Parsing with Compositional Vector Grammars

Richard Socher John Bauer Christopher Manning Andrew Y Ng

Hrishikesh Terdalkar, 14111265 { hrishirt } @ iitk

28 August 2015

Overview

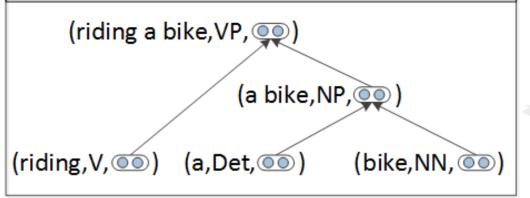
- traditional representation using NP and VP does not capture the full syntactic nor semantic richness of linguistic phrases
- lexicalizing phrases or splitting categories only partly address problem at cost of huge feature spaces and sparseness.
- introduction of Compositional Vector Grammar (CVG), which combines PCFGs with a syntactically untied RNN that learns syntactico-semantic. compositional vector representations
- CVG learns a soft notion of head words and improves performance on the types of ambiguities that require semantic information such as PP attachments

CVG Approach

- Compositional Vector Grammar Parser (CVG) for structure prediction
- the model addresses the problem of representing phrases and categories, jointly learning how to parse and how to represent phrases as both discrete categories and continuous vectors (CVG Tree Example)
- combine the advantages of standard probabilistic context free grammars (PCFG) with those of recursive neural networks (RNNs)
 - > **PCFG** can capture discrete categorization of phrases into NP or PP
 - RNN can capture fine-grained syntactic and compositional-semantic information on phrases and words
- can help in cases where syntactic ambiguity can <u>only</u> be resolved with the help of semantic information
 - > They ate udon with forks vs. They ate udon with chicken

CVG Tree Example

Discrete Syntactic – Continuous Semantic Representations in the Compositional Vector Grammar



CVG tree with (category,vector) representations at each node.

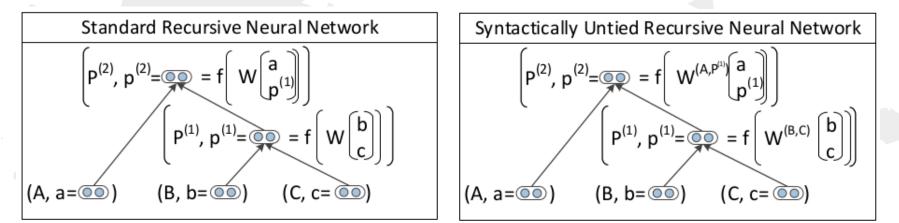
Vectors for nonterminals are computed via a new type of RNN which is conditioned on syntactic categories from a PCFG

CVG Approach (contd.)

- previous RNN-based parsers used the same (tied) weights at all nodes to compute the vector representing a constituent
- hard to optimize since the parameters form a very deep neural network.
- CVG approach generalizes the fully tied RNN to one with syntactically untied weights, weights at each node are *conditionally dependent* on the categories of the child constituents.
- allows different composition functions when combining different types of phrases and is shown to result in a large improvement in parsing accuracy
- compositional distributed representation allows a CVG parser to make accurate parsing decisions and capture similarities between phrases and sentences
- Any PCFG-based parser can be improved with an RNN.
 - simplified version of the Stanford Parser used here as base PCFG

Recursive Neural Networks standard vs. syntactically untied

Tree with a **simple RNN**: same weight matrix is replicated and used to compute all non-terminal node representations. Leaf nodes are n-dimensional vector representations of words. A **syntactically untied RNN** in which the function to compute a parent vector depends on syntactic categories of its children which are assumed to be given.



Compositional Vector Grammar (CVG)

- Word Vector Representations
 - > a sentence S as an ordered list of (word, vector) pairs: $x = ((w_1, a_{w_1}), \dots, (w_m, a_{w_m}))$
- Max-Margin Training Objective for CVGs
 - set of all possible trees for a given sentence x_i is defined as $Y(x_i)$ and the correct tree for a sentence is y_i
 - to minimize this objective, the score of the correct tree y_i is increased and the score of the highest scoring incorrect tree y' is decreased
- Scoring Trees with CVGs
 - > define the word representations as (vector, POS) pairs: ((a, A), (b, B), (c, C))
 - standard RNN essentially ignores all POS tags and syntactic categories and each nonterminal node is associated with the same neural network
 - the CVG uses a syntactically untied RNN (SU-RNN) which has a set of such weights. size of this set depends on the number of sibling category combinations in the PCFG

