (xi − aj)ej is not a perfect square as a1, . . . , ai−1 are distinct, and

1 ≤ deg(q(xi)) ≤ (i− 1). By applying Weil’s theorem we get,

sign(e1, . . . , ei−1) ·
∑

xi∈F×p \Si−1

χ(q(xi)) ≤
∑

xi∈F×p \Si−1

χ(q(xi))

≤

∣∣∣∣∣∣
∑
xi∈Fp

χ(q(xi))

∣∣∣∣∣∣+ i

≤ (i− 2)
√
p+ i

13



Therefore,

2i−1 · ni ≤ (p− i) + (2i−1 − 1)((i− 2)
√
p+ i)

⇒ ni ≤
p− i
2i−1

+ (i− 2)
√
p+ i

⇒ ni
p− i

≤ 1
2i−1

(
1 +

2i−1((i− 2)
√
p+ i)

p− i

)
≤ 1

2i−1

(
1 +

1
n2

)
if p ≥ n622n

And hence,

Pra1,...,an{T is induced by {a1, . . . , an}} ≤
e

1
n

2(n2)
=

1 + o(1)

2(n2)

By a similar argument we get,

sign(e1, . . . , ei−1) ·
∑

xi∈F×p \Si−1

χ(q(xi)) ≥ −
∑

xi∈F×p \Si−1

χ(q(xi))

≥ −((i− 2)
√
p+ i)

which implies that,

ni
p− i

≥ 1
2i−1

(
1− 1

n2

)
if p ≥ n622n

⇒ Pra1,...,an{T is induced by {a1, . . . , an}} ≥
e−

1
n

2(n2)
=

1 + o(1)

2(n2)

⇒ Pra1,...,an{T is induced by {a1, . . . , an}} =
1 + o(1)

2(n2)

The polynomial f is square balanced iff the associated tournament H is regular. The
number of regular tournaments on n vertices is given by [Spe74] as,

Rn = 2(n2) (1 + o(1))n

(π2n)
n
2

Therefore,

Pra1,...,an{polynomial f =
n∏
i=1

(x− ai) is square balanced} ≈ (1 + o(1))n

(π2n)
n
2

Lemma C.2 If Gl (1 ≤ l < k) is regular and pl+1(y) =
∑n−1

m=1 cmy
m ∈ Fp[x] is a

randomly chosen polynomial of degree (n − 1) then Gl+1 6= Gl with probability at least
1− 1

20.9n−2 .

Proof: Suppose that, Gl is t-regular where t ≥ 5. Otherwise, if t = deg(gl(y)) < 5 then
we can efficiently solve for a root of gl(y) (or f(y), since gl(y) divides f(y)) in R using
radicals. In the process either a nontrivial endomorphism of R or a zero divisor in R is
obtained. In either case we can efficiently retrieve a proper factor of f .

Assume that Gl has c connected components. Surely, c ≤ n
2t+1 as Gl is t-regular.

Consider any connected component Gkl (1 ≤ k ≤ c) with nk vertices and T kl be a depth-
first tree with any particular vertex in Gkl as the root. Since Gl is a regular digraph,
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any connected component is also strongly connected and hence T kl is a spanning tree of
Gkl containing nk vertices with nk − 1 edges. Let the vertices of T kl be v1, . . . , vnk and
the roots of f associated with these vertices be ξ1, . . . , ξnk , respectively. For every edge
eij = (vi, vj) in T kl , 1 ≤ k ≤ c, consider the equation,

pl+1(ξi)− pl+1(ξj) =
n−1∑
m=1

cm(ξmi − ξmj ) = aij (4)

for a given aij ∈ Fp with c̄ = (c1, . . . , cn−1) as the variables. Let p − 1 = 2ew, where w
is odd. [Gao01] showed that, given a primitive 2e-th root of unity η, if a = ηuθ where
θw = 1 then σ(a2) = a iff u < 2e−1. We say that two elements a, b ∈ Fp have the same
character if, σ(a2) = a if and only if σ(b2) = b. For convenience, assume that 0 has the
same character as any other non-zero element a iff σ(a2) = a.

An edge eij in Gl is also present in Gl ∩Hl+1 if and only if aij = ηuθ with u > 2e−1.
Therefore, all the trees T kl , 1 ≤ k ≤ c, are either totally present or totally absent in
Gl ∩ Hl+1 iff all aij ’s (corresponding to all the edges of the trees T ki ’s) have the same
character. Writing down the equation (as in (4)) for every edge in every tree T kl , 1 ≤ k ≤ c,
gives a set of (n − c) linear equations in n − 1 variables, namely c̄ = {c1, . . . , cn−1}. Let
Mn−c,n−1 be the coefficient matrix of the set of linear equations. It is not difficult to
verify that rank(Mn−c,n−1) = n − c. Otherwise, the determinant of the matrix (ξji )i,j ,
1 ≤ i ≤ n, 0 ≤ j ≤ n − 1 is 0, which is not possible since ξi 6= ξj for i 6= j. This means,
for every choice of values of the aij ’s we have at most pc−1 choices of polynomials pl+1(.)
satisfying the linear equations. A polynomial pl+1(.) is a bad choice only if all aij ’s have
the same character. This can happen for at most,(

p− 1
2

)n−c
+
(
p+ 1

2

)n−c
≤ 3 ·

(p
2

)n−c
(assuming n− 1 ≤ p

2
)

different choices of the aij ’s. Therefore, the probability that a random choice of pl+1(.) is
bad is at most,

Prc̄{ pl+1(.) is bad} <
pc−1 · 3 ·

(p
2

)n−c
pn−1

<
1

2n−c−2

Since Gl is t-regular c ≤ n
2t+1 . Therefore,

Prc̄{ pl+1(.) is bad} < 1

2n·(
2t

2t+1)−2
<

1
20.9n−2

assuming t ≥ 5

D An Example

Example D.1 Let p = 19 = 3 mod 4 and f = f1 = (x−2)(x−6)(x−9)(x−12)(x−15)
be the input polynomial. Suppose that the algorithm chooses p2(y) = y2. Then, f2 =
(x− 4)(x− 17)(x− 5)(x− 11)(x− 16). Since p = 3 mod 4, there is an edge from vi to vj
in H1 (resp. H2) iff ξi− ξj (resp. ξ2

i − ξ2
j ) is a quadratic nonresidue. The nonresidues in

F19 are {2, 3, 8, 10, 12, 13, 14, 15, 18}. The graphs G1, H2 and G2 are depicted in figure 1.
Note that, both f1 and f2 are square free and square balanced. But, since G2 is

irregular, algorithm 2 finds a proper factor of f at the second iteration.
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Figure 1: An example showing the working of Algorithm 2.
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