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In this paper we consider the problem of finding two parallel rectangles in arbitrary
orientation for covering a given set of n points in a plane, such that the area of the larger
rectangle is minimized. We propose an algorithm that solves the problem in O (n3) time
using O (n2) space. Without altering the complexity, our approach can be used to solve
another optimization problem namely, minimize the sum of the areas of two arbitrarily
oriented parallel rectangles covering a given set of points in a plane.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Two rectangles are said to be parallel when each side
of a rectangle is parallel to a side of the other rectangle. In
this paper we consider the following problem P: Given a
set S of n points in a plane, locate two parallel rectangles
D1 and D2 that cover S , such that the area of the larger
rectangle is minimized, among all possible covers by the
two parallel rectangles. Fig. 1 depicts a possible location of
the two parallel rectangles covering point set S in a plane.

Bespamyatnikh and Segal [1] considered a similar prob-
lem in d-dimensional space, but using axis-parallel boxes
to cover the points, and obtained a time complexity of
O (n log n + nd−1). For the problem of covering points by a
pair of parallel rectangles in arbitrary orientation, Jarom-
czyk and Kowaluk [2] devised an O (n2) time algorithm
that decides whether two parallel rectangles with side
lengths a, b and c, d respectively can cover the given point

✩ A preliminary version of this paper appeared in the Proceedings of the
International Conference on Computing: Theory and Application, March
5–7, 2007.
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Fig. 1. Covering by two parallel rectangles.

set. Jaromczyk and Kowaluk [2] also proposed an O (n2)

time algorithm that finds a covering of S using two paral-
lel squares in arbitrary orientation that optimizes the sizes
of the squares with respect to their side lengths. This was
followed by a work by Katz et al. [3] that solved the prob-
lem of finding two parallel squares in arbitrary orientation
that covers S , with the additional constraint that the cen-
ter points of squares belong to S , such that the area of the
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Fig. 2. Points in ℘(0).

larger square is minimized. The running time of their al-
gorithm is O (n2 log4 n) and uses O (n2) space. In the same
paper they also presented an O (n3 log2 n) time algorithm
using O (n2) space to locate the optimum squares where
each square is allowed to rotate independently (that is, the
squares need not be parallel). In this paper, we propose an
algorithm that solves problem P in O (n3) time using O (n2)

space. This result compares well with [2] and [3] because
a rectangle has an added degree of freedom compared to
that of a square.

The problem finds application in VLSI physical de-
sign for accommodating specified locations like hot spots,
power pins into two parallel rectangles. It also has appli-
cation in the field of geographical information systems for
map data modeling, map overlay, map labeling, etc. More-
over, there are applications in image processing and facility
location problems.

2. Preliminaries

Let S = {p1, p2, . . . , pn} be the set of n points. x(p) and
y(p) represent the x- and y-coordinates of point p respec-
tively. XY (α, p) denotes the coordinate system obtained by
making a counter-clockwise rotation of the original axis by
an angle α, α ∈ [0,π/2), around origin O and by shift-
ing the origin from O to point p using linear translation
only. ℘(α) for α ∈ [0,π/2) denotes a subset of S such
that p ∈ ℘(α) if and only if there exists at least one closed
quadrant of the system XY (α, p) that has no point in
S\{p} (see Fig. 2). Note that the set α-silhouette(S) defined
by Jaromczyk and Kowaluk [2] is same with the set ℘(α).

Let D1 and D2 be two optimal parallel rectangles and
the sets of points covered by rectangles D1 and D2 are de-
noted by S1 and S2 respectively, where S1 ∪ S2 = S . Surely
D1 and D2 are smallest axis-aligned rectangles, covering
points in S1 and S2 respectively, with respect to some
system XY (α, O ). Let D(α) be the smallest axis-aligned
rectangle in that coordinate system that encloses all points
of S . T (α) is an ordered set containing the top, left, bot-
tom and right boundary points of D(α) in that order. The
set T (α) will be called the extreme points of S in the sys-
tem XY (α, O ). The notation XY represents the coordinate
system XY (α, p) at α equal to zero and p at origin O . For
simplicity we shall assume that no two points in S have
the same x- or y-coordinate in the original coordinate sys-
tem XY . We shall also assume that no three points are
collinear and no three points form an angle of π
2 . These

cases can be tackled in a similar way with some minor
modifications to our approach.

