
Simpler algorithm for estimating frequency moments of data streams

Lakshminath Bhuvanagiri∗ Sumit Ganguly† Deepanjan Kesh‡ Chandan Saha§

Abstract

The problem of estimating the kth frequency moment
Fk over a data stream by looking at the items exactly
once as they arrive was posed in [1, 2]. A succession
of algorithms have been proposed for this problem
[1, 2, 6, 8, 7]. Recently, Indyk and Woodruff [11]
have presented the first algorithm for estimating Fk,
for k > 2, using space Õ(n1−2/k), matching the space
lower bound (up to poly-logarithmic factors) for this
problem [1, 2, 3, 4, 13] (n is the number of distinct items
occurring in the stream.) In this paper, we present a
simpler 1-pass algorithm for estimating Fk.

1 Introduction

Data streaming systems have many natural applica-
tions, such as database systems, network monitoring,
sensor networks, RF-id data management, etc.. These
applications are characterized by rapidly arriving vo-
luminous data which makes it difficult to store the
data in its entirety for either online processing or post-
processing. Therefore, there has been a substantial
interest in the design of algorithms that process data
streams using single-pass (or online) algorithms that re-
quire sub-linear space.

We view a data stream as a sequence of arrivals
of the form (i, v), where, i is the identity of an item
that is a member of the domain D = {0, 1, . . . , N − 1},
and v is the change in the frequency of the item. The
value v may be either greater than or less than zero;
v ≥ 1 signifies v insertions of the item i, and v ≤ −1
signifies v deletions of i. The frequency of an item i is
denoted by fi and is defined as the sum of the changes
to its frequency since the inception of the stream, that
is, fi =

∑
(i,v) appears in stream v. The kth frequency

moment of the stream, denoted by Fk, is defined as
Fk =

∑
i fk

i . The problem is to design an algorithm,
parameterized by accuracy parameter ε and confidence
parameter δ that returns an estimate F̂k of Fk, for
k > 2, in a single pass over the data stream, such
that, Pr

{
|F̂k − Fk| ≤ ε · Fk

}
≥ 1− δ. Let n denote the

∗Indian Institute of Technology, Kanpur.
†Indian Institute of Technology, Kanpur.
‡Indian Institute of Technology, Kanpur.
§Indian Institute of Technology, Kanpur.

number of items in the stream with positive frequencies
and let m denote

∑
i∈D fi.

The problem was introduced in [1, 2] who also
present the first sub-linear space algorithm with space
complexity Õ(n1−1/k). (We say that f(n) is Õ(g(n)) if
f(n) = O

((
1
ε

)O(1) (log m)O(1)(log n)O(1)g(n)
)
.) [6, 8]

present algorithms with space complexity Õ(n1−1/(k−1))
and [7] presents an algorithm with space complexity
Õ(n1−2/(k+1)). A space lower bound of Ω(n1− 2

k) is
shown for this problem in a series of contributions
[1, 2, 3, 4] (see[13] for a closely related problem).
Recently, Indyk and Woodruff [11] have presented the
first algorithm for estimating Fk using space Õ(n1−2/k),
matching the space lower bound (up to poly-logarithmic
factors) for this problem [4].

The space complexity of the algorithm of Indyk
and Woodruff has high constants and poly-logarithmic
factors. Specifically, their 2-pass algorithm has space
complexity of O(1

ε12 n1− 2
k (log2 n)(log6 m)). The 1-pass

algorithm that is derived from this algorithm further
multiplies the constant and poly-logarithmic factors.

In this paper, we present a simpler algorithm for
estimating Fk, for k > 2, whose space complexity is
O(k2

ε2+4/k n1− 2
k (log2 m)(log m + log n)). Broadly speak-

ing, we use the seminal idea of Indyk and Woodruff [11]
to classify items into groups, based on frequency. How-
ever, Indyk and Woodruff define groups whose bound-
aries are randomized; this technique contributes to the
complexity of their algorithm. In our algorithm, the
group boundaries are deterministic. Our analysis is sim-
pler and uses the more traditional approach of directly
calculating the expectation and the variance of the es-
timator for Fk. Finally, our algorithm is naturally a
one-pass algorithm.

2 Preliminaries

In this section, we review the Countsketch algorithm
for finding frequent items in a data stream and an
algorithm to estimate the residual second moment of
a data stream [9].

