CHARACTER WORD EMBEDDING AND POS TAGGING FOR INDIAN LANGUAGES

Anirban Majumdar Amit Kumar October 15, 2015

Indian Institute of Technology Kanpur

MOTIVATION

- Distributed word representations are proven to be a powerful tool.
- Word embeddings captures syntactic and semantic information about word.
- In task like POS Tagging intra-word information could be very useful which is ignored in word embeddings.
- Character embeddings can be use to capture the intra-word information [1].
- Why not enhance the word embedding to use intra-word information by using character embedding.

RELATED WORK

- · Learning Character-level Representations by Santos et al.
- $\cdot\,$ Some results on english language

INCONSIDERABLE	83-year-old	SHEEP-LIKE	DOMESTICALLY	UNSTEADINESS	0.0055
INCONCEIVABLE	43-year-old	ROCKET-LIKE	FINANCIALLY	UNEASINESS	0.0085
INDISTINGUISHABLE	63-year-old	FERN-LIKE	ESSENTIALLY	UNHAPPINESS	0.0075
INNUMERABLE	73-year-old	SLIVER-LIKE	GENERALLY	UNPLEASANTNESS	0.0015
INCOMPATIBLE	49-year-old	BUSINESS-LIKE	IRONICALLY	BUSINESS	0.0040
INCOMPREHENSIBLE	53-year-old	WAR-LIKE	SPECIALLY	UNWILLINGNESS	0.025

INCONSIDERABLE	00-YEAR-OLD	SHEEP-LIKE	DOMESTICALLY	UNSTEADINESS	0.0000
INSIGNIFICANT INORDINATE ASSUREDLY UNDESERVED SCRUPLE	SEVENTEEN-YEAR-OLD SIXTEEN-YEAR-OLD FOURTEEN-YEAR-OLD NINETEEN-YEAR-OLD FIFTEEN-YEAR-OLD	BURROWER CRUSTACEAN-LIKE TROLL-LIKE SCORPION-LIKE UROHIDROSIS	WORLDWIDE 000,000,000 00,000,000 SALES RETAILS	PARESTHESIA HYPERSALIVATION DROWSINESS DIPLOPIA BREATHLESSNESS	$\begin{array}{c} 0.00000\\ 0.000\\ 0.000000\\ \pm\\ -0.00\end{array}$

GOAL

- Learning intra-word feature extraction of words using character embedding.
- Enhancing word embedding using the character embedding of the word.
- Using enhanced word embedding to perform task like POS Tagging.

CHALLENGES

- · Character embedding relatively new field.
- Extracting the morphological information from character embedding
- Use of Enhanced word vectors for NLP tasks such as POS tagging in Indian Languages like Hindi, Bengali

ROADMAP

- Wikipedia english corpus (16 million words, Vocab Size: 70k)
- Training data for POS tagger : wikipedia hindi corpus (200 MB)
- Wikipedia Corpus for Bengali (100 MB)

- $\cdot\,$ Cleaning english and hindi wikipedia corpus
- · Collecting dataset for hindi
- Wiki Extractor for cleaning up the corpus
 github.com/bwbaugh/wikipedia-extractor

Ь	b .	5.280712	0.17	3018	14.0	03992	-2.2	254795	8.87	73761	4
1.	125260	2.833	329	2.28050	6	-0.3514	74	2.83092	0	0.508	358
1.	437051	-4.51	6340	-5.0233	19	1.84700	7	-4.8580	42	1.371	398
4.	526853	-9.20	0667	1.95927	4	-0.7672	00	-0.3997	30	1.248	913
1.	747766	8.385	695	4.73374	5	-1.1242	201	-4.5525	38	0.922	268
Ь	e	1.747617	-3.9	59455	0.02	29893	-1.8	80294	0.27	78065	1
4.	063965	1.220	432	-0.9573	80	2.11564	6	1.49675	0	4.231	344
2.	864438	-2.26	5238	-1.4970	57	-4.4753	23	3.77699	2	-0.50	929!
2.	960354	-1.21	0697	-2.8365	62	-4.2619	75	0.72267	7	-7.26	9504
0.	227397	-0.35	1846	-2.0642	00	0.92133	5	-2.8853	63	1.559	509
Ь	m	1.529446	-5.8	22112	-7.5	563061	-1.5	04245	6.12	27498	- 2
0.	005890	1.574	102	-3.6511	92	-0.4475	19	2.44949	2	-3.29	253!
1.	335587	-4.27	5381	-1.9001	24	0.50133	2	2.97053	0	-2.88	7714
2.	541458	6.705	114	-1.5811	40	0.32414	1	3.36784	9	2.493	709
2.	653444	2.598	590	1.74620	7	2.80597	'1	-2.6232	02	0.036	795

Figure: Position based character embeddings

- · Character Embedding captures the syntactic features
- $\cdot\,$ Can improve the result of tasks like POS tagging and NER
- But how to join the char-level embedding with the word-level one ??

- $\cdot \,$ Options :
 - · Average addition to the word embeddings
 - Using CNN approach to get a char-level embedding for a word from the characters of that word
 - More on we can use syllables or affixes instead of character to get the joint embedding

ENHANCED WORD EMBEDDINGS

- $\cdot\,$ Enhancing Word embedding to use intra-word information
- Word embedding from composition of character embeddings
 - Average Addition [2] character embedding vector without feature extraction

$$\mathbf{x}_j = rac{1}{2} (\mathbf{w}_j + rac{1}{N_j} \sum_{k=1}^{N_j} \mathbf{c}_k).$$

- Feature Extraction using CNN and adding information to word embeddings
- Using the joint learned embedding for the purpose like POS tagging

Table 3: Evaluation accuracies (%) on analogical reasoning.

Method	Total	Capital	State	Family
CBOW	54.85	51.40	66.29	62.92
+CWE	58.24	53.32	66.29	70.00
+CWE+P	60.07	54.36	66.29	73.75
Skip-Gram	69.14	62.78	82.29	80.83
+CWE	68.04	63.66	81.14	78.75
+CWE+P	72.07	65.44	84.00	84.58
GloVe	67.44	69.22	58.05	69.25
+CWE	70.42	70.01	64.00	76.25
+CWE+P	72.99	73.26	65.71	81.25

CHARACTER EMBEDDINGS FEATURE EXTRACTION

- · Extracting character embeddings for the given corpus
- Feature extraction from character embeddings using CNN

- Previous work for POS tagging is mostly based on Statistical or Rule Based Model
- $\cdot\,$ Can improve the results using the joint embeeding
- $\cdot\,$ Advantage : Less hand-crafted features

- railways : motorways (20.571344), rail (21.448918), railway (21.594830), trams (21.744342),tramways (21.434643)
- primarily : mainly (11.726825), mostly (12.344781),
 principally (15.456143), chiefly (15.708947), largely (15.779496), and (16.920006), secondarily (17.022827)

REFERENCES

- Cicero D. Santos and Bianca Zadrozny. "Learning Character-level Representations for Part-of-Speech Tagging". In: Proceedings of the 31st International Conference on Machine Learning (ICML-14). Ed. by Tony Jebara and Eric P. Xing. JMLR Workshop and Conference Proceedings, 2014, pp. 1818–1826. URL: http://jmlr.org/proceedings/papers/v32/ santos14.pdf.
- Zhiyuan Liu Maosong Sun Huanbo Luan Xinxiong Chen Lei Xu. "Joint Learning of Character and Word Embeddings". In: (2015).

QUESTIONS?

APPENDIX

- Produces local features around each character of the word
- Combines them to get a fixed size character-level embedding
- Given a word w composed of M characters c₁, c₂, ..., c_M, each c_M is transformed into a character embedding r^{chr}_m. Them input to the convolution layer is the sequence of character embedding of M characters.

- \cdot Window of size kchr (character context window) of successive windows in the sequence of $r_1^{chr}, r_2^{chr}, ..., r_M^{chr}$
- The vector z_m (concatenation of character embedding m)for each character embedding is defined as follows :

$$z_m = (r^{chr}_{(m-(k^{chr}-1)/2)}, ..., r^{chr}_{(m+(k^{chr}-1)/2)})T$$

- Convolutional layer computer the jth element of the character embedding rwch of the word w as follows: [r^{wch}]_i = max_{1<m<M}[W⁰z_m + b⁰]_i
- Matrix W⁰ is used to extract local features around each character window of the given word
- Global fixed-sized feature vector is obtained using max operator over each character window

- · Parameter to be learned :
 - $\cdot W^{chr}, W^0 and b^0$
- \cdot Hyper-parameters :
 - $\cdot \ d^{chr}$: the size of the character vector
 - cl_u: the size of the convolution unit (also the size of the character-level embedding)
 - $\cdot k^{chr}$: the size of the character context window