Now consider the optimum rectangles D1 and D2 are
parallel to the axes of XY (also known as isothetic rectan-
gles). We have the following results.

Lemma 1. If the rectangles D1 and D2 overlap, then each side
of the rectangles must contain a point from set ℘(0). Moreover,
given the sorted sequences of S on the basis of their x- and y-
coordinates, ℘(0) can be computed in O (n) time.

Proof. The first statement follows from the optimal nature
of D1 and D2. The set ℘(0) can be computed in O (n) time
using a sweep line algorithm. �

Glozman et al. [4] pointed out an O (n log n) time algo-
rithm for evaluating two optimum size axis parallel rect-
angles for covering the point set S . Later Bespamyatnikh
and Segal [1] proposed a theorem that basically concludes
the following results.

Result 1. (See [1].) Given a set S of n points in a plane along
with two sorted sequences of those points on the basis of their
x- and y-coordinates, the problem of locating two axis-parallel
rectangles that cover S, so as to minimize the area of the larger
rectangle, can be solved in O (n) time.

3. Covering by orientation independent parallel
rectangles

Here we consider the case where two parallel rectan-
gles cover the point set S and they may be placed in
any orientation and form an angle in range [0,2π ] with
x-axis in XY coordinate system. Note that those pair of
optimal rectangles may or may not overlap. We consider
these two cases separately. With the intent of pruning our
search space, we explore some characterization of the op-
timal rectangles.

Let CH(S) be the convex hull of point set S and A(S)

be the set of angles formed by the edges of CH(S) with
the x-axis. For the problem of covering a set of n points
using a single rectangle in any arbitrary orientation hav-
ing minimum area, Freeman and Shapira [5] suggested an
interesting characterization as stated below.

Result 2. (See [5].) Let D(α) be the minimum area rectangle
enclosing points of S with one of its sides making an angle α ∈
[0, π

2 ) with the x-axis of the XY coordinate system. If the area
of D(α) achieves a local optimal value then either α or α + π

2
must coincide with one of the elements in set A(S).

Suppose D1 and D2 be two optimal parallel rectangles
as described in Section 2.

Lemma 2. Let one of the sides of rectangles D1 and D2 be in-
clined at angle α to the x-axis in XY plane. Then at least one of
the following two conditions is true:
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Fig. 3. X1 O X2 is a separable interval.

(i) there exists at least a pair of points p, q in S such that
x(p) = x(q) or y(p) = y(q) with respect to the coordinate
system XY (α, O );

(ii) Area(D1) = Area(D2).

Proof. Suppose that neither condition (i) nor condition (ii)
hold. Let S1 and S2 be the subsets of points in S that are
covered by D1 and D2 with Area(D1) > Area(D2). Since
condition (i) is not satisfied, there exist infinitesimally
small rotations of the two rectangles, in both clockwise
and counter-clockwise directions such that the rectangles
still cover the same subsets S1 and S2, while their bound-
ary points remain unaltered. From Result 2 it follows that
there exists a small angle of rotation δα of the system
XY (α, O ) to XY (α + δα, O ) such that the area of rectan-
gle D1 is reduced while D1 remains the larger of the two
rectangles. �

The coordinate system XY (α, O ) for some α (∈ [0,2π ])
is termed as separable for S if no two points p, q in S have
same x- or y-coordinates in that system. An open interval
(a,b) within the range [0,2π ] is called a separable interval
for S if for any α ∈ (a,b), the system XY (α, O ) is separa-
ble for S (see Fig. 3).

Let χ(α) = 〈χ1(α),χ2(α), . . . ,χn(α)〉 and ψ(α) =
〈ψ1(α),ψ2(α), . . . ,ψn(α)〉 be two sequences represent-
ing the points in S sorted with respect to their x-
and y-coordinates respectively in the coordinate system
XY (α, O ).