The residual second moment [5] of a data stream,
denoted by Fres

2 (k), is defined as the second moment
of the stream after the top-k frequencies have been
removed. For r = 1, 2, . . . , n, let rank(r) denote an item

708

SODA ’06, January 22-26, Miami, FL
©2006 SIAM ISBN 0-89871-605-5/06/01

whose frequency is the rth largest frequency (ties are
broken arbitrarily). Then, Fres

2 (k) =
∑

r>k f2
rank(r).

A sketch [1, 2] is a random integer X =
∑

i fi · xi,
where, xi ∈ {−1, +1}, for i ∈ D and the family of
variables {xi}i∈D that are either pair-wise or 4-wise
independent. The family of random variables {xi}i∈D
is referred to as the sketch basis. 4-wise independent
sketches were used by [1, 2] to present an elegant and
efficient algorithm for estimating the second moment of
a stream.

Pair-wise independent sketches are used in [5] to
design the Countsketch algorithm for finding the
top-k frequent items in an insert-only stream. The
data structure consists of a collection of s3 = O(log m

δ)
independent hash tables each consisting of A buckets. A
pair-wise independent hash function is associated with
each hash table that maps items randomly to one of the
A buckets. The structure can be used to estimate the
frequency f̂i of an item i. The estimation guarantees are
stated as a function ∆ of the residual second moment
and is summarized below.

∆(s,A) = 8
(

Fres
2 (s)
A

)1/2

Theorem 2.1. ([5]) Let s3 = O(log m
δ) and let ∆ =

∆(A
8 , A). Then, for every item i, Pr

{
|f̂i − fi| ≤ ∆

}
≥

1 − δ
2·m . The space used is O(A · log m

δ · (log(m · N))
bits, and the time taken to process a stream update is
O(log m

δ).

[9] presents an algorithm to estimate Fres
2 (s) to within

an accuracy of (1± ε) with confidence 1− δ using space
O(s

ε2 log(m ·N) log m
δ) bits. The data structure used is

identical to the Countsketch structure.

3 Estimator for Fk

In this section, we present our estimator for Fk.

3.1 Data structure and algorithm We use a data
structure called the hierarchical samples from sketches
structure, denoted by Hsamplesketch, and parame-
terized by A = O(1

ε4/k n1− 2
k). The structure is di-

vided into L + 1 levels, numbered from 0 through L,
where, L = min(dlog m2

A e, log N). Each level uses a
Countsketch data structure [5] with s1 = O(log(m ·
L · A)) independent hash tables of size B buckets
each. A random hash function h : D → D is cho-
sen from a t-wise independent hash family (t is fixed
later) and is used to define a random mapping of items
i ∈ D . . . {1, . . . , L} as follows: level(i) = lsb(h(i)),
where, lsb(a) denotes the least significant bit position
of a. Each stream update of the form (i, v) is propa-
gated to the Countsketch structure at level 0 and

to the Countsketch structures at each level l, where,
l ≤ level(i). Thus, item i maps to level 0 with prob-
ability 1, to level 1 with probability 1

2 , to level 2 with
probability 1

4 , etc..
Using the algorithm of [9], we obtain an estimate

F̂
res

2 (A) for Fres
2 (A) that is accurate to within a factor

of 1± ε
4k with probability at least 1− 1

30 . For each level
l, 0 ≤ l ≤ L, we define a threshold Sl as follows.

Sl = 8
(

F̂
res
2 (A)

A·2l+1

) 1
2

Thus, Sl = S0
2l/2 , l = 1, 2, . . . , L. Let f̂i,l denote

the estimated frequency of item i obtained from the
Countsketch structure at level l, assuming that i
has mapped to level l. The table size parameter B
of the Countsketch algorithm is chosen such that
if f̂i,l crosses the threshold Sl, then, with probability
1 − 1

30mAL , the estimate is within a factor of (1 ± ε)
of the true frequency fi. If the estimated frequency of
an item i crosses the thresholds Sl at multiple levels,
then we disambiguate the estimated frequency in favor
of the estimate that is returned from the lowest among
such levels l where the estimate crosses the threshold
Sl. The estimated frequency of an item i is denoted
by f̂i (after possible disambiguation). Items whose
estimated frequencies do not cross the threshold Sl at
any level l are said to have undefined estimates. Items
with defined estimates are classified into sample groups
Ĝl, for 0 ≤ l ≤ L, according to the following rule.
Let T0 = 2

1
4 S0 and Tl = Sl−1

21/4 , for 0 ≤ l ≤ L (i.e.,
Tl = (Sl−1Sl)1/2).

