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Abstract
We show that, given a finite field Fq and an integer d > 0, there is a deterministic

algorithm that finds an irreducible polynomial g over Fq in time polynomial in d and log q
such that,

d

c log p
< deg(g) <

d log q
log p

where c is a constant. This result follows easily from Adleman and Lenstra’s result [AJ86]
on irreducible polynomials over prime fields and Lenstra’s result [Jr.91] on isomorphisms
between finite fields. 1 As an application, we show that such construction of irreducible
polynomials can be used to build a sample space of coprime polynomials for the Agrawal-
Biswas [AB03] polynomial identity testing algorithm.

1 Introduction

The problem of finding irreducible polynomials over finite fields is an important problem in
algorithmic algebra with many applications in coding theory, cryptography and complexity the-
ory. In many such applications the primary use of irreducible polynomials is in the construction
of larger finite fields. Although a random polynomial is irreducible with reasonable probability,
there is no known deterministic polynomial time algorithm for contructing irreducible polyno-
mial of a given degree. An efficient algorithm was designed by Adleman and Lenstra [AJ86] in
case of prime fields under the assumption of the Extended Riemann Hypothesis. In the same
paper they gave another result as stated by the following theorem.

Theorem 1.1 There is a deterministic algorithm that on input a prime p and an integer d > 0,
outputs an irreducible polynomial g ∈ Fp[x] such that

d

c log p
< deg(g) < d

where c is a constant. The algorithm takes (d log p)O(1) time.

We show that this result can be extended to any finite field as stated by the following theorem.

Theorem 1.2 Let Fq be a finite field, with q = pu and p prime, that is explicitly given by an
irreducible polynomial f ∈ Fp[x] of degree u i.e. Fq = Fp[x]

(f) . Given an integer d > 0, there is a
deterministic algorithm that outputs an irreducible polynomial g ∈ Fq[x] such that,

d

c log p
< deg(g) <

d log q
log p

where c is a constant. The algorithm takes (d log q)O(1) time.
1Hendrik W. Lenstra Jr. pointed out that a stronger result follows from [AJ86] and [Jr.91] i.e. it is possible

to find a degree d irreducible polynomial over Fq from a degree d irreducible polynomial over Fp.
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Our proof is fairly straightforward and it makes use of Theorem 1.1 and a result by Lensta
[Jr.91] on isomorphism between finite fields,

Theorem 1.3 There is an algorithm that, given a finite field F , a positive integer u, and
two field extensions F1, F2 of F of degree u, constructs an F -isomophism F1 → F2 in time
(log | F1 |)O(1).

In the absence of an efficient deterministic algorithm for finding irreducible polynomial of a
given degree, partial result like Theorem 1.2 could be useful as there are applications where an
irreducible polynomial of roughly the desired degree is just as good. We have chosen one such
application from complexity theory - the problem of testing whether a polynomial, given as a
circuit, is identically zero.

We show that Theorem 1.2 is useful in the construction of a sample space of polynomials used
by Agrawal and Biswas’s algorithm [AB03] to check if an input polynomial is identically zero.
In their paper [AB03], Agrawal and Biswas showed an elegant way of constructing a small space
of almost coprime low degree polynomials. Their algorithm works by randomly selecting a
polynomial from the sample space and computing the output of the circuit modulo the chosen
polynomial. The input polynomial is declared as identically zero if and only if the output of
the circuit is evaluated to zero. An important feature of their algorithm is that it achieves the
time-error tradeoff with a running time that is only polynomial in the size of the circuit and
the error parameter.

For the sake of theoretical interest, it is natural to ask if one can get a similar result using
a sample space of mutually coprime polynomials instead of almost coprime polynomials. We
answer this question affirmatively. The time-error tradeoff property of the algorithm is also
preserved. A slight advantage of using coprime polynomials over almost coprime polynomials
is that the degree of each polynomial in the sample space can be chosen to be smaller than the
polynomials in the sample space of almost coprime polynomials. This makes modulo operations
less costly which gives a slightly better running time of the algorithm for large enough circuits.

2 Finding Irreducible Polynomials

In this section we prove Theorem 1.2.

Theorem 2.1 Let Fq be a finite field, with q = pu and p prime, that is explicitly given by an
irreducible polynomial f ∈ Fp[z] of degree u i.e. Fq = Fp[z]

(f) . Given an integer d > 0, there is a
deterministic algorithm that outputs an irreducible polynomial g ∈ Fq[y] such that,

d

c log p
< deg(g) <

d log q
log p

where c is a constant. The algorithm takes (d log q)O(1) time.