Observation 1. As long as α belongs to the same separable in-
terval, �, the two sequences χ(α) and ψ(α) remain unaltered.

Let D(α, S ′) denote the smallest axis aligned rectangle
in coordinate system XY (α, O ) enclosing the points in set
S ′ , S ′ ⊆ S . Points on the boundary of the rectangle D(α, S ′)
will be termed as the extreme points of D(α, S ′).

Observation 2. Consider any separable interval � and a subset
S ′ , S ′ ⊆ S. Rectangles D(α, S ′) for all α ∈ � have the same set
of extreme points.

Let S1 and S2 be subsets of points in S with S1 ∪ S2 = S
(S1 and S2 need not be disjoint). Λ1 and Λ2 be sets
containing the extreme points of the minimum enclosing
isothetic rectangles covering set S1 and S2 respectively in
some coordinate system XY (α, O ) for some α ∈ �. From
Observation 2 we can conclude that the sets Λ1, Λ2 re-
main unaltered for all α ∈ �.

Lemma 3. Given a separable interval �, the sets S1 , S2 and
the sets Λ1 , Λ2 , if there exist an angle α ∈ � such that
Area(D(α, S1)) = Area(D(α, S2)) then α can be computed in
constant time. There can be at most two different solutions for
α in any separable interval �.

Proof. Let � : (φi, φ f ) be a separable interval for the
set S . The areas of rectangles D(α, S1) and D(α, S2) can
be expressed as a trigonometric function of α. Equating
Area(D(α, S1)) and Area(D(α, S2)) we get an equation of
the form, F (α) = C , where F (α) is a sinusoidal function
and C is a constant. As α varies only in the range [0, π

2 ],
the equation F (α) = C can have at most two solutions. �

Suppose Θ be the set of angles within [0,π ], formed
by a line joining a pair of points in S , with the x-axis of the
XY coordinate system. Notice that, for any θ ∈ Θ , 0 � θ �
π/2, the coordinate systems XY (θ, O ) and XY (π/2+θ, O )

are not separable for S and for π/2 � θ � π , the co-
ordinate systems XY (θ, O ) and XY (θ − π/2, O ) are not
separable. Observe that for a non-separable coordinate sys-
tem XY (α, O ) with 0 � α � π/2, either α or α + π/2
must be an element of Θ . Consider the set Φ = {φ: φ ∈
[0,π/2], φ ∈ Θ or (φ + π/2) ∈ Θ}. The cardinality of Φ

is bounded by
(n

2

)
. Let the elements φ1, φ2, . . . , φk of set

Φ be in increasing order according to their values and this
ordered sequence is referred by Φ itself. From our assump-
tion, as no two points have same x- or y-coordinates in
XY , φ1 > 0. We introduce a new element φ0 as zero and
therefore the set of intervals � = {�1,�2, . . . ,�k} where
�i = (φi−1, φi) for i = 1,2, . . . ,k are separable intervals in
range [0,π/2]. We introduce one more separable interval
�k+1 = (φk,π/2] and hence � = {�1,�2, . . . ,�k,�k+1} is
the exhaustive set of separable intervals in [0,π/2]. Sup-
pose p and q of S have same x- or y-coordinate values
in the coordinate system XY (φi, O ) (φi ∈ Φ). Given the
sequences χ(φi) and ψ(φi), if the indices of p and q on
those sequences are available, then for any α in separable
interval �i or �i+1 the sequences χ(α) and ψ(α) can be
evaluated, in constant time, by modifying χ(φi) and ψ(φi)

using constant number of interchanges in the lists.

3.1. The rectangles do not overlap

In this section, we present an efficient algorithm to lo-
cate two parallel orientation independent disjoint optimal
rectangles covering the point set S .

Observation 3. Suppose that the sets A j and A′
j contain the

first j (1 � j � n) elements of sequence χ(α) and the remain-
ing elements of χ(α) respectively, for some α ∈ �i . Then the
extreme points of the minimum enclosing isothetic rectangles
of sets A j , A′ in system XY (β, O ) are same for all β ∈ �i .
j
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Moreover, the extreme points of the minimum enclosing iso-
thetic rectangles of set A j , A′

j for all values of j, 1 � j � n, can
be evaluated in O (n) time.