Ĝ0 =
{
i | f̂i ≥ T0},

Ĝl =
{
i | Tl ≤ f̂i < Tl−1 and level(i) ≥ l

}
, 1 ≤ l ≤ L .

The estimate of Fk is obtained as follows.

(3.1) F̂k =
L∑

l=0

∑

i∈Ĝl

f̂k
i · 2l

There are L + 1 levels per structure, where, L =
O(log m2

A). Each level keeps O(log m) hash tables, each
of size B = O(k2A

ε2) buckets, where, A = O(1
ε4/k n1− 2

k).
Each bucket stores a sketch of size log m bits. The total
space complexity is therefore O(k2

ε2+4/k n1− 1
k log2 m) bits.

An additional factor of O(log m) is introduced due to
our use of Nisan’s pseudo-random generator[12] (see
§ 5).

3.2 Discussion The level function randomly maps
item i to level l with probability 1

2l . The

709

Countsketch structure at each level is used to re-
trieve the top-A items in terms of their estimated fre-
quencies from the set of items that map to level l.
The size of the hash table B = O(k2

ε2 A) used by the
Countsketch structures is selected in such a way that
the error of estimation at level l is at most εSl

4k , that is,
|f̂i − fi| < εSl

4k , with probability at least 1 − 1
30mAL .

Our first part of the analysis is essentially devoted to
establishing this fact.

We classify items into groups G0 through GL based
on their frequencies, by extending the classification used
by the algorithm, as follows: G0 = {i | fi ≥ T0} and
Gl = {i | Tl ≤ fi ≤ Tl−1}. Let i belong to group
Gl. We say that an item i is on the left margin of
Gl, provided, Tl ≤ fi ≤ Tl + ε

4kSl. Since, the error
of estimation at level l is bounded by εSl

4k , it follows
that the estimated frequency of such an item may cross
the boundary of group Gl and may be misclassified to
belong to group Gl+1. The right margin of a group
is defined analogously. The remainder of the group is
called the middle-region; items that lie in the middle
region of a group are correctly classified into the same
group (with probability 1− 1

30mAL).
The thresholds Tl and Sl are constructed such that

if an item i is on the left margin of a group Gl, then,
its estimate f̂i,l′ does not cross the threshold Sl′ for
accurate estimation at any level l′ < l (with probability
1 − 1

30mAL). This can be seen by substituting the
definitions of the thresholds, as follows. We assume that
ε ≤ 1 and k ≥ 2.

f̂i,l′ ≤ fi +
ε

4k
Sl′ ≤ (1 +

ε

4k
)Tl +

ε

4k
Sl′ < Sl′ .

Therefore, an item that belongs to the left margin of
group Gl is not “discovered” at any level lower than l.
Further, if i maps to level l, then its estimate crosses
the threshold at level l (with probability 1 − 1

30mAL)
implying that it is “discovered” at this level.

f̂i,l ≥ fi,l − ε

4k
Sl ≥ Tl(1− ε

4k
) > Sl since,

ε

4k
<

1√
2
.

Thus we can conclude that if an item belongs to the
left margin of some group Gl and it hashes to level l,
then, its estimate f̂i is obtained from the sub-structure
at level l. This however, does not mean that such
items are not misclassified. Indeed, due to errors of
estimation, items that lie in the left margin of a group
Gl may be classified into group Ĝl or in the group Ĝl+1.
However, in either case, its estimate f̂i is obtained (with
probability 1− 1

30mAL) from the structure at level l. An
analogous discussion can be carried out for right margin
items.

4 Analysis

In this section, we present an analysis of the estimator
for Fk. We show that with probability at least 1 −

1
30mAL , every item that hashes to level l and whose
true frequency exceeds Sl is estimated accurately with
an error of at most ± εSl

4k . We then calculate the
expectation and the variance of the estimator.

4.1 Accurate Retrieval of frequent items We
first show that the number of items that cross the
threshold Sl at level l is O(A). Let Hl denote the
set of items that map to level l and whose estimated
frequencies cross the threshold Sl. Assume that ε ≤ 1.

