
Do more random bits always help in computation?

Chandan Saha
Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

Abstract

It is a well known fact in computation that the success probability of a randomized
algorithm increases with increasing number of independent trials. But this may not be
the case when different trials are allowed to interact with and influence each other instead
of being totally independent. An example of an algorithm with interacting trials is the
“Go With the Winners” algorithm for trees, which uses random bits to find the depth d
of a given tree. In this paper we analyze the “Go With the Winners” algorithm and show
that (surprisingly) there are instances when raising the number of random bits (trials) from
polynomial in depth d to exponential in d decreases the success probability of the algorithm
from a constant to an exponentially small probability.

1 Introduction

In the world of computations a random bit is a useful resource for solving problems. There are
many problems in computer science for which no efficient deterministic algorithms are known
and yet they admit quite efficient randomized solutions. It is natural to ask as to whether
increasing the number of random bits always help in computation by reducing the expected
running time or the error probability of the algorithm. The answer to this is obviously yes
when the rise in the random bits usage takes place through many independent trials of the
algorithm. The more the number of trials the less is the probability of failure of the algorithm
(in all the trials). However, things get a bit complicated when different trials are allowed to
interact and influence each other.

Interactions among different trials of the algorithm can sometimes be very useful to boost
the success probability significantly over independent trials. An example of such a case is the
“Go With the Winners” algorithm for trees introduced by Aldous and Vazirani [AV94]. “Go
With the Winners” (GWW) is a simple ‘interactive trials’ strategy used to find the deepest
node in a tree with large number of nodes which makes the use of a deterministic algorithm
infeasible. Aldous and Vazirani showed that the GWW strategy outperforms the ‘independent
trials’ strategy significantly for a large class of trees. However, it was not clear as to whether such
‘interactive trials’ strategy also has the property that the rising number of trials increases the
success probability of the algorithm or that the success probability does not drop significantly
with increasing number of trials. In this paper we analyze the GWW algorithm for trees and
show that there are instances where the rise in the number of interactive trials from polynomial
in depth d of the tree to exponential in d lowers the success probability from a constant to an
exponentially small quantity. A reason for showing the analysis here is that it provides some
insight to such a drastic fall in performance of the algorithm with increasing usage of random
bits which is slightly surprising and counterintuitive. Before we start the main discussion we
briefly mention the related works on the GWW strategy in the following paragraph.

1

The “Go With the Winners” (GWW) strategy for trees was extended by Dimitriou and
Impagliazzo [DI96] for the case when the state space is a graph instead of a tree. In a subsequent
work [DI98] they applied this strategy to the graph bisection problem, where given a graph it
is required to partition it into two equal pieces such that the number of edges between the
two pieces is the smallest among all possible partitions. The GWW strategy was also used by
Peinado [Pei01] for the clique problem over random graphs. Other applications can be found in
[PL97a], [PL97b], [PL03] and [SKAS05].

2 The “Go With the Winners” Algorithm

Assume that every edge of the input tree is associated with a transition probability, such that
an algorithm visiting a node of the tree may choose to go to any of its children based on the
transition probabilities associated with the edges. A simple algorithm would be to start from
the root of the tree and traverse the tree level-wise from a node to a child node till a leaf
is reached. Going by the terminology of Aldous and Vazirani [AV94] we call this algorithm
Algorithm 0. Several independent executions of Algorithm 0 boosts the success probability
of finding a deepest node. However, instead of independent executions, a simple interaction
strategy among different executions of this algorithm greatly improves the success probability.
A single execution of Algorithm 0 can be abstracted as the traversal of a particle from the root
to deeper levels of the tree. The “Go With the Winners” strategy is to start with B = poly(d)
particles at root, where d is the depth of the input tree and proceed stage-wise. At every stage
all the B particles make independent transitions from a level of the tree to the next level. All
particles that are stuck at leaves are then evenly distributed among the particles at non-leaves
followed by the start of the next stage. The process repeats till all B particles are at leaves of
some level.