Optimal_disjoint_rectangles(S)

1. Compute Θ and enumerate the set Φ . With each el-
ement φ ∈ Φ associate the points of S that have the
same x- or y-coordinates in system XY (φ, O ).

2. Sort the elements of Φ according to their angular val-
ues.

3. Generate χ(φ0) and ψ(φ0) by sorting the points in S
with respect to the system XY . Fix two pointers g and
h with each point p of S such that for g(p) = l implies
χl(φ0) = p and similarly h(p) = l implies ψl(φ0) = p.

4. for i = 1 to k + 1 do
(a) Consider coordinate system XY (α, O ) for any

α ∈ �i . Generate χ(α) and ψ(α) from χ(φi−1)

and ψ(φi−1). Using the techniques as described in
Section 2, Lemma 3 and Observation 3 find two
optimum size parallel non-overlapping enclos-
ing rectangles creating angles with x-axis within
range [φi−1, φi).

(b) Store the optimal pair of rectangles in the list L.
endfor

5. Traverse the list L to find the optimum placement.

3.1.1. Analysis of the algorithm
In Step 1, the set Φ is generated by considering all lines

joining pairs of points of set S and sorting the elements
of Φ to generate the sequence Φ in O (n2 log n) time. For-
mation of sets χ(φ0) and ψ(φ0) and the maintenance of
pointers g and h can be done within the same complex-
ity. Note that, updating of sequences χ(α) and ψ(α) for
changing the separable interval from �i to �i+1 using
pointer g and h can be done in constant time. We can
locate the optimum pair of parallel non-overlapping en-
closing rectangles in the coordinate system XY (φi, O ) in
O (n) time. By Lemma 3 we can also find the optimum
placement of a given pair of parallel non-overlapping en-
closing rectangles, within separable interval �i , in O (1)

time. Hence, we have the following theorem.

Theorem 1. The problem of finding two mutually parallel non-
overlapping rectangles, such that the area of the larger rectangle
is minimized, can be solved in O (n3) time.

Proof. The cardinality of the set Φ is O (n2). The se-
quences χ(α) and ψ(α) for α ∈ �i+1 can be computed
by updating the same sequences for the separable interval
�i in constant time. Now from Result 1, we can conclude
the theorem. �
3.2. The rectangles may overlap

In this section, we present an algorithm to locate two
parallel orientation independent optimal rectangles, with
nonempty intersection region, that cover the point set S .

From the discussion in Section 2 it follows that, only
the points in ℘(α) decide the location of the optimum pair
of parallel rectangles with nonempty intersection region in
the coordinate system XY (α, O ). It is simple to observe
that, if a point p belongs to ℘(α) for some α in a separa-
ble interval �i then p remains in ℘(β) for all β ∈ �i .

Let B1 and B2 be the ordered sets of boundary points
(ordered as top, left, bottom and right boundary points)
that define the two isothetic overlapping rectangles in the
system XY (α, O ) such that together they cover the point
set S and none of the boundary points of one rectangle
is covered by the other rectangle. Such a tuple (B1, B2)

is called a placement in the system XY (α, O ). Note that
the optimum orientation independent overlapping parallel
pair of rectangles must be a placement in some coordinate
system.

Observation 4. There can be at most O (n2) distinct placements
in any given system XY (α, O ).

Observation 5. All the distinct placements in a system XY (α, O )

remain unaltered for all α belonging to a separable interval �i .

Observation 6. Let S ′ ⊂ S be the set of points having same
x- or y-coordinate values in the coordinate system XY (φi, O ).
A placement (B1, B2) in a separable interval �i is also a place-
ment in the interval �i+1 (and vice versa), if none of the points
from B1 ∪ B2 lies in S ′ .

Recall (from Section 2) the definition of extreme points
of S in a coordinate system XY (α, O ), as the ordered set
of boundary points T (α) of the smallest axis-aligned rect-
angle D(α) enclosing the points in S . Surely, the extreme
points of S remain unaltered for all α ∈ �i . Let Ti = T (α)

be the extreme points of S in XY (α, O ) where α ∈ �i ,
1 � i � k + 1.

Lemma 4. Let p be a point in ℘(α), α ∈ �i , such that p /∈
Ti . Then all placements (B1, B2) in the interval �i , with p ∈
B1 ∪ B2 , can be identified in O (n) time, provided we know the
sequences χ(α) and ψ(α).

Proof. Note that, the sequences χ(α) and ψ(α) can be
generated from the corresponding sequences in the previ-
ous interval �i−1, using constant number of interchanges
in the lists χ(�i−1) and ψ(�i−1). Since we assume that
the two rectangles overlap, a pair of sides of each of the
two rectangles D(α, B1) and D(α, B2) are fixed by the
four extreme points of the system XY (α, O ). Using the se-
quences χ(α) and ψ(α), order the set ℘(α) in such a way
that by fixing one extreme point of one of the rectangles at
p one can use a sweep line algorithm to position the only
other remaining extreme point of the rectangle and con-
struct all the O (n) placements (B1, B2) in XY (α, O ), with
p ∈ B1 ∪ B2, in O (n) time. �
Lemma 5. If T i = Ti+1 then the number of placements in the
separable interval �i+1 that differ from the placements in the
separable interval �i is at most O (n) and vice versa. Moreover,
all these differing placements can be identified in O (n) time.

Proof. Although there are O (n2) distinct placements in any
given system XY (α, O ), it is evident that any placement
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(B1, B2) in the separable interval �i+1 that differs from
all the placements in �i must have p or q belonging to
B1 ∪ B2 (see Observation 6). Assume without any loss in
generality that all the four points of Ti are distinct. If none
of p and q belongs to Ti then there are only O (n) dis-
tinct placements of the form (B1, B2) with p or q belong-
ing to B1 ∪ B2. If p ∈ Ti and q /∈ Ti , then each placement
(B1, B2) in the separable interval �i+1 that differs from
all the placements in �i must have q ∈ B1 ∪ B2. All the
differing placements in the previous two cases can be iden-
tified in O (n) time (by Lemma 4). The only other case is
when both p and q belong to Ti . Since Ti = Ti+1, either
p,q are the topmost and bottommost points of D(α) or
the leftmost and rightmost points of D(α). Assume with-
out any loss of generality that p,q are the topmost and
bottommost points of D(α) respectively. Then the place-
ments (B1, B2) that differ between the intervals �i+1 and
�i are exactly those where at least one of p,q is either the
left or right extreme point of the rectangle formed by B1
or B2. By an argument similar in spirit to that of Lemma 4,
it can be shown that there are only O (n) such placements
all of which can be identified in O (n) time. �
Theorem 2. There is a total of O (n3) distinct placements in the
interval [0, π

2 ], all of which can be identified in O (n3) time.

Proof. Note that there are O (n2) separable intervals. To
start with, there are O (n2) distinct placements in the sep-
arable interval �1. If Ti = Ti+1, then in the separable in-
terval �i+1 an additional of O (n) new placements are in-
troduced (Lemma 5). The set Ti may differ from Ti+1 for
a maximum of h times, where h is the number of edges
of the convex hull of S , and in each such cases at most
O (n2) new placements are introduced. Hence the result
follows. �

An instance can be generated where the number of pos-
sible distinct placements in the interval [0, π

2 ] is Ω(n3).
Below we describe an algorithm for locating a placement
that constitutes of an optimum pair of parallel overlapping
rectangles covering point set S .

3.2.1. Data structure
Simple arrays and lists are sufficient to construct our

data structures. An array M stores the set of points in S .
A point in M (say p) that is in ℘(α) for some α in [0, π

2 ],
maintains a list structure namely, placement list that keeps
all placements of the form (B1, B2) such that p ∈ B1 ∪ B2.
Each placement C = (B1, B2) in a placement list associates
with it an interval (βi, β f ) such that for all β ∈ (βi, β f ),
(B1, B2) is a placement in XY (β, O ). We shall use the vari-
ables C.Interval.start and C.Interval.finish to indicate βi and
β f respectively.