Lemma 4.1. |H0| ≤ 5A
4 and |Hl| ≤ A, for 1 ≤ l ≤ L,

with combined probability at least 1− 1
30 .

Proof. Since, the estimation error at level l is ε
4kSl,

each item that maps to level l and whose estimated
frequency crosses the threshold Tl has true frequency

at least U ′
l = Tl − ε

4kSl = 8
(
21/4 − ε

4k

) (
F̂

res
2 (A)

A·2l+1

)1/2

.
By an application of the residual second moment al-
gorithm, F̂

res

2 (A) ≥ Fres
2 (A)

(
1− ε

4k

)
. Thus, U ′

l ≥
8
(
1− ε

4k

)1/2 (
21/4 − ε

4k

) (
Fres

2 (A)
A·2l+1

)1/2

. Therefore, the
number of items in f with true frequency exceeding U ′

l

is at most n′l = A + 2l+1A

8·(1− ε
4k)1/2(21/4− ε

4k)
≤ A + 2l−2A,

since, ε ≤ 1. Therefore, |H0| ≤ 5A
4 and E

[|Hl|
] ≤ n′l

2l ≤
A
2l + A

4 . By Chernoff’s bounds, it follows that |Hl| ≤ A,
for l ≥ 1.

Lemma 4.2.

F res
2 (l, s) ≤ max

(
Fres

2 (2l−1s)
2l−1

, O(log(mAL)
)

.

Proof. Let s = Ω(log m). Consider the top-2l−1s items.
The expected number of these items that map to level l

is 2l−1s
2l = s

2 . By Chernoff’s bounds, the actual number
of these items that map to level l is at most 3s

4 (since,
s = O(log m)), with probability 1− 1

30mAL . Therefore,
the removal of the top-s frequencies from those items
that map to level l removes all the items that are in the
top-2l−1s ranks. Therefore, E

[
F res

2 (l, s)
] ≤ Fres

2 (2l−2s)
2l ,

since, each item is mapped to level l with probability
2l, with probability 1 − log 1

30mAL . Using Hoeffding’s
bounds, F res

2 (l, s) ≤ max(2E
[
F res

2 (l, s)
]
, O(log(mAL)).

The above inference can also be obtained using general-
izations of Chernoff-Hoeffding bounds [14], by assuming
that h is O(log L)-wise independent. However, we later

710

use Nisan’s generator to “simulate” full independence
using fewer random bits.

We can now show that the Countsketch struc-
ture at each level can be given sufficient space so that all
items of Hl can be retrieved with error at most ε·Sl

4k (with
probability 1 − 1

30mAL). By Theorem 2.1, this is pos-

sible, provided, 8 ·
(

F res
2 (l, B

8)

B

)1/2

≤ εSl

4k and |Hl| ≤ B
8 .

By Lemmas 4.1 and 4.2, this is implied by B ≥ 16k2A
ε2 .

4.2 Expectation and Variance For i ∈ D and
0 ≤ l ≤ L, let xi,l denote an indicator random
variable, that is 1 if i is classified into group Ĝl and
i hashes to level l. In the following, we assume that
the Countsketch algorithm at level l makes two-sided
errors of magnitude at most εSl

4k with probability 1; the
error probabilities will be added later using the union
bound.

Lemma 4.3. Assume that the hash function mapping
the items to levels is fully independent. Let i be an
item that lies on the left margin of the group Gl. Then,
E
[
2lxi,l + 2l+1xi,l+1

]
= 1.

Proof. From the above discussion, we note that since
fi belongs to the left margin of group Gl, item i is
discovered as a candidate frequent item (i.e., f̂i ≥ Sl)
only at level l and not earlier. Given that i maps to
level l, let p be the probability that i is classified into
Ĝl. Since, the disambiguation of multiple estimates is
done in favor of the estimate obtained from the lowest
level, therefore, p remains the probability (assuming
fully independent hash function) that i is classified into
Ĝl, irrespective of whether i maps to level l + 1 or not.
The probability that i maps to both levels l and l +1 is

1
2l+1 and the probability that i maps to only level l is also

1
2l+1 . Therefore, Pr {xi,l = 1}·2l+Pr {xi,l+1 = 1}·2l+1 =(

p
2l+1 + p

2l+1

) · 2l + 1−p
2l+1 · 2l+1 = 1.