Let T be a tree of depth d. Each edge of the tree is associated with a transition probability.
For every vertex v in T , p(v) denotes the probability that a particle reaches v when allowed
to move freely and independently from the root. If w is a child of v then p(w|v) denotes
the transition probability associated with the edge (v, w). For convenience in analysis we will
assume that all transition probabilities of T are greater than or equal to 1

r(d) , where r(.) is some
fixed polynomial. The probability of reaching the ith level of T in Algorithm 0 is given by
a(i) =

∑
v∈Vi

p(v), Vi is the set of all vertices at the ith level. We call a non-leaf vertex v a
good non-leaf if there is a path in the tree from v to one of the nodes at the deepest level. Let
Si

nl and Si
g be the set of non-leaves and good non-leaves, respectively at level i. For any subset

S ⊂ Vi of vertices we define p(S) =
∑

v∈S p(v).
The following is a modified version of the GWW algorithm presented by Aldous and Vazi-

rani [AV94].

Algorithm GWW : To start with, we have 2B particles in a repository R. At stage 0,
select and remove B particles uniformly randomly from R and put them at the root of the input
tree T . Repeat the following procedure, starting at stage 0 with B particles at the root.

At stage i we have Bi particles (i to be treated as a superscript), each at some vertex
at depth i. If all the particles are at leaves, then stop. Otherwise, some Bi

nl particles
are at non-leaves and the remaining Bi

l = Bi − Bi
nl particles are at leaves. Return

the Bi
l particles back to R. To each of the Bi

nl particle positions add
⌈

B
Bi

nl

⌉
−1 more

particles; the extra particles being uniformly randomly chosen and removed from
the particles in R. Then let each of the Bi

nl ·
⌈

B
Bi

nl

⌉
particles move randomly from

2

its current vertex to a child following the transition probabilities of the edges.

Claim 2.1 For every i ∈ {0, . . . , d}, Algorithm GWW either stops before stage i, or the number
of particles Bi at depth i ranges between B and 2B.

Proof: Assume that the algorithm reaches stage i. Then Bi−1
nl must be greater than zero and

Bi = Bi−1
nl ·

⌈
B

Bi−1
nl

⌉
≥ B. Inductively, assume that B ≤ Bi−1 ≤ 2B, implying that Bi−1

nl ≤ 2B.

If Bi−1
nl > B then Bi = Bi−1

nl ≤ 2B, otherwise if Bi−1
nl ≤ B then Bi = Bi−1

nl ·
⌈

B
Bi−1

nl

⌉
≤

Bi−1
nl ·

(
B

Bi−1
nl

+ 1
)
≤ 2B.

The following section develops the background for the analysis.

3 A Convenient Perspective

Algorithm GWW starts with B particles at level 0. At stage 1 all the B particles are at level 1
with B1

nl particles at the non-leaves and B1
l particles at the leaves. At this point the algorithm

makes k1 =
⌈

B
B1

nl

⌉
copies of these particles by adding

(⌈
B

B1
nl

⌉
− 1
)
·B1

nl extra particles from the
repository R. Equivalently, we may assume that the algorithm spawns k1 copies of the original
tree T at level 1 (as shown in Figure 1) and considers each group of B1

nl particles independently
for transition to level 2. Yet another perspective would be that the trees T1 = T, T2, · · · , Tk1

Figure 1: Spawning of trees

are all present from the start of the algorithm (each with B particles at root), and each of them
follows the particles of tree T1 in order to move their own particles from level 0 to level 1. Since
k1 can be at most B, we may assume that all the B trees T1, T2, . . . , TB are present from the
start of the algorithm (each with B particles at root) and all of them follow tree T1 till level 1,
wherefrom they all move their particles independently. At level 1 the algorithm considers only
k1 (T1, T2, . . . , Tk1) of these B trees. The dependency among these trees is depicted as a tree T
(see Figure 2),

Figure 2: Dependency tree T

At the end of stage 1 all the B trees move their particles independently to level 2 (as shown in
Figure 3).

