Romanagari Detection in Twitter

Hrishikesh Terdalkar Shubhangi Agarwal

PROBLEM DEFINITION

Romanagari is Devanagari-script-based-language written in Roman script. Given random collection of roman-script tweets, we want to find out tweets that are English-Hindi codemixed (or pure Hindi), tag the individual words as well as entire tweet with language prediction.

Challenges:

- 1. Twitter small-ish max. 140 character text, huge inflections.
- 2. Lack of clean or good annotated datasets for training and testing.

DATA COLLECTION

Used Datasets

- ▶ *Rovereto Twitter n-gram Corpus*: is an n-gram dataset. 42 million n-grams.^[1]
- ▶ *NLTK tweet_samples*: English tweets collection, part of NLTK Corpora containing 20,000 tweets.
- IITB Hindi Devanagari Corpus: Devanagari script Hindi corpus containing around 1200 files.^[2] It has roughly 220,000 lines (2.85 million words). We converted this to Roman script to use for training.

Collected Datasets

- *Hindi-English Tweets Corpus:* (Code-mixed) Using Twitter's REST API. 38,264 tweets of rich code-mixed quality. skip-gram on 94 most-frequent Hindi words, 4,371 pairs, obtained 335,672 tweets from this.
- Social Media: gchat, WhatsApp, Facebook: (Code-mixed) handpicked codemixed text from social media such as Google-talk, WhatsApp, Facebook. Overall 297 lines of Hindi and 390 lines of Marathi were collected.

Preprocessing

Tools:

various bash, awk, sed, grep, tr, python, js scripts, SRILM Tools, NLTK Tools **Cleaning and Statistics**

Rovereto (RTC) corpus contains lot of noise. We only took n-grams that *do not* contain *any* special characters, and added up demographic information to obtain frequency of n-grams for n = 1, 2, ..., 6. This reduced total size of corpus from 250 GB to 1.2 GB.

Tweets Cleaning For tweets, removed duplicates, retweets and tweets containing URLs, accents. Also lower-cased the entire corpus. Replaced mentions by word

"HANDLE".

Resulted in final corpus 59,287 Hindi and 3187 English tweets, tagged with start-end markers <s> and </s>.

Social Media (Handpicked)

passed it through basic_cleaning.

tagger script to tag 297 Hindi and 300 Marathi lines.

eg: <s> <hi>bhaisaab itna mazaa kafi</hi> <en>time</en> <hi>baad aya</hi> <en>a lot of catching up</en> <hi>bhi ho gayi</hi> </s>

IITB Hindi (Devanagari) For this large Devanagri corpus we ran devToRom.js using node.js and coverted it to Roman text (3 char-look-ahead character-level).

DATA STATISTICS

N-grams in Training Set			Tagged Data		
	English	Hindi	Language (type)	Count	
1-grams	1,168,077	120,546	English (lines)	3187 tweets	
2-grams	10,644,439	998,300	Hindi (lines)	3000 tweets	
3-grams	17,353,446	2,027,733	Hindi (words)	297 lines	
4-grams	14,007,551	65,186,143	Marathi (words)	390 lines	

SOUNDEX

Soundex is a phonetic algorithm for indexing names by sound, as pronounced in English^[3] Evaluate Soundex's output, using FIRE 2013 data^[4] Over 30,000 transliteration pairs of (Roman Variation, Devanagari Word) 18,000 unique Hindi words, 6,500 words with 2 or more variations Variations handled by Soundex: 53.6% (all), 57% (top 1000), 62.3% (top 100)

SIMPLE NGRAM - MODEL

<i>q</i> is query, with	Sound	lex applied		
$q = w_1, w_2, \ldots, w_n$	w_n			
	Mode	Model v1		
$w_score(w, L)$	max _n	(ngram ar		
		C		
$q_score(q, L)$	$\sum_{z \in \mathcal{L}} z$	[w_score(a		
, (j,)	$-w \in q$	-		

SRILM PROBABILISTIC NGRAM-MODEL

Calculates backoff weights context found with its backoff weight.

Perplexity = Confusion Less perplexity = more Confidence.

RESULTS

Tweets Tagged using Various Models								
	English		Hind	Hindi (codemix)				
	Correct	Wrong	Correct	Wrong				
Simple v1	3165	22	352	2648				
Simple v2	3176	11	97	2903				
SRILM (ppl=20k)	2052	1135	1777	1223				
SRILM (ppl=25k)	1920	1267	1936	1064				
Wordratio(40,20)	2076	1111	2687	313				
Wordratio(50,10)	890	2297	2921	79				

CS671: Natural Language Processing

Indian Institute of Technology Kanpur

Model v2 $\sum_{n} \sum_{i} n$ round $w \in q$ $\in L$ *j* is an ((ngram around w) \in *q*) \in *L* $[w,L]^2$ $\sum_{w \in q} [w_score(w,L)]$

- Learning probabilities of words in vocab based on n-gram probabilities (*previous-context*)
- Evaluation of the TestData gives the conditional probability of each word in the best ngram
 - p(B15200|A35200...) = [1gram]0[-1.0867]
 - 3 zeroprobs, logprob= 81.4182 ppl= 33360.6 ppl1= 61561.1

WORD-RATIO(M, N) MODEL

Based on word-tags output by SRILM Model

- $hi_{frea} = hi_{count}/total_words$
- $en_{frea} = en_{count}/total_words$
- **if** $(hi_{freq} + en_{freq}) < M$ then mark as Other
- else if $(hi_{freq} > N)$ then mark as Hindi
- else mark as English

Tested for (40, 20) and (50, 10)

CONCLUSION AND FUTURE

- wordratio based sentence tagging works well with n-gram-probabilistic word tagging
- dependent on nature and statistics of data.
- ▶ soundex effective (resolves 53% variations on average, 62.3% for top 100)

Future

- soundex alternatives
- multiple datasets with different conditioned statistics
- "goodness measure" on models

References

- [1] A. Herdagdelen. Rovereto twitter n-gram corpus. [Online]. Available: http://clic.cimec.unitn.it/amac/twitter_ngram/
- [2] Iitb hindi corpus. [Online]. Available: http://www.cfilt.iitb.ac.in/Downloads.html
- [3] Soundex indexing system. [Online]. Available: www.archives.gov/research/census/soundex.html
- [4] Datasets of fire 2013. [Online]. Available: http://cse.iitkgp.ac.in/resgrp/cnerg/qa/fire13translit/
- [5] U. Barman, A. Das, J. Wagner, and J. Foster, "Code mixing: A challenge for language identification in the language of social media," EMNLP 2014, p. 13, 2014.
- [6] A. Das and B. Gambäck, "Identifying languages at the word level in code-mixed indian social media text," in Proceedings of the 11th International Conference on Natural Language *Processing, Goa, India,* 2014, pp. 169–178.
- [7] S. Gella, K. Bali, and M. Choudhury, "'ye word kis lang ka hai bhai?' testing the limits of word level language identification."
- [8] A. Stolcke et al., "Srilm-an extensible language modeling toolkit." in INTERSPEECH, 2002.
- [9] Latin-to-roman transliteration. [Online]. Available: http://www.hindidevanagari.com/transliteration/
- [10] Twitter package nltk. [Online]. Available: http://www.nltk.org/howto/twitter.html

ACKNOWLEDGEMENTS

We are grateful to Prof. Amitabha Mukerjee and our senior M S Ram for valuable insights. We would like to also thank friends and family for help in data collection and tagging.

{ hrishirt, sagarwal } @ cse.iitk