An analogous property holds for items that lie on the
right margin of a group. Items that lie in the middle re-
gion of group Gl are never misclassified (with probabil-
ity at least 1− 1

30mAL), and therefore, Pr {xi,l = 1} = 1
2l ,

and Pr {xi,l′ = 1} = 0, for l′ 6= l. It follows that

E
[L∑
r=0

xi,r · 2r
]

= 1, for i ∈ stream.

The estimator for Fk can be rewritten as follows:

F̂k =
∑

i∈D
f̂k

i · xi,l · 2l .

Let F̃k denote the following expression:

F̃k =
∑

i∈D
fk

i xi,l2l .

For each item i that is included in any one of the groups,
|f̂i − fi| ≤ ε

4kfi (with probability 1 − 1
30mAL), which

implies that |f̂k
i − fk

i | ≤ ε
2fi. Therefore,

(4.2) |F̂k − F̃k| ≤
∑

i∈D
|f̂k

i − fk
i |xi,l2l

≤
∑

i∈D
fk

i xi,l2l =
εFk

2
, with prob. 1− 1

20

The total error probability is at most 1
20 , since, by

Lemma 4.1, there are at most 5A
4 frequent items dis-

covered at each level. Adding the error probability of
1

30mAL for each of these items for each of L + 1 levels
gives the stated probability.

Lemma 4.4. E
[
F̃k

]
= Fk.

Proof. By Lemma 4.3, it follows that

E
[
F̃k

]
= E

[∑

i∈D

L∑

l=0

fk
i xi,l · 2l

]

=
∑

i∈D
fk

i E
[L∑

l=0

xi,l · 2l
]

=
∑

i∈D
fk

i = Fk.

We now consider the calculation for Var
[
F̃k

]
. Let Fr(Gl)

be the rth frequency moment of the items in the group
Gl, that is, Fr(Gl) =

∑
i∈Gl

fr
i . Let lmargin(Gl) denote

the left margin of the group Gl, that is, lmargin(Gl) =
{i | Tl ≤ fi ≤ Tl + ε

4kSl}.
Lemma 4.5. Var

[
F̃k

] ≤ (Fk(lmargin(G0)))2 +∑L
l=1 F2k(Gl)2l+1.

Proof.

Var
[
F̃k

]
= E

[
(F̃k)2

]− (E
[
F̃k

]
)2

= E
[
(

L∑

l=0

∑

i∈D
fk

i · xi,l · 2l

)2]− F 2
k

= E
[∑

i∈D
f2k

i (
L∑

l=0

xi,l · 2l)2

+
∑

i 6=j

fk
i fk

j (
L∑

r=0

xi,r2r) · (
L∑

s=0

xi,s2s)
]− F 2

k

=
L∑

l=0

∑

i∈Gl

f2k
i

L∑
r=0

Pr {xi,r = 1} 22r

+
∑

i6=j

fk
i fk

j E
[
(

L∑
r=0

xi,r2r) · (
L∑

s=0

xi,s2s)
]− F 2

k

711

by linearity of expectation, and, since xi,l = 1 for at
most one level l. For an item i, we now calculate∑L

l=0 Pr {xi,l = 1} 22l and for i 6= j, E
[
(
∑L

r=0 xi,r2r) ·
(
∑L

s=0 xi,s2s)
]
.

Consider a calculation similar to that of Lemma 4.3.
If i belongs to the middle region of some group Gl, then
i is correctly classified into group l. Thus,

L∑
r=0

Pr {xi,r = 1} 22r = Pr {xi,l = 1} 22l =
22l

2l
= 2l.

Now suppose that i lies on the left margin of a group
Gl and let p be the probability that i is classified into
group Gl given that i maps to level l. Then,

L∑
r=0

Pr {xi,r = 1} 22r

= Pr {xi,l = 1} 22l + Pr {xi,l+1 = 1} 22l+2

=
p · 22l

2l
+

(1− p) · 22l+2

2l+1

= p · 2l + (1− p) · 2l+1

≤ 2l+1

assuming that the hash function is fully independent.
An analogous argument can be made for items that
belong to the right margin of groups. We therefore have
the following.

E
[L∑
r=0

xi,r22r
]

is

≤ 2l+1 if i ∈ Gl and l ≥ 1
≤ 2 if i ∈ lmargin(G0)
= 1 if i ∈ G0 − lmargin(G0)).

