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Abstract

We consider the problem of finding two parallel rectangles, in arbitrary orientation,
covering a given set of n points in a plane, such that the area of the larger rectangle
is minimized. We give a simple algorithm that solves the problem in O(n3) time
using O(n2) space. Without altering the complexity, the algorithm can be modified
to solve another optimization problem, namely, minimize the sum of the areas of
two arbitrarily oriented parallel rectangles covering a given set of points in a plane.
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1 Introduction

Two rectangles are said to be parallel if each side of a rectangle is parallel to a
side of the other rectangle. In this paper we consider the following problem P:
Given a set S of n points in a plane, locate two parallel rectangles D1 and D2

that cover S in such a way that the area of the larger rectangle is minimized,
among all possible covers by two parallel rectangles. Figure 1 depicts a possible
location of two parallel rectangles covering point set S in a plane.

Bespamyatnikh et al. (1997) (1) considered a similar problem in d-dimensional
space, but using axis-parallel boxes to cover the points, and obtained a time
complexity of O(n log n + nd−1). In 1996, Jaromczyk et al. (2) proposed an

0 A preliminary version of this paper appeared in the Proceedings of the Interna-
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Fig. 1. Covering points by two parallel rectangles.

O(n2) time algorithm that finds optimal covering of S using two squares with
mutually parallel sides and optimizes the sizes of the squares with respect to
their side lengths. This was followed by a work by Katz, Kedem and Segal (3)
in 1999 that solved the problem of finding two constrained parallel squares,
covering S, so as to minimize the size of the larger square. The running time of
their algorithm is O(n2 log4 n) and uses O(n2) space. In the same paper, they
also presented an O(n3 log2 n) time algorithm using O(n2) space to locate the
optimum squares, where each square is allowed to rotate independently.

In this paper, we propose an efficient algorithm that solves problem P in
O(n3) time using O(n2) space. The result compares well with (2) and (3),
as a rectangle has an added degree of freedom compared to that of a square.
Problem P finds application in VLSI physical design for accommodating spec-
ified locations like hot spots, power pins into two parallel rectangles. It also
has application in the field of geographical information systems for map data
modeling, map overlay, map labeling etc. Moreover, there are applications in
image processing and facility location problems.

2 Preliminaries

Let S = {p1, p2, . . . , pn} be the set of n points. x(p) and y(p) represent the x
and y coordinates of point p, respectively. XY (α, p) is the coordinate system
obtained by making a counter-clockwise rotation of the original axis by an
angle α ∈ [0, π/2) around origin O and by shifting the origin from O to point
p using linear translation. We denote XY (α,O) by XY (α). For α ∈ [0, π/2),
℘(α) is the subset of S with p ∈ ℘(α) if and only if there exists at least one
empty closed quadrant of the system XY (α, p) (see figure 2). By empty closed
quadrant we mean that no point is present in the quadrant except p.

Let D1 and D2 be two optimal parallel rectangles covering sets of points
S1 and S2, respectively, where S1 ∪ S2 = S. If Area(D1) ≥ Area(D2) then
D1 and D2 are the smallest axis-aligned rectangles covering S1 and S2\S1

respectively, with respect to some system XY (α). Let D(α) be the smallest
axis-aligned rectangle in XY (α) that encloses all points of S. T (α) is an
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Fig. 2. Points in ℘(0).

ordered set containing the top, left, bottom and right boundary points of
D(α) in that order. Call the set T (α) the extreme points of S in the system
XY (α). XY is the coordinate system XY (α) at α = 0. For simplicity, assume
that no two points in S have the same x or y coordinate in XY . Also assume
that no three points are collinear and no three points form an angle of π

2
.

These cases can be handled with minor modifications to our algorithm.

3 Algorithm for axis-parallel rectangles

In this section, we review the case where the optimum rectangles D1 and D2

are parallel to the axes of XY (also known as isothetic rectangles).

3.1 The rectangles do not overlap

In this case, there exists a vertical or a horizontal line that partitions the
set S into two subsets S1 and S2. If two sorted sequences of points, χ and ψ
(ordered with respect to the x and y coordinates), are available then we can
use a sweep line algorithm to locate the optimal rectangles in O(n) time.

3.2 The rectangles may overlap

Assume that all the points on a boundary of one of the rectangle (say, D1)
are not contained within the other rectangle (say, D2).

Lemma 3.1 If the rectangles D1 and D2 overlap, then each side of the rect-
angles must contain a point in ℘(0). Moreover, if the sorted sequences χ and
ψ are available then the set ℘(0) can be computed in O(n) time.

Proof: The first statement follows from the optimal nature of D1 and D2. Set
℘(0) can be computed in O(n) time using a sweep line algorithm.

Thus we can ignore all the points in S except the elements in ℘(0). From
Lemma 3.1 and the results by Bespamyatnikh and Segal (1) we conclude,

Theorem 3.1 Given a set S of n points in a plane and the sorted sequences
χ and ψ, the problem of locating two axis-parallel rectangles to cover S, so as
to minimize the area of the larger rectangle, can be solved in O(n) time.
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4 Covering by orientation independent parallel rectangles

Consider the case where the parallel rectangles may be placed in any orienta-
tion and form an angle in the range [0, 2π] with x-axis in XY . With the intent
of pruning our search space, we explore some characterizations of the optimal
rectangles.

Let CH(S) be the convex hull of point set S and A(S) be the set of angles
formed by the edges of CH(S) with the x-axis. In case of covering points
with a single rectangle, Freeman and Shapira (5) suggested an interesting
characterization.

Result 1 (5) Let D(α) be the minimum area rectangle enclosing points of S
with one of its sides making an angle α ∈ [0, π

2
) with the x axis of the XY

coordinate system. If the area of D(α) achieves a local optimal value then
either α or α + π

2
coincide with one of the elements in A(S).

Lemma 4.1 Let one of the sides of rectangles D1 and D2 be inclined at angle
α to the x-axis in XY plane. Then at least one of the following two conditions
hold:

(i) there exists at least a pair of points p, q in S such that x(p) = x(q) or
y(p) = y(q) with respect to the coordinate system XY (α);

(ii) Area(D1) = Area(D2).

Proof: Suppose that, none of the conditions hold. Let S1 and S2 be the subsets
of points in S that are covered by D1 and D2 with Area(D1) > Area(D2).
Since condition (i) is not satisfied, there exist infinitesimal rotations of the
two rectangles in both clockwise and counter-clockwise directions such that
the rectangles still cover the same subsets S1 and S2, while their boundary
points remain unaltered. From result 1 it follows that, there exists a small
angle of rotation δα of the system XY (α) to XY (α + δα) such that the area
of rectangle D1 is reduced while D1 remains the larger of the two rectangles.
This is contrary to the assumption that D1 and D2 forms an optimal pair of
rectangles.

The coordinate system XY (α), for α (∈ [0, 2π]), is called separable if no two
points p, q in S have same x or y coordinates in XY (α). An open interval
(a, b), within the range [0, 2π], is called a separable interval if for any α ∈ (a, b),
the system XY (α) is separable (see figure 3).

Let χ(α) and ψ(α) be two sequences of points of S sorted with respect to their
x and y-coordinates, respectively, in the coordinate system XY (α).

Observation 1 The sequences χ(α) and ψ(α) is the same for any α ∈ ∆,
where ∆ is a separable interval.
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Fig. 3. The interval XOX1 to XOX2 is a separable interval.

Let D(α, S ′) be the smallest axis aligned rectangle in XY (α) enclosing the
points of a set S ′ ⊆ S. Points on the boundary of the rectangle D(α, S ′) is
termed as the extreme points of D(α, S ′).

Observation 2 Consider any separable interval ∆ and a set S ′ ⊆ S. Rectan-
gles D(α, S ′), for all α ∈ ∆, have the same set of extreme points.

S1 and S2 be subsets of points in S with S1 ∪ S2 = S (S1 and S2 need
not be disjoint). Λ1 and Λ2 be the extreme points of D(α, S1) and D(α, S2),
respectively, for α ∈ ∆.

Lemma 4.2 Given a separable interval ∆, and the sets Λ1, Λ2, if there exist
an angle α ∈ ∆ such that Area(D(α, S1)) = Area(D(α, S2)) then α can be
computed in constant time. There can be at most two different solutions for α
in any separable interval ∆.

Proof: Let ∆ : (φi, φf ) be a separable interval. The areas of rectangles D(α, S1)
and D(α, S2) can be expressed as a trigonometric function of α. Equating
Area(D(α, S1)) and Area(D(α, S2)) we get an equation of the form, F (α) =
C, where F (α) is a sinusoidal function and C is a constant. As α varies in the
range [0, π

2
], the equation F (α) = C can have at most two solutions.

Suppose Θ be the set of angles in [0, π] formed by the lines, joining every
pairs of points in S, with the x-axis of the XY coordinate system. Note that,
for any θ ∈ Θ, 0 ≤ θ ≤ π/2, the systems XY (θ) and XY (π/2 + θ) are not
separable, and for π/2 ≤ θ ≤ π, the systems XY (θ) and XY (θ−π/2) are not
separable. Observe that, for a non-separable coordinate system XY (α) with
0 ≤ α ≤ π/2, either α or α + π/2 must be an element of Θ. Consider the set
Φ = {φ : φ ∈ [0, π/2], φ ∈ Θ or (φ+π/2) ∈ Θ}. The cardinality of Φ is bounded

by
(
n
2

)
. The elements, φ1, φ2, . . . , φk of set Φ be in increasing order of their

values and this ordered sequence is referred by Φ itself. As no two points have
same x or y coordinates in XY , φ1 > 0. We introduce a new element φ0 = 0
and therefore, the set of intervals ∆ = {∆1,∆2, . . . ,∆k} where ∆i = (φi−1, φi)
for i = 1, 2, . . . , k are separable intervals in [0, π/2]. We introduce another
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separable interval ∆k+1 = (φk, π/2] and hence ∆ = {∆1,∆2, . . . ,∆k,∆k+1} is
the exhaustive set of separable intervals in [0, π/2]. Suppose, points pi and qi
of S have the same x or y-coordinate values in the coordinate system XY (φi)
(φi ∈ Φ). Given the sequences χ(φi) and ψ(φi), if the indices of pi and qi in
these sequences are available then for any α in ∆i or ∆i+1 the sequences χ(α)
and ψ(α) can be evaluated in constant time by making constant number of
interchanges in χ(φi) and ψ(φi).

4.1 The rectangles do not overlap

We state the algorithm below.

Optimal disjoint rectangles(S)

(1) Compute Θ and enumerate the set Φ. With each element φi ∈ Φ associate
the points (pi, qi) that have the same x or y coordinates in XY (φi).

(2) Sort the elements of Φ.
(3) Generate χ(φ0) and ψ(φ0) by sorting the points in S in the system XY .
(4) for i = 1 to k + 1 do

(a) For any α ∈ ∆i, generate χ(α) and ψ(α) from χ(φi−1) and ψ(φi−1),
respectively. Use the sweep line technique described in Section 3.1 and
lemma 4.2 to find two optimum, parallel, non-overlapping rectangles
in the range [φi−1, φi).

(b) Store the optimal pair of rectangles in a list L.
endfor

(5) Traverse the list L to find the optimum placement.

4.1.1 Analysis

Correctness of the algorithm follows immediately from Lemma 4.1. The set Φ
is generated by all lines joining pairs of points of S and by sorting the elements
of Φ, sequence Φ is generated in O(n2 log n) time. The sequences χ(φ0) and
ψ(φ0) are obtained in O(n log n) time. At each iteration the sequences χ(α)
and ψ(α) are constructed in O(1) time by constant number of interchanges
in the previous sequences. We can locate the optimum pair of parallel non-
overlapping rectangles in the system XY (φi) in O(n) time (using sweep line
technique). By lemma 4.2, we can also find the optimum placement of a given
pair of parallel non-overlapping rectangles, in the interval ∆i, in O(1) time. It
follows that,

Theorem 4.1 The problem of finding two optimal, parallel, non-overlapping
rectangles enclosing S, can be solved in O(n3) time.

4.2 The rectangles may overlap

In this section, we present an efficient algorithm to locate two parallel, orien-
tation independent, optimal rectangles, with nonempty intersection region.
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From the discussion in Section 3.2 it follows that, only the points in ℘(α)
decide the location of the optimum pair of parallel rectangles, with nonempty
intersection region, in the system XY (α). It is simple to observe that the set
℘(α) is identical for all α ∈ ∆i.

Let B1 and B2 be the ordered sets of boundary points (ordered as top, left,
bottom and right boundary points) that define the two isothetic overlapping
rectangles in the system XY (α) such that, together they cover the set S and
none of the boundary points of one rectangle is covered by the other rectangle.
The tuple (B1, B2) is called a placement in the system XY (α). The optimum
pair of rectangles define a placement in some coordinate system.

Observation 3 There are O(n2) distinct placements in a system XY (α).

Observation 4 The placements in XY (α) are the same for all α ∈ ∆i.

Recall that, pi and qi are the points having same x or y-coordinates in XY (φi).

Observation 5 A placement (B1, B2) in a separable interval ∆i is also a
placement in the interval ∆i+1 (and vice versa), whenever none of the points
in B1 ∪B2 is either pi or qi.

Recall (from Section 2) the definition of extreme points of S in XY (α) as
the ordered set of boundary points T (α) of the smallest axis-aligned rectangle
D(α) enclosing S. Surely, the extreme points of S remain unaltered for all
α ∈ ∆i. Let Ti = T (α) be the extreme points of S in XY (α), where α ∈ ∆i,
1 ≤ i ≤ k + 1.

Lemma 4.3 Let p be a point in ℘(α), α ∈ ∆i, such that p 6∈ Ti. Then, all
placements (B1, B2) in the interval ∆i, with p ∈ B1 ∪ B2, can be identified in
O(n) time, provided the sequences χ(α) and ψ(α) are given.

Proof: As the two rectangles overlap, a pair of sides of each of the two rect-
angles D(α,B1) and D(α,B2) are fixed by the four extreme points of S in
XY (α). Using the sequences χ(α) and ψ(α), order the set ℘(α) in such a way
that, by fixing one extreme point of one of the rectangles at p one can use a
sweep line algorithm to position the only other remaining extreme point of the
rectangle and construct all the placements, with p ∈ B1 ∪ B2, in O(n) time.

Lemma 4.4 If Ti = Ti+1, then the number of placements in the interval ∆i+1

that differ from the placements in the interval ∆i is at most O(n) and vice
versa. Moreover, all these differing placements can be identified in O(n) time.

Proof: Although there are O(n2) distinct placements in any given system
XY (α), it is evident that any placement (B1, B2) in the interval ∆i+1 that
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differs from all the placements in ∆i must have pi or qi belonging to B1 ∪ B2

(Observation 5). Assume without any loss in generality that all the four points
of Ti are distinct. If none of pi and qi belongs to Ti then there are only O(n)
distinct placements of the form (B1, B2) with pi or qi belonging to B1 ∪ B2.
If pi ∈ Ti and qi 6∈ Ti then each placement (B1, B2) in the interval ∆i+1 that
differs from all the placements in ∆i must have qi ∈ B1 ∪B2. All the differing
placements in the previous two cases can be identified in O(n) time (lemma
4.3). The only other case is when both pi and qi belong to Ti. Since Ti = Ti+1,
either pi, qi are the topmost and bottommost points of D(α) or the leftmost
and rightmost points of D(α). Assume without any loss of generality that
pi, qi are the topmost and bottommost points of D(α), respectively. Then, the
placements (B1, B2) that differ between the intervals ∆i+1 and ∆i are exactly
those where at least one of pi, qi is either the left or right extreme point of
the rectangle formed by B1 or B2. By an argument similar in spirit to that of
lemma 4.3, it can be shown that there are only O(n) such placements all of
which can be identified in O(n) time.

Theorem 4.2 There is a total of O(n3) distinct placements in the interval
[0, π

2
], all of which can be identified in O(n3) time.

Proof: To start with, there are O(n2) distinct placements in the interval ∆1.
If Ti = Ti+1, then in the separable interval ∆i+1 an additional of O(n) new
placements are introduced (lemma 4.4). The set Ti may differ from Ti+1 for
a maximum of h times, where h is the number of edges of CH(S). Thus, for
at most h times O(n2) new placements are introduced (observation 3). As
the total number of separable interval is O(n2), the total number of distinct
placements is bounded by (O(n2)− h) ·O(n) + h ·O(n2) = O(n3).

An instance can be easily generated where the number of distinct placements
in the interval [0, π

2
] is Ω(n3). We are now ready to describe the algorithm for

locating an optimum pair of parallel overlapping rectangles.

4.2.1 The Algorithm

Simple arrays and lists are sufficient to construct our data structures. An
array M stores the set of points in S. A point in M (say p) that is in ℘(α) for
some α in [0, π

2
], maintains a list structure namely, placement list that keeps

all placements of the form (B1, B2) such that p ∈ B1 ∪ B2. Each placement
C = (B1, B2) in a placement list associates with it an interval (βs, βf ) such that
for all β ∈ (βs, βf ), (B1, B2) is a placement in XY (β). We use the variables
C.start and C.finish to indicate βs and βf , respectively.

Optimal overlapping rectangles(S)

(1) Compute Θ and generate the sequences Φ, χ(φ0) and ψ(φ0) as in Steps
1, 2 and 3 of the algorithm Optimal disjoint rectangles.
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(2) Initialize the arrayM and form all the placement lists with the placements
in XY . For each placement C, initialize C.start = 0.

(3) Find the location of the pair of optimum axis-aligned rectangles with
nonempty region of intersection in the system XY . Store this optimum
location along with the area of the larger rectangle in a variable O.

(4) for i = 1 to k do
(a) Consider coordinate system XY (α) for any α ∈ ∆i+1. Let pi and qi

be the points with equal x or y-coordinates in the system XY (φi).
Generate χ(α) and ψ(α) from the previous sequences χ(γ) and ψ(γ),
where γ ∈ ∆i, and form the set ℘(α).