3

Figure 3: End of stage 1 and start of stage 2

Figure 4: Dependency tree T till level 2

Therefore, number of particles at the non-leaves of level 2 at the start of stage 2 equals B2
nl =∑k1

1 Bi,2
nl . If B2

nl > 0 the algorithm makes k2 =
⌈

B
B2

nl

⌉
copies (Ti,1, Ti,2, . . . , Ti,k2) of each tree Ti

(1 ≤ i ≤ k1) and considers them independently for transition to level 3. Since k2 can be at most
B, we may assume that for each i, 1 ≤ i ≤ B, all the B trees (Ti,1, Ti,2, . . . , Ti,B) are present
from the start of the algorithm each starting with B particles and following the movements
of the particles of Ti till level 2. At stage 2 the algorithm considers only k2 of these B trees,
(Ti,1, Ti,2, . . . , Ti,k2) for each i, 1 ≤ i ≤ k1. As before, the dependency among the trees can be
depicted as a tree (see Figure 4).

Extending till stage d, we observe that there are precisely Bd nodes (each node representing a
tree) at depth d of the dependency tree T . A tree (or node) at level j of T follows its parent tree
(or node) for particle movements till level j, thereafter it moves its particles independently to
the subsequent levels. We can therefore assume that, to start with all the Bd trees are present,
each tree follows some other tree based on its dependency given by T till some level, wherefrom
it goes independent. Algorithm GWW considers some subset of these trees at each stage, like
k1 at stage 1, k1k2 at stage 2 and so on. Throughout the course of the algorithm, tree T1

moves its particles independently as if Algorithm 0 is running on T1. Although a tree T ′ follows
some other tree for particle movements, an observer who only sees T ′ merely finds Algorithm 0
executing on T ′.

4 Analysis of Algorithm GWW

Let T1, . . . , TBd be the Bd trees as discussed in the previous section. Given the (j − 1)-tuple
k̄ = (k1, k2, . . . , kj−1) one knows exactly which of the trees are considered by algorithm GWW
at the end of stage j−1. Let k =

∏j−1
l=1 kl. Without any loss in generality, assume that T1, . . . , Tk

are the trees considered by the algorithm at the end of stage j−1. Denote by Xj−1
i , the number

of particles at the non-leaves of tree Ti at level j − 1 and let Xj
g i be the number of particles at

the good non-leaves of tree Ti at level j. The number of particles at the good non-leaves of the

4

given tree at the start of stage j of algorithm GWW is given by Xj
g ,

Xj
g = Xj

g 1 + Xj
g 2 + . . . + Xj

g k (1)

For economy of notation, the symbol k̄ inside a probability or the conditional part of an expec-
tation expression will represent the event that k̄ is fixed at some specific vector.

Lemma 4.1 E[Xj
g | Ej , k̄] = k · E[Xj

g 1 | Ej , k̄].

Proof: From equation (1), by linearity of expectations it follows that,

E[Xj
g | Ej , k̄] =

k∑
t=1

E[Xj
g t | Ej , k̄]

Consider two trees Tt1 and Tt2 in the dependency tree T , 1 ≤ t1, t2 ≤ k, where Tt2 follows Tt1

till level l ≤ j − 1, thereafter they separate out. It is sufficient to observe that for all x ≥ 0,

Pr{Xj
g t1

= x | Ej , k̄} = Pr{Xj
g t2

= x | Ej , k̄}

In fact a similar argument also shows that,

E[Xj−1
1 + Xj−1

2 + . . . + Xj−1
k | Ej , k̄] = k · E[Xj−1

1 | Ej , k̄]. (2)

Let {1, . . . , B} be the B particles with which GWW starts. We may further assume that these
are the particles with which tree T1 starts executing Algorithm 0. S be the set of particles
arriving at the non-leaves of the (j − 1)-th level of T1, where |S| = Xj−1

1 .