For i 6= j, by pair-wise independence, E
[
(
∑L

r=0 xi,r2r) ·
(
∑L

s=0 xj,s2s)
]

= E
[∑L

r=0 xi,r2r
] · E

[∑L
s=0 xj,s2s

]
=

1 · 1 = 1. Therefore, the expression for Var
[
F̃k

]
can

be written as follows.

Var
[
F̃k

] ≤
L∑

l=0

∑

i∈Gl

E
[L∑
r=0

xi,r22r
]
f2k

i +
∑

i 6=j

fk
i fk

j − F 2
k

=
L∑

l=0

∑

i∈Gl

E
[L∑
r=0

xi,r22r
]
f2k

i − F2k

≤
L∑

l=1

∑

i∈Gl

f2k
i 2l+1 +

∑

i∈lmargin(G0)

2 · f2k
i

+
∑

i∈G0−lmargin(G0)

f2k
i − F2k

≤ (Fk(lmargin(G0)))2 +
L∑

l=1

F2k(Gl)2l+1

Lemma 4.6. If ε ≤ 1 and A ≥ 23+ 8
k

ε4/k (n1− 2
k), then,

Var
[
F̃k

] ≤ ε2

32F 2
k .

Proof. Fres
k (A)
n−A ≥

(
Fres

2 (A)
n−A

)k/2

. Therefore, (Fres
2 (A))k ≤

(n−A)k−2(Fres
k (A))2 < nk−2(Fres

k (A))2.

L∑

l=1

F2k(Gl)2l+1

≤
L∑

l=1

T k
l−1Fk(Gl)2l+1, { by defn. of group Gl}

≤
L∑

l=1

8k

(
F̂

res

2 (A)
A · 2l

)k/2

2l+1, { by defn. of Tl−1}

≤ 2 · 8k
(
1 +

ε

4k

)k/2 L∑

l=1

(Fres
2 (A))k/2 2l

Ak/22kl/2
Fk(Gl)

{ using F̂
res

2 A ≤ (1 +
ε

4k
)Fres

2 (A)}

< 2 · 8k(1 +
ε

2
)

L∑

l=1

nk−2

Ak
Fres

k (A)Fk(Gl)
1

2l(k/2−1)

{ using (Fres
2 (A))k < nk−2(Fres

k (A))2}

=
ε2

64
Fres

k (A)
L∑

l=1

Fk(Gl)
2l(k/2−1)

≤ ε2

64
Fres

k (A)
L∑

l=1

Fk(Gl), { since, k ≥ 2 }

≤ ε2

64
Fres

k (A)Fk ≤ ε2

64
F 2

k .

Analogously, it can be shown that

F2k(lmargin(G0)) ≤ (T0)k(1 +
ε

2
)Fk(lmargin(G0))

≤ ε2

64
Fk(lmargin(G0))Fres

k (A) ≤ ε2

64
F 2

k .

By Lemma 4.5, we obtain that

Var
[
F̃k

] ≤
L∑

l=1

F2k(Gl)2l+1 + F2k(lmargin(G0))

≤ ε2

64
F 2

k +
ε2

64
F 2

k =
ε2

32
F 2

k .

Theorem 4.1. If ε ≤ 1 and A ≥ 23+ 8
k

ε4/k (n1− 2
k), then,

Pr
{∣∣F̂k − Fk

∣∣ ≤ εFk

}
≥ 3

4 .

Proof. By Chebychev’s inequality, Pr
{|F̃k − Fk| ≤

εFk

2

} ≥ 1 − 4Var
[
F̃k

]
ε2F 2

k
≥ 7

8 , by Lemma 4.6 and since,

712

E
[
F̃k

]
= Fk (by Lemma 4.4). Using triangle inequality

and (4.2), |F̂k−Fk| ≤ |F̂k− F̃k|+ |F̃k−Fk| ≤ εFk

2 + εFk

2 ,
with probability at least 1− 1

8 − 1
20 > 3

4 .

5 Reducing Randomness by using PRG

We use a standard technique of reducing the random-
ness by using a pseudo-random generator (PRG) of
Nisan [12] along the lines of Indyk in [10] and Indyk
and Woodruff in [11].