Compositional Vector Grammar (CVG)

Parsing with CVGs

- goodness of a tree is measured in terms of its score and the CVG score of a complete tree is the sum of the scores at each node
- the SU-RNN rule score computation at each node still only has access to its child vectors, not the whole tree or other global features
- \succ allows the second pass to be very fast

Training SU-RNNs

- full CVG model is trained in two stages
- First the base PCFG is trained and its top trees are cached and then used for training the SU-RNN conditioned on the PCFG
- > SU-RNN is trained using Max-Margin Training objective and scores as exemplified earlier.
- Subgradient Methods and AdaGrad
 - the learning rate is adapting differently for each parameter and rare parameters get larger updates than frequently occurring parameters
- Initializing of Weight Matrices
 - in absense of any knowledge, for combining two vectors is to average them instead of performing a completely random projection
 - > $W^{(AB)}[a, b, 1] = W^{(A)}a + W^{(B)}b + bias$

Comparison of parsers with richer state representations on the WSJ.

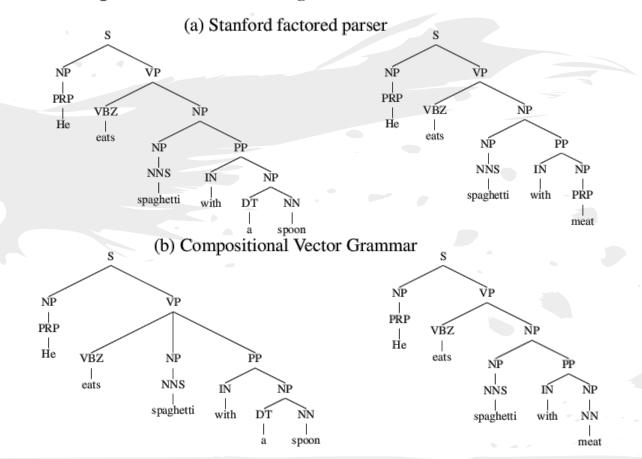
The last line is the self-trained re-ranked Charniak parser.

Parser	dev (all)	test ≤ 40	test (all)
Stanford PCFG	85.8	86.2	85.5
Stanford Factored	87.4	87.2	86.6
Factored PCFGs	89.7	90.1	89.4
Collins		•	87.7
SSN (Henderson)			89.4
Berkeley Parser	-		90.1
CVG (RNN)	85.7	85.1	85.0
CVG (SU-RNN)	91.2	91.1	90.4
Charniak-SelfTrain			91.0
Charniak-RS			92.1

Analysis of Error Types: Detailed Comparison of different parsers

Error Type	Stanford	CVG	Berkley	Char-RS
PP Attach	1.02	0.79	0.82	0.60
Clause Attach	0.64	0.43	0.50	0.38
Diff Label	0.40	0.29	0.29	0.31
Mod Attach	0.37	0.27	0.27	0.25
NP Attach	0.44	0.31	0.27	0.25
Co-ord	0.39	0.32	0.38	0.23
1-Word Span	0.48	0.31	0.28	0.20
Unary	0.35	0.22	0.24	0.14
NP Int	0.28	0.19	0.18	0.14
Other	0.62	0.41	0.41	° • ` °0 . 50

Test sentences of semantic transfer for PP attachments. **CVG** was able to transfer semantic word knowledge from two related training sentences. In contrast, **Stanford parser** could not distinguish the PP attachments based on the word semantics.



Conclusion

- parsing model that combines the speed of small-state PCFGs with semantic richness of neural word representations and compositional phrase vectors
- compositional vectors are learned with a new syntactically untied recursive neural network (RNN)
- linguistically more plausible since it chooses different composition functions for a parent node based the syntactic categories of its children
- CVG obtains 90.44% labeled F1 on the full WSJ test set and is 20% faster than the previous Stanford parser.
- not the best model, but fast
- huge number of parameters:

 $d * vocab + 2d * d * (n_{comp}) + d * class + d$

can't make the *standard* RNN perform better than the PCFG, but a very creative modification to the standard RNN

References

Richard Socher, John Bauer, Christopher Manning and Andrew Y Ng, Parsing with Compositional Vector Grammars, In Proceedings of ACL Conference 2013.