Optimal_overlapping_rectangles(S)

1. Compute Θ and generate the sequences Φ , χ(φ0) and
ψ(φ0) as in Steps 1, 2 and 3 of the algorithm Opti-
mal_disjoint_rectangles.

2. Initialize the array M and form all the placement lists
with the placements in XY . For each placement C , ini-
tialize C .Interval.start = 0.
3. Find the location of the pair of optimum axis-aligned
rectangles with nonempty region of intersection in the
system XY . Store this optimum location along with
the area of the larger rectangle in a variable O.

4. for i = 1 to k do
(a) Consider coordinate system XY (α, O ) for any α ∈

�i+1. Let p and q be the points with equal x-
or y-coordinates in the system XY (φi, O ). Gener-
ate χ(α) and ψ(α) from the previous sequences
χ(γ ) and ψ(γ ) where γ ∈ �i and form the set
℘(α).

(b) if Ti = Ti+1 then
If p,q /∈ Ti , delete all the placements from
the placement lists of points p,q and form
the placement lists of p and q, anew, by us-
ing set ℘(α), α ∈ �i+1. Else if p ∈ Ti,q /∈ Ti ,
delete all the placements from the placement
list of point q and form the placement list,
anew. Else, if p,q ∈ Ti , deletion and insertion
of the placement lists of p and q are handled
based on the arguments given in the proof of
Lemma 5.

else
Delete all the placements from all the place-
ment lists. Form the array M and all the place-
ment lists, anew, by using the set ℘(α), α ∈
�i+1.

endif
(c) For each deleted placement C = (B1, B2), assign

C .Interval.finish = φi . Solve for Area(D(β, B1)) =
Area(D(β, B2)) where β ∈ (C .Interval.start, C .Inter-
val.finish) and update the optimum location stored
in the variable O. Also find the locations of the
placement C in the systems XY (C .Interval.start, O )

and XY (C .Interval.finish, O ), and evaluate the ar-
eas of the rectangles D(β, B1) and D(β, B2) at
β = C .interval.start and β = C .interval.finish. Up-
date the optimum location stored in O by com-
paring it with these two locations.

(d) For each newly formed placement C , assign C .In-
terval.start = φi .

5. Delete all the placements from all the placement
lists. For each deleted placement C = (B1, B2), assign
C .Interval.finish = φi and solve for Area(D(β, B1)) =
Area(D(β, B2)) where β ∈ (C .Interval.start, C .Interval.
finish). Also find the locations of the placement C in
the systems XY (C .Interval.start, O ) and XY (C .Interval.
finish, O ). Update the optimum location in O accord-
ingly.

3.2.2. Complexity of the algorithm
At each iteration of the for loop at Step 4, if Ti = Ti+1

then O (n) new placements are added and O (n) place-
ments are deleted. If h is the number of edges of CH(S)

then for only h iterations of the for loop O (n2) placements
are added or deleted. Therefore, time complexity of the
algorithm is O (n3). Moreover, from Observation 4 we con-
clude that the space complexity of the algorithm is O (n2).

Theorem 3. The problem of locating two parallel rectangles cov-
ering a given set of points S in a plane, such that the area of the
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larger rectangle is minimized, can be solved in O (n3) time and
using O (n2) space.

4. Conclusion

Our algorithm provides a simple way to search all
the O (n3) distinct placements in the interval [0, π

2 ] in
O (n3) time. Without altering the complexity, this tech-
nique may be used to solve related problems of cover-
ing like finding a cover by two parallel rectangles such
that the sum of area of the rectangles is minimized.
In that case the only changes in the algorithm are at
Steps 4(c) and 5, where we minimize the function A(β) =
Area(D(β, B1)) + Area(D(β, B2) by equating the derivative
of A(β) with respect to β to zero in the interval β ∈
(C .Interval.start, C .Interval.finish). We conclude by suggest-
ing that it will be interesting to inspect the complexities
of these optimization problems when the rectangles need
not be parallel, i.e. when they are allowed to move freely,
independent of one another.
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