Notation on PRG [12, 10]. Let M be a finite
state machine that uses S bits and has running time
R. Assume that M uses the random bits in k segments,
each segment consisting of kb bits. Let Ur be a uniform
distribution over {0, 1}r and for a discrete random
variable X, let F [X] denote the probability distribution
of X, treated as a vector. Let M(x) denote the state
of M after using the random bits in x. The generator
G : {0, 1}u → {0, 1}kb expands a “small” number of
u bits that are truly random to a sequence of kb bits
that “appear” random to M . G is said to be a pseudo-
random generator for a class C of finite state machines
with parameter ε, provided, for every M ∈ C

∣∣F [Mx∈Ukb(x)]−F [Mx∈Um(G(x))]
∣∣
1
≤ ε

where, |y|1 denotes the L1 norm of the vector y. Nisan
[12] shows the following property (the version is from
[10]).

Theorem 5.1. ([12]) There exists a PRG G for
Space(S) and Time(R) with parameter ε = 2−O(S) that
requires O(S) bits such that G expands O(S log R) bits
into O(R) bits.

The PRG G given by the above theorem can be used
to obtain the random bits for our algorithm. Thus,
we require O(k2

ε2+4/k n1− 2
k log2 m(log m + log n)) truly

random bits. We summarize the main result of the
paper as follows.

Theorem 5.2. There exists an algorithm that com-
putes F̂k satisfying Pr

{
|F̂k − Fk| ≤ εFk

}
≥ 3

4 using

O(k2

ε2+4/k · n1− 2
k · (log2 m) · (log m + log n)) bits.

References

[1] Noga Alon, Yossi Matias, and Mario Szegedy. “The
Space Complexity of Approximating the Frequency
Moments”. In Proceedings of the 28th Annual ACM
Symposium on the Theory of Computing (STOC),
1996.

[2] Noga Alon, Yossi Matias, and Mario Szegedy. “The
space complexity of approximating frequency mo-
ments”. Journal of Computer Systems and Sciences,
58(1):137–147, 1998.

[3] Ziv Bar-Yossef, T.S. Jayram, Ravi Kumar, and
D. Sivakumar. “An information statistics approach
to data stream and communication complexity”. In
Proceedings of the 34th ACM Symposium on Theory of
Computing (STOC), 2002.

[4] Amit Chakrabarti, Subhash Khot, and Xiaodong Sun.
“Near-Optimal Lower Bounds on the Multi-Party
Communication Complexity of Set Disjointness”. In
Proceedings of the 18th Annual IEEE Conference on
Computational Complexity, CCC 2003, 2003.

[5] Moses Charikar, Kevin Chen, and Martin Farach-
Colton. “Finding frequent items in data streams”. In
Proceedings of the 29th International Colloquium on
Automata Languages and Programming, 2002.

[6] Don Coppersmith and Ravi Kumar. “An improved
data stream algorithm for estimating frequency mo-
ments”. In Proceedings of the Fifteenth ACM SIAM
Symposium on Discrete Algorithms, 2004.

[7] Sumit Ganguly. “A hybrid technique for estimating
frequency moments over data streams”. Manuscript,
July, 2004.

[8] Sumit Ganguly. “Estimating Frequency Moments of
Update Streams using Random Linear Combinations”.
Proceedings of the 8th International Workshop on Ran-
domized Algorithms (RANDOM).

[9] Sumit Ganguly, Deepanjan Kesh, and Chandan Saha.
“Practical Algorithms for Tracking Database Join
Sizes”. In Proceedings of the International Conference
on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2005, (To appear).

[10] Piotr Indyk. “Stable Distributions, Pseudo Random
Generators, Embeddings and Data Stream Computa-
tion”. In Proceedings of the 41st Annual IEEE Sympo-
sium on Foundations of Computer Science, 2000.

[11] Piotr Indyk and David Woodruff. “Optimal Approx-
imations of the Frequency Moments”. In Proceedings
of the 37th ACM Symposium on Theory of Computing
(STOC), 2005.

[12] Noam Nisan. “Pseudo-Random Generators for Space
Bounded Computation”. In Proceedings of the 30th
Annual ACM Symposium on the Theory of Computing
(STOC), 1990, 1990.

[13] M. Saks and X. Sun. “Space lower bounds for dis-
tance approximation in the data stream model”. In
Proceedings of the 34th ACM Symposium on Theory of
Computing (STOC), 2002.

[14] Jeanette Schmidt, Alan Siegel, and Aravind Srini-
vasan. “Chernoff-Hoeffding Bounds with Applications
for Limited Independence”. In Proceedings of the
3rd Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 331–340, 1992.

713