Assuming that Ej has occurred, define the variable Z(Xj−1
1 , k̄) as,

Z(Xj−1
1 , k̄) = Pr{particle 1 reaches Sj

g | (1 ∈ S) ∧ (|S| = Xj−1
1) ∧ k̄} if Xj−1

1 > 0

=
p(Sj

g)
a(j)

else if Xj−1
1 = 0

Lemma 4.2 E[Z(Xj−1
1 , k̄) | Ej] = p(Sj

g)
a(j) and B ≤ E[kXj−1

1 | Ej] ≤ 2B.

Proof: As before, assume that Ej has occurred. Then,

E[Z(Xj−1
1 , k̄)] =

∑
k̄,x

Pr{k̄ ∧ (Xj−1
1 = x)} · Z(x, k̄)

=

∑
k̄,x>0

Pr{k̄ ∧ (Xj−1
1 = x)} · Z(x, k̄)

+ Pr{Xj−1
1 = 0} · p(Sj

g)
a(j)

=

∑
k̄,x>0

Pr{Xj−1
1 = x} · Pr{k̄ | (Xj−1

1 = x)} · Z(x, k̄)

+ Pr{Xj−1
1 = 0} · p(Sj

g)
a(j)

5

Note that, for any x > 0, Pr{k̄ | (Xj−1
1 = x)} = Pr{k̄ | (Xj−1

1 = x)∧ (1 ∈ S)}. This is because,

Pr{k̄ | (Xj−1
1 = x)} =

Pr{k̄ ∧ (Xj−1
1 = x)}

Pr{Xj−1
1 = x}

=

∑
Si:|Si|=x Pr{k̄ ∧ (S = Si)}∑

Si:|Si|=x Pr{S = Si}

=

(
B
x

)
· Pr{k̄ ∧ (S = S1)}(
B
x

)
· Pr{S = S1}

= Pr{k̄ | (S = S1)}

where S1 is some fixed set of x elements containing particle 1. The summation in the above
expression collapses as Pr{k̄ ∧ (S = Si)} (also Pr{S = Si}) are same for all Si with size x.
Similarly,

Pr{k̄ | (Xj−1
1 = x) ∧ (1 ∈ S)} =

Pr{k̄ ∧ (Xj−1
1 = x) ∧ (1 ∈ S)}

Pr{(Xj−1
1 = x) ∧ (1 ∈ S)}

=

∑
Si:(|Si|=x)∧(1∈Si)

Pr{k̄ ∧ (S = Si)}∑
Si:(|Si|=x)∧(1∈Si)

Pr{S = Si}

=

(
B

x−1

)
· Pr{k̄ ∧ (S = S1)}(

B
x−1

)
· Pr{S = S1}

= Pr{k̄ | (S = S1)}

Let z1 be a boolean variable that is 1 if and only if particle 1 reaches set Sj
g . Then the first part

of the expression for E[Z(Xj−1
1 , k̄)] simplifies as,∑

k̄,x>0

Pr{Xj−1
1 = x} · Pr{k̄ | (Xj−1

1 = x)} · Z(x, k̄)

=
∑

k̄,x>0

Pr{Xj−1
1 = x} · Pr{k̄ | (Xj−1

1 = x) ∧ (1 ∈ S)} · E[z1| (1 ∈ S) ∧ (Xj−1
1 = x) ∧ k̄]

=
∑
x>0

Pr{Xj−1
1 = x} ·

∑
k̄

Pr{k̄ | (Xj−1
1 = x) ∧ (1 ∈ S)} · E[z1 | (1 ∈ S) ∧ (Xj−1

1 = x) ∧ k̄]

=

∑
x>0

Pr{Xj−1
1 = x} · E[z1 | (1 ∈ S) ∧ (Xj−1

1 = x)]

Therefore, by revealing the fact that the universe is taken to be the event Ej the expression
becomes, ∑

x>0

Pr{Xj−1
1 = x | Ej} · E[z1 | (1 ∈ S) ∧ (Xj−1

1 = x) ∧ Ej]

=
∑
x>0

Pr{Xj−1
1 = x | Ej} · E[z1 | (1 ∈ S) ∧ (Xj−1

1 = x)] as (1 ∈ S) ∧ Ej = (1 ∈ S)

