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Motivation
Generalized Phrases include

e Skip-bigrams (SkipBs)
For example, skip-bigrams at a distance 2 in the sentence “This
tea helped me to relax” are:
“This*helped”, “tea*me”, “helped*to” ...

@ Continuous and non-continuous linguistic phrases
For example, “cold_cuts”and “White_House" are continuous

phrases and “take_over’and “turn_off’are non-continuous.
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Motivation

@ A particular task involving a word can be solved based only on
context of word.

@ Generalized phrases can be used to infer the attributes of the
context they enclose.

For example: He helped Xiulan to find a flat.

@ They can capture non-compositional semantics.

For example: “"keep up”, “keep on”, “keep from" etc.

@ Embeddings of generalized phrases are better suited than word
embeddings for a coreference resolution and paraphrase

identification.
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@ Used word2vec on English Gigaword corpus.
Embedding
Learning for
SkipBs @ The corpus is represented as a sequence of sentences, each

consisting of two tokens: a SkipB and a word that occurs

between the two enclosing words of the SkipB.

@ The distance between the two enclosing words can be k=2 or
2<k<3.
o when k=2, the trigram w;_jw;w; | generates the single

sentence “w;_1*x w11 *w;";

e when 2 <k <3, the fourgram w;_,w;_1w;w; | generates four
sentences “w;_oxwixw;_1", "wi_1*wippxw;”,

“Wi—2 * Wi ok Wi_1” and “W,‘_z *Wig] ok W,'” .
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@ Extracted two-word phrases defined in Wiktionary and two-word
Phrase phrases defined in Wordnet.

Collection

Phrase
continuity

identification @ A collection of continuous and noncontinuous phrases of size

Sentence

Reformatting 95218 iS fOrmed.

Examples
Phrase
Neighbors
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Embedding Learning for Phrases Phrase continuity identification

Identification of Phrase Continuity

@ For each phrase "A_B", compute [c},c2,¢3,c4,¢5] Where ¢;
1 <i <5, indicates there are ¢; occurrences of A and B in that

order with a distance of i.

@ If ¢; is 10 times higher than (cy +c3+ca+c¢s)/4, classify
“A_B" as continuous, otherwise as discontinuous.
For example,
“pick_off": [1121,632,337,348,4052]
“Cornell_University”: [14831,16,177,331,3471]
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Embeddings for

Generalized .
s Sentence Reformatting
CS671, NLP
@ Sentence “...A...B..."is reformated into “...A_B...A_B..."if
“A_B"is a discontinuous phrase and is separated by maximal 4
phes words.
Collection
Phrase
e @ Sentence “...AB..."into “...A_B..."if “A_B"is a continuous
Sent
Rzrf‘o(:r:c;ting p h rase.
Examples
Phrase
ke @ word2vec is run on the reformatted corpus.
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Examples: Phrase Neighbors

Examples of Phrase Neighbors

turn_off | caught up | take_over | macular_degeneration | telephone_interview
switch_off | mixedup | take_charge eye_disease statement

unplug entangled replace diabetic_retinopathy interview
turning off | involved | take_control cataracts conference_call

shut_off enmeshed stay _on periodontal _disease teleconference
block_out tangled retire epilepsy telephone_call
turned_off mired succeed glaucoma told
fiddle_with | engaged step_down skin_cancer said

CS671, NLP (CSE IIT Kanpur)

Table 1: Phrases and their nearest neighbors
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Animacy
classification for
markables

Paraphrase
Identification

Experiments  Animacy classification for markables

Animacy classification for markables

“I voted for Nader because he was most

. . ‘/\ .
aligned with my values,” she said.

Figure : Example of markables
A markable in coreference resolution refers to an entity in the
real world or another linguistic expression.

Classifying markables as animate/inanimate is useful for

coreference resolution systems.

animate chains: an animate pronoun markable and no

inanimate pronoun markable

inanimate chains: an inanimate pronoun markable and no

animate pronoun markable
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representation accuracy
. k=2 0.703
phrase embedding 9 < k<3 0.700
. word2vec 0.668*T
word embedding |\ bort et al. | 0662+
one-hot vectors 0.638+*T

Table 2: Classification accuracy. Mark “*” means
significantly lower than “phrase embedding”, & =
2; “t” means significantly lower than “phrase em-
bedding”, 2 < k < 3. As significance test, we use
the test of equal proportion, p < .05, throughout.

Frequent Errors

@ Unspecific SkipBs

For example, “take*in”"and “then*goes”

@ Untypical use of specific SkipBs
For example, “...the southeastern area of Fujian whose economy is the

most active”’
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who*afghanistan, some*told | women*have | with*responsibility | he*worried
had*afghanistan other*told men*have of*responsibility she*worried
he*afghanistan two*told children*have | and*responsibility | was*worried
who%*iraq —*told girls*have “*responsibility is*worried
Animacy have*afghanistan but*told parents*have | that*responsibility | said*worried
vrl\ark:bles- o fighters*afghanistan one*told students*have ’s*responsibility that*worried
Eac::t'?:g?o” who*kosovo because*told | young*have | the* responsibility | they*worried
was*afghanistan and*told people*have for*responsibility ’s*worried

CS671, NLP (CSE IIT Kanpur)

Table 3: SkipBs and their nearest neighbors
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Experiments Paraphrase Identification
Embeddings for

Generlze Paraphrase Identification Task

Phrases

CS671, NLP

@ Standard approaches are unlikely to assign a high similarity score
to the two sentences “he started the machine”and “he turned

the machine on”.

@ A sentence like “...A_B...A_B..." is considered as “A_B".

Animacy
classification for

markables

Paraphrase Methods Accuracy F1
Identification baseline 0.684 0.803
word embedding 0.695 0.805
phrase embedding 0.713 0.812

Table 4: Paraphrase task results.
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Experiments

Paraphrase Identification

Comparison of Word and Phrase Embeddings

GWP sentence 1 sentence 2

101 Common side_effects include The most common side_effects after get-
nasal_congestion, runny _nose, sore_throat ting the nasal spray were nasal_congestion,
and cough, the FDA said . runny_nose, sore_throat and cough .

1 0 1 Douglas Robinson, a senior vice_president Douglas Robinson, CA senior
of finance, will take_over as chief financial vice_president, finance, will fill the
officer on an interim basis . position in the interim .

11 0 They were being held Sunday in the Camden The Jacksons remained in_on Camden
County Jail on $ 100,000 bail each . County jail $ 100,000 bail .

00 1 The interest_rate sensitive two year Schatz The Swedish central bank cut inter-

yield was down 5.8 basis_points at 1.99 per-
cent .

est_rates by 50 basis_points to 3.0 percent

Table 5: Four typical sentence pairs in which the predictions of word embedding system and phrase
embedding system differ. G = gold annotation, W = prediction of word embedding system, P = prediction
of phrase embedding system. The formatting used by the system is shown. The original word order of

sentence 2 of the third pair is “- - - in Camden County jail on $ 100,000 bail”.
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Future work

continuous phrases determined purely statistically, and
discontinous phrases by dictionaries.
- combination of two methods desirable

to distinguish between phrases that only occur in continuous

form and phrases that must or can occur discontinuously

given a sentence containing the parts of a discontinuous phrase
in correct order, how to determine that co-occurrence of the two

parts constitutes an instance of the discontinuous phrase?

which tasks benefit most significantly from the introduction of

generalized phrases?
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o Appendix I:
e about LIBLINEAR
e more about word2vec
e wang2vec: improvements to word2vec
e concept of compositional vectors.
Appendix

e Appendix IlI:

e overview of recent work by same authors

o related work: (Socher et al., