Multichannel Variable-Size Convolution for Sentence Classification

- WenPeng Yin
- Hinrich Schutze

K.Vinay Sameer Raja IIT Kanpur

INTRODUCTION

- Enhance word vector representations by combining various word embedding methods trained on different corpus
- Extract features of multi granular phrases using variable filter size CNN.
- CNN's were employed for extracting features over phrases but the size of filter is a hyperparameter in such models
- Mutual learning and Pre training for enhancing MVCNN.

ARCHITECTURE

Multi-Channel Input :

- Input layer is a 3 dimensional array of size c×d×s where s - sentence length d - word embedding dimension, c - no.of embedding versions.
- In practice while using mini batch, sentences are padded to same length by using random initialization for unknown words in corresponding versions.

Convolution Layer :

- The computations involved in this layer are same as those in normal CNN's but with additional features obtained due to variable filter sizes.
- Mathematical Formulation :
 - Denoting feature map in ith layer by F_i and assume there are n maps in i-1 layer. Let I be the size of filter and let weights be in a matrix V_{i,I}^{j,k} then

$$F_{i,l}^{j} = \sum_{k} V_{i,l}^{j,k} * F_{i-1}^{k}$$

* is the convolution operator

Pooling Layer :

- Normal k-max pooling involves storing k maximum values from a moving window.
- Dynamic k-max pooling has the k value changing for each layer.
- The choice of k value for a feature map in layer i is given by

 $k_i = max (k_{top}, \Gamma (L-i) * s / L]$

where $i \in \{1, ..., L\}$ is the order of convolution layer from bottom to top

L - total number of layers

 \mathbf{k}_{top} - a constant determined empirically which is the k value used in top layer

Hidden Layer :

 On the top of final k-max pooling a fully connected layer is stacked to learn sentence representation of required dimension d

Logistic Regression Layer :

• The outputs of hidden layer are forwarded to logistic regression layer for classification

MODEL ENHANCEMENTS :

Mutual Learning of Embedded versions :

- As different embedding versions are trained in different corpuses, there may be some words which don't have embedding across all versions.
- . Let V_1, V_2, \dots, V_c are vocabularies of c embedding versions. $V^* = \bigcup_{i=1}^{-c} V_i$ be the total vocabulary of our final embedding $V_i^- = V^* \setminus V_i^-$ is the set of word which have no embedding in $V_i^ V_{ij}^- = \text{overlapping vocabulary between i}^{\text{th}}$ and j^{th} versions. We project (or learn) embeddings from i}^{\text{th}} to j^{th} version by $w'_j = f_{ij}(w_i)$

- Squared error between w_i and w'_i is the training loss to minimize
- Element-wise average of $f_{1i}(w_1)$, $f_{2i}(w_2)$, . . ., $f_{ki}(w_k)$ is treated as the representation of w in V.
- A total of c(c-1) /2 number of projections are calculated for finding embeddings of every word across all versions.

Pre- Training

•

- In Pre-training the "sentence representation" is used to predict the component words ("on" in the figure) in the sentence (instead of predicting the sentence label Y/N as in supervised learning)
 - Given sentence representation $s \in R^d$ and initialized representations of 2t context words (t left words and t right words): w_i^{-t} , ..., w_i^{-1} , w_i^{+1} , ..., w_i^{+t} ; $w_i \in R^d$, we average the total 2t + 1 vectors element wise
- Noise-contrastive estimation (NCE) is used to find true middle word from the above resulting vector which is predicted representation.

- . In pre-training initializations are needed for
 - Each word in sentence in multi-channel input layer (multichannel initialization)
 - 2. Each context word as input to average layer (random initialization)
 - 3. Each target word as the output of NCE layer (random initialization)
- During pre-training, the model parameters will be updated in such a way that they extract better sentence representations. These model parameters are fine tuned in supervised tasks.

RESULTS :

	Model	Binary	Fine-grained	Senti140	Subj
1	RAE (Socher et al., 2011b)	82.4	43.2	-	-
2	MV-RNN (Socher et al., 2012)	82.9	44.4	-	-
3	RNTN (Socher et al., 2013)	85.4	45.7	-	-
4	DCNN (Kalchbrenner et al., 2014)	86.8	48.5	87.4	-
5	Paragraph-Vec (Le and Mikolov, 2014)	87.7	48.7	-	-
baselines 6	CNN-rand (Kim, 2014)	82.7	45.0	-	89.6
7	CNN-static (Kim, 2014)	86.8	45.5	-	93.0
8	CNN-non-static (Kim, 2014)	87.2	48.0	-	93.4
9	CNN-multichannel (Kim, 2014)	88.1	47.4	-	93.2
10	NBSVM (Wang and Manning, 2012)	-	-	-	93.2
11	MNB (Wang and Manning, 2012)	-	-	-	<i>93.6</i>
12	G-Dropout (Wang and Manning, 2013)	-	-	-	93.4
13	F-Dropout (Wang and Manning, 2013)	-	-	-	93.6
14	SVM (Go et al., 2009)	-	-	81.6	-
15	BINB (Go et al., 2009)	-	-	82.7	-
16	MAX-TDNN (Kalchbrenner et al., 2014)	-	-	78.8	-
17	NBOW (Kalchbrenner et al., 2014)	-	-	80.9	-
18	MAXENT (Go et al., 2009)	_	-	83.0	_

	19	MVCNN (-HLBL)	88.5	48.7	88.0	93.6
versions	20	MVCNN (-Huang)	89.2	49.2	88.1	93.7
	21	MVCNN (-Glove)	88.3	48.6	87.4	93.6
	22	MVCNN (-SENNA)	89.3	49.1	87.9	93.4
filters	23	MVCNN (-Word2Vec)	88.4	48.2	87.6	93.4
	24	MVCNN (-3)	89.1	49.2	88.0	93.6
	25	MVCNN (-5)	88.7	49.0	87.5	93.4
	26	MVCNN (-7)	87.8	48.9	87.5	93.1
tuialas	27	MVCNN (-9)	88.6	49.2	87.8	93.3
	28	MVCNN (-mutual-learning)	88.2	49.2	87.8	93.5
layers	29	MVCNN (-pretraining)	87.6	48.9	87.6	93.2
	30	MVCNN (1)	89.0	49.3	86.8	93.8
	31	MVCNN (2)	<u>89.4</u>	<u>49.6</u>	87.6	<u>93.9</u>
	32	MVCNN (3)	88.6	48.6	88.2	93.1
	33	MVCNN (4)	87.9	48.2	88.0	92.4
	34	MVCNN (overall)	89.4	49.6	88.2	93.9

<u>Datasets</u> :

Standard Sentiment Treebank (Socher et al., 2013)

Sentiment140 (Go et al., 2009)

Subjectivity classification dataset by (Pang and Lee, 2004) - Subj

- Binary and Fine grained
- Senti 140

Questions ?

Thank You!