Now note that, for x > 0,

E[z1 | (1 ∈ S) ∧ (Xj−1
1 = x)]

= Pr{particles 1 reaches Sj
g | (1 ∈ S) ∧ (Xj−1

1 = x)}

=
p(Sj

g)
a(j)

6

because when taken over the whole universe, it is just Algorithm 0 executing on the B particles
of T1 which makes the transition probability of particle 1 independent of the value of Xj−1

1 .
Therefore,

E[Z(Xj−1
1 , k̄) | Ej] =

∑
x>0

Pr{Xj−1
1 = x | Ej} ·

p(Sj
g)

a(j)
+ Pr{Xj−1

1 = 0 | Ej} ·
p(Sj

g)
a(j)

=
p(Sj

g)
a(j)

The proof of the second statement is simple.

E[kXj−1
1] = E[E[kXj−1

1 |k̄]]

= E[k · E[Xj−1
1 |k̄]]

= E[E[Xj−1
1 + . . . + Xj−1

k | k̄]] , by equation (2)

The term Xj−1
1 + . . .+Xj−1

k is the total number of particles at level j−1, just before transition
to level j. From Claim 2.1, we know that this number is always between B and 2B .

Theorem 4.1 Assuming that Ej has occurred,

E[Xj
g] ≥ B · p(Sj

g)
a(j)

+ cov(Z(Xj−1
1 , k̄), kXj−1

1) and

E[Xj
g] ≤ 2B · p(Sj

g)
a(j)

+ cov(Z(Xj−1
1 , k̄), kXj−1

1)

Proof: Assume that our universe of events is the set of all events where Ej has occurred and
k̄ is fixed at some particular vector (k1, . . . , kj−1). Let S = {e1, e2, . . . , e|S|} be the subset of
particles from {1, . . . , B} arriving at the non-leaves of level j−1 of T1, where |S| = Xj−1

1 . Then,

Xj
g 1 = ze1 + ze2 + . . . + ze|S| where
zei = 1 if ei makes a transition to a good node at level j

= 0 otherwise

Therefore,

E[Xj
g 1|S] =

∑
ek∈S

E[zek
|S]

= E[ze1 |S] · |S| , since all the particles are identical.

The above expression makes sense only if we define E[ze1 |S] for |S| = 0. But we have full
flexibility in doing so, as E[Xj

g 1|S] = E[ze1 |S] · |S| = 0 if |S| = 0 irrespective of how E[ze1 |S]
is defined. So, we make a slight abuse of notation and for any e, 1 ≤ e ≤ B we define

E[ze|S] = p(Sj
g)

a(j) if |S| = 0. Therefore,

E[Xj
g 1] = E[E[Xj

g 1|S]]

=
∑
Si

Pr{S = Si} · E[ze1(i)|Si] · |Si| ,where e1(i) ∈ Si if |Si| 6= 0, otherwise e1(i) , 1

7

Note that, even in this restricted universe of Ej and k̄, E[ze1(i)|Si]’s are the same for all sets

Si’s with same size. By defining E[z1 | (1 ∈ S) ∧ (Xj−1
1 = x)] as p(Sj

g)
a(j) for x = 0 we get,

E[Xj
g 1] =

∑
x≥0

Pr{Xj−1
1 = x} · E[z1 | (1 ∈ S) ∧ (Xj−1

1 = x)] · x

=
∑
x≥0

Pr{Xj−1
1 = x} · Z(x, k̄) · x

= E[Z(Xj−1
1 , k̄) ·Xj−1

1] , since the universe fixes k̄, it is treated as a constant.