Proof: The field Fq denotes the explicitly given field Fp[z]
(f) . The outline of the proof is as follows.

1. Construct a sufficiently large field E that contains F ′q, an isomorphic copy of Fq. The
extension degree [E : F ′q] should be sufficiently large so that step 2 is feasible.

2. Construct an irreducible polynomial g′ ∈ F ′q[y] such that

d

c log p
< deg(g′) <

d log q
log p

.
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3. Use an isomorphism to find an irreducible polynomial g ∈ Fq[y] such that deg(g) = deg(g′).

The rest of the proof shows how to perform each of these steps.

Step 1: Construct a sufficiently large field.

Finding a sufficiently large extension of Fp is made easy by Theorem 1.1, but the only com-
plication being that this extended field might not contain an isomorphic copy of Fq. This is
because Theorem 1.1 does not provide a handle on the exact value of the extension degree. The
following discussion shows how to circumvent this problem.

Using Theorem 1.1 first find an irreducible polynomial h ∈ Fp[x] of degree m such that,

ud

c log p
< m < ud.

The field Fpm = Fp[x]
(h) may not contain an isomorphic copy Fq (as u may not divide m). There-

fore, we intend to construct the field Fpm′ where m′ = lcm(m,u). To do this first find the prime
factorizations of m and u and find m′ = lcm(m,u). Suppose v be a prime such that vk||m′ (vk

exactly divides m′). Then vk exactly divides m or u. Assume without loss of generality that
vk||m. Let F = Fpm and K = F

pvk . The idea is to find an element that generates K over Fp.
For this we make use of the trace function.

Recall that, if M = Fqk is an extension field of N = Fq then the function TrM |N : M → N is
defined as the sum,

TrM |N (α) = αq
m−1

+ αq
m−2

+ . . .+ αq + α, for every α ∈M .

Function TrM |N is a linear map from M onto N .

Consider taking trace of the elements, X, . . . ,Xm−1, of F over K,

TrF |K
(
Xi
)

for 0 < i < m,

where X = x mod h. Since the elements 1, X, . . . ,Xm−1 form the basis of F over Fp and v is
prime, there must exist an i, 0 < i < m, such that,

K = F
pvk = Fp(TrF |K

(
Xi
)
).

Otherwise the fact that TrF |K maps F onto K is contradicted. If αv = TrF |K
(
Xi
)

is the
generator of K over Fp, then the minimal polynomial of αv over Fp is an irreducible polynomial
hv of degree vk. The task of finding αv and hv is efficient because finding minimal polynomial
and testing for irreducibility can be done in deterministic polynomial time.

By repeating the above process for other prime factors of m′, we can find all irreducible poly-
nomials of degree w` such that w`||m′ and w is a prime. Suppose hv(x) and hw(y) be two
irreducible polynomials of relatively coprime degrees vk and w` respectively. Let Fp(X) = Fp[x]

(hv)

and Fp(Y ) = Fp[y]
(hw) where X = x mod hv and Y = y mod hw. Then it is not difficult to verify

that Fp(X,Y ) = Fp(X + Y ) = F
pvkw` . This is because any maximal proper subfield of F

pvkw`

must contain either X or Y and hence cannot contain X + Y . Therefore, the minimal poly-
nomial of X + Y over Fp yields an irreducible polynomial of degree vkw`. Repeat this process
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till we get an irreducible polynomial of degree m′ over Fp. Let this polynomial be h′. The field
E = Fp[x]

(h′) = Fpm′ thus contains an isomorphic copy of Fq which we denote by F ′q.

Step 2: Constructing irreducible polynomial over F ′q.

As before, assume that E = Fp[x]
(h′) and X = x mod h′. The minimal polynomial of X ∈ E over

F ′q is an irreducible polynomial of degree m′

u over F ′q. The process of finding a monic polynomial
of degree m′

u with coefficients taken from F ′q reduces to solving a bunch of linear equations over
Fp. To see this reduction assume that X satisfies the monic polynomial g′(y) ∈ F ′q[y],

g′(y) =
m′/u∑
i=0

βiy
i where βi ∈ F ′q and βm′

u

= 1.

Take each βi ∈ E to be,

βi =
m′−1∑
j=0

bijx
j where bij ’s are unknowns in Fp.

We can ensure that each βi belongs to F ′q using the equation βqi = βi, which in turn reduces to
linear equations in bij ’s. Further, since X is a root of g′(y),

g′(X) =
m′/u∑
i=0

βix
i mod h′ = 0

which yields more linear equations in bij ’s. By solving the equations for bij ’s we get the unique
irreducible polynomial g′(y) ∈ F ′q[y] of degree m′

u .

Step 3: Finding an irreducible polynomial over Fq through an isomorphism.

Suppose that v is a prime factor of u such that vk||u and let K = F
pvk . As argued before, there

exists an i (0 ≤ i < m′) such that for α = TrE|K(Xi), K = Fp(α). Moreover, if F
pvk = Fp(α)

and F
pw` = Fp(β) where v and w are distinct prime divisors of u then F

pvkw` = Fp(α+β). This
way we can find an element γ ∈ E such that F ′q = Fp(γ). Let f ′(y) ∈ Fp[y] be the minimal

polynomial of γ over Fp. Using Theorem 1.3 find an isomorphism σ(z) from Fp[z]
(f ′) to Fq = Fp[z]

(f) .

This means that the element z in Fp[z]
(f ′) maps to the element σ(z) in Fq = Fp[z]

(f) . Since g′(y)
belongs to F ′q[y], we can express each coefficient of g′(y) as an Fp-linear combinations of the basis
elements {γj}1≤j<u. This is done by solving linear equations over Fp. Thus if β =

∑u−1
i=0 biγ

i

is an element in F ′q then
∑u−1

i=0 biσ(z)i mod f(z) is the image of β in Fq (by identifying γ with

the element z in Fp[z]
(f ′) ). This isomorphism when applied to the coefficients of g′(y) yields an

irreducible polynomial g(y) ∈ Fq[y] of degree m′

u . Since,

ud

c log p
< m < ud and m ≤ m′ ≤ mu,

hence,
d

c log p
< deg(g) <

d log q
log p

.
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3 Constructing the sample space for Identity Testing

Let C be a circuit of size s that computes the polynomial P (x1, . . . , xn) ∈ Fq[x1, . . . , xn]. The
task is to check whether the polynomial is identically zero. Assume that the degree in each
variable is bounded by d − 1. As in [AB03], first convert the multivariate polynomial to an
univariate polynomial P (x) by substituting xi by xd

i−1
(this is also known as Kronecker substi-

tution). This substitution has the property that P (x1, . . . , xn) is a zero polynomial if and only
if P (x) is a zero polynomial. Note that the degree of polynomial P (x) could be as high as dn−1.

The number of coprime polynomials of degree t that divides P (x) is at most dn

t . Suppose
that we have a sample space of 2r coprime polynomials of degree t, then the probability that
a random polynomial from the sample space divides P (x) is at most dn

t·2r . Thus if our sample
space is large enough i.e. 2r > dn then the error probability is bounded by 1

t . Constructing such
a sample space is made easy by Theorem 1.2. First extend the field Fq to another field Fq′ using
an appropriate irreducible polynomial such that q′ > dn. Since the field Fq′ is explicitly given by
an irreducible polynomial over Fq, we can define a natural ordering among the elements in Fq′

using the ordering of elements in Fp. Thus with every a ∈ Fq′ we can associate a non-negative
integer index(a) < q′. Also note that given an integer i < dn we can uniquely compute the
element a ∈ Fq′ such that index(a) = i. Now define the sample space of polynomials as,

S = {Xt + a : a ∈ Fq′ and index(a) < dn}

Such a sample space can be defined using only r = dn log de random bits.

The time taken for evaluating Kronecker substitutions modulo a polynomial (Xt+a) is Õ(n2 log d log q
ε ),

where t = 1
ε and ε is the error parameter. The total time taken for modular operations in the

circuit is Õ(s · 1
ε · n log d · log q), where s is the size of the circuit. In addition the time taken

for extending the field is (n log d)c for a constant c. Thus, when s is greater than (n log d)c, the
total running time is Õ(s · 1

ε · n log d · log q). This is slightly better than the running time of
Õ((s+ n2 log d) · (n log d)2 · (n log d+ 1

ε ) · (log q)2) given in [AB03].

4 Remarks

The arguments used to prove Theorem 1.2 can also be used to extend Aldleman and Lensta’s
[AJ86] other result on finding irreducible polynomial of a given degree over a prime field to any
finite field, under the assumption of the Extended Riemann Hypothesis. It would be nice to
find other applications of Theorem 1.2.
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