(b) if Ti = Ti+1 then
If pi, qi 6∈ Ti, delete all the placements from the placement lists
of points pi, qi and form the placement lists of pi and qi, anew,
using ℘(α), α ∈ ∆i+1. Else if, pi ∈ Ti, qi 6∈ Ti, delete all the
placements from the placement list of point qi and form the
placement list, anew. Else, if pi, qi ∈ Ti, deletion and insertion
of the placement lists of pi and qi are handled in a similar way
based on the arguments given in the proof of lemma 4.4.

else
Delete all the placements from all the placement lists. Form all
the placement lists, anew, using the set ℘(α), α ∈ ∆i+1.

endif
(c) For each deleted placement C = (B1, B2), assign C.finish = φi. Solve

for Area(D(β,B1)) = Area(D(β,B2)) in the range β ∈ (C.start,
C.finish), and find the areas of the rectangles D(β,B1) and D(β,B2)
at β = C.start and β = C.finish. Update the optimum location in O
by comparing with these locations.

(d) For each newly formed placement C, assign C.start = φi.
(5) Delete all the placements from all the placement lists. For each deleted

placement C = (B1, B2), assign C.finish = φi and solve forArea(D(β,B1))
= Area(D(β,B2)) in β ∈ (C.start, C.finish). Also find the locations of
the placement C in the systems XY (C.start) and XY (C.finish). Update
the optimum location in O, accordingly.

4.2.2 Correctness

The algorithm systematically checks all the O(n3) distinct placements defined
in the interval [0, π

2
]. The correctness of the algorithm follows from Observation

5, Lemma 4.4 and Theorem 4.2.

4.2.3 Complexity

If Ti = Ti+1, then at each iteration of the for loop at step 4, O(n) new place-
ments are added and O(n) placements are deleted. The processing of each
added or deleted placement takes O(1) time. If h is the number of edges of
CH(S) then for only h iterations of the loop O(n2) placements are added

9



or deleted. Therefore, time complexity of the algorithm is (
(
n
2

)
− h)O(n) +

hO(n2) = O(n3). Moreover, from Observation 3 we conclude that the space
complexity of the algorithm is O(n2).

Theorem 4.3 The problem of locating two parallel rectangles covering a given
set of points S in a plane, such that the area of the larger rectangle is mini-
mized, can be solved in O(n3) time using O(n2) space.

5 Conclusion

Our algorithm provides a simple way to search all the O(n3) distinct place-
ments in the interval [0, π

2
] in O(n3) time. Without altering the complex-

ity, this technique may be used to solve another related problem of covering:
finding a cover by two parallel rectangles such that the sum of the areas
of the rectangles is minimized. In this case, the only changes in the algo-
rithm are at Step 4(c) and Step 5, where we minimize the function A(β) =
Area(D(β,B1)) +Area(D(β,B2) by equating the derivative of A(β) with re-
spect to β to zero in the interval β ∈ (C.start, C.finish). We conclude by
suggesting that, it will be interesting to inspect the complexities of these op-
timization problems when the rectangles need not be parallel, i.e. when they
are allowed to move freely, independent of one another.

References

[1] Sergei Bespamyatnikh and Michael Segal, Covering a set of points by
two axis-parallel boxes, Information Processing Letters, vol. 75, pp. 95-100,
2000.

[2] J.W Jaromczyk and M. Kowaluk, Orientation independent covering of
point sets in R2 with pairs of rectangles or optimal squares, European
Workshop on Comp. Geometry, pp. 54-61, 1996.

[3] M. Katz and K. Kedem and M. Segal, Discrete rectilinear 2-center prob-
lems, Computational Geometry: Theory and Applications, vol. 15, pp. 203-
214, 2000.

[4] A. Glozman and K. Kedem and G. Shpitalnik, On some geometric selec-
tion and optimization problems via sorted matrices, Computational Geom-
etry: Theory and Applications, vol. 11, pp. 17-28, 1998.

[5] H. Freeman and R. Shapira, Determining the Minimum-Area Enclosing
Rectangle for an Arbitrary Closed Curve, Communications of the ACM,
vol. 18, pp. 409-413, 1975.

[6] M. Hoffmann, Covering Polygons with Few Rectangles, 17th European
Workshop on Computational Geometry, Berlin, pp. 39-42, 2001.

10


	Introduction
	Preliminaries
	Algorithm for axis-parallel rectangles
	The rectangles do not overlap
	The rectangles may overlap

	Covering by orientation independent parallel rectangles
	The rectangles do not overlap
	The rectangles may overlap

	Conclusion