From Lemma 4.1 we get,

E[Xj
g] = k · E[Xj

g 1]

= E[Z(Xj−1
1 , k̄) · kXj−1

1]

⇒ E[Xj
g | k̄] = E[Z(Xj−1

1 , k̄) · kXj−1
1 | k̄] , revealing the event that k̄ is fixed

⇒ E[Xj
g] = E[Z(Xj−1

1 , k̄) · kXj−1
1] , taking expectations on either side

= E[Z(Xj−1
1 , k̄)] · E[kXj−1

1] + cov(Z(Xj−1
1 , k̄), kXj−1

1)

Therefore, using Lemma 4.2 we get,

E[Xj
g] ≥ B · p(Sj

g)
a(j)

+ cov(Z(Xj−1
1 , k̄), kXj−1

1) and

E[Xj
g] ≤ 2B · p(Sj

g)
a(j)

+ cov(Z(Xj−1
1 , k̄), kXj−1

1)

We now show how Theorem 4.1 can be used to find an instance where increasing the number
of particles decreases the success probability of GWW drastically.

The term E[Xj
g |Ej] is precisely decided by the two terms B · p(Sj

g)
a(j) and cov(Z(Xj−1

1 , k̄), kXj−1
1).

Given two random variables X and Y , their covariance cov(X,Y) gives a measure of how
parameter X tend to differ from its expectation as parameter Y rises above its expectation.
The magnitude of the covariance roughly measures the extent to which X differs from its

expectation as Y goes above its expectation. As B →∞, Z(Xj−1
1 , k̄)→ E[Z(Xj−1

1 , k̄)] = p(Sj
g)

a(j)

and kXj−1
1 → E[kXj−1

1], which is between B and 2B, and the term cov(Z(Xj−1
1 , k̄), kXj−1

1)

looses its effect on B · p(Sj
g)

a(j) . The covariance can only possibly be significant for relatively smaller

values of B. Thus we can hope to find the desired example tree by making the term p(Sj
g)

a(j)

sufficiently small and also ensuring that the term cov(Z(Xj−1
1 , k̄), kXj−1

1) is largely positive for
smaller values of B. To get a better handle on the covariance term we need to understand the
effect of kXj−1

1 on Z(Xj−1
1 , k̄).

The parameter Z(Xj−1
1 , k̄) is fixed at p(Sj

g)
a(j) for Xj−1

1 = 0. Therefore, in order to find the

deviation of Z(Xj−1
1 , k̄) from its expectation p(Sj

g)
a(j) we focus on the case when Xj−1

1 > 0. Since

E[kXj−1
1] is always between B and 2B a possible way to understand the effect of kXj−1

1 on
Z(Xj−1

1 , k̄) is to study the effect of k on the latter parameter. This is because, for Xj−1
1 > 0,

8

the parameter kXj−1
1 generally exceeds 2B with rise in k. When k = 1, Xj−1

1 = B and
kXj−1

1 = B = poly(d), whereas when k is exponentially large and Xj−1
1 > 0 then kXj−1

1 is
also exponentially large. Therefore, kXj−1

1 exceeds its expectation usually for a large enough
value of k. The value of k increases as more leaves are encountered by the algorithm. Hence
we can hope to make the covariance term positive if there is more chance of reaching a good
node in subtrees with large number of leaves. Indeed this understanding leads us to the desired
example.

Observation 4.1 There are trees for which raising the number of starting particles from a
polynomial to exponential in depth d lowers the success probability of GWW from a constant to
an exponentially small number.

Proof: Consider the example tree in Figure 5. Let r(·) be some fixed polynomial. C is a

Figure 5: Condition C is not necessary for GWW to succeed

complete binary tree of depth d− 2. Consider level i = d− 1,

p(Si
g)

a(i)
<

r(d)
2(r(d)− 1) + 2d−2

≤ r(d)
2d−2

(3)

Suppose that GWW starts with B = r(d) particles. Probability that none of the particles reach

vertex v at level 1 is =
(

1− 1
r(d)

)r(d)
≥ 1

e ·
(

1− 1
r(d)

)
. Moreover, if none of the particles reach

vertex v then with probability at least
(

1− d ·
(

3
4

)r(d)
)

GWW succeeds. Therefore, putting
the probabilities together we get,

Pr{GWW succeeds with r(d) particles} ≥ 1
e
·

(
1− d ·

(
3
4

)r(d)
)
·
(

1− 1
r(d)

)
≥ 1

4e
.

We now show that with B = d · 2
d
4 · r(d) particles GWW succeeds with probability at most

d

2
d
8−1

.

Suppose that the algorithm starts with B = c·r(d), where c ≥ d will be fixed later. Applying
Chernoff bound we get that, after transition from level 0 to level 1 the probability that number
of particles in vertex v is less that c

2 is at most e−
d
8 . At the end of stage i, just before transition

to level i + 1, let there be ni particles at level i within tree C and b particles among other non
leaves, where b is between c · r(d)− ni and 2c · r(d)− ni. Assume that c · r(d)− ni ≥ d. Again,

9

from Chernoff bound it follows that the probability that less than b
2 particles make transition

to leaves at level i + 1 is at most e−
d
6 . Therefore with probability at least 1− e−

d
6 ,

ni+1 ≥
B · ni

ni + 1
2 · (2c · r(d)− ni)

≥ 2c · r(d) · ni

c · r(d) + ni
(4)

If ni = ki · c · r(d) then from (4) we get,

ki+1 ≥
2ki

ki + 1

Since k1 ≥ 1
2r(d) with probability at least 1− e−

d
8 , using this as the base case we get,

ki ≥
2i−1

2i−1 + 2r(d)− 1
with probability at least 1− i · e−

d
8 .

Therefore, at the ith level number of particles among non-leaves outside C is at most,

(2r(d)− 1) · 2c · r(d)
2i−1 + 2r(d)− 1

with probability at least 1− i · e−
d
8 .

Choose c = d · 2
d
4 . Within the first d

2 levels the number of particles outside C falls below d with
probability at least 1 − 1

2 · d · e
− d

8 . Suppose this is the case and B′ be the number of particles
among the non leaves at level d

2 . If B′ − d ≥ B then in the last d
2 levels there is no addition

of new particles and the d particles outside C reach the last level with probability at most d
2d .

Suppose that B′ − d < B and let B′ − B = d′ < d. Within the next d
4 levels d′ particles are

lost at leaves with probability at least 1− d · 2−
d
2 . Once the number of particles drops below B,

the factor by which each particle is scaled can be at most 2, as B − d ≥ B
2 . Moreover, for the

same reason it is also the last time new particles are added. Therefore, with high probability
a maximum of 2d particles are present outside C at the 3d

4 -th level and no new particles are
subsequently added. These particles fail to reach the last level with probability at least 1− d

2
d
2−1

.

Therefore, with B = d · 2
d
4 · r(d) particles GWW succeeds with probability at most d

2
d
8−1

.

References

[AV94] David Aldous and Umesh V. Vazirani. “Go With the Winners” Algorithms. IEEE
35th Annual Symposium on Foundations of Computer Science, pages 492–501, 1994.

[DI96] Tassos Dimitriou and Russell Impagliazzo. Towards an Analysis of Local Optimiza-
tion Algorithms. STOC, pages 304–313, 1996.

[DI98] Tassos Dimitriou and Russell Impagliazzo. Go with the Winners for Graph Bisection.
SODA, pages 510–520, 1998.

[Pei01] Marcus Peinado. Go with the Winners Algorithms for Cliques in Random Graphs.
In ISAAC, pages 525–536, 2001.

[PL97a] Marcus Peinado and Thomas Lengauer. “Go with the winners” Generators with
Applications to Molecular Modeling. In RANDOM, pages 135–149, 1997.

10

[PL97b] Marcus Peinado and Thomas Lengauer. Parallel “Go with the Winners” Algorithms
in the LogP Model. In IPPS, pages 656–664, 1997.

[PL03] Marcus Peinado and Thomas Lengauer. Parallel “go with the winners” algorithms
in distributed memory models. J. Parallel Distrib. Comput., 63(9):801–814, 2003.

[SKAS05] László Szirmay-Kalos, György Antal, and Mateu Sbert. Go with the Winners Strat-
egy in Path Tracing. In WSCG (Journal Papers), pages 49–56, 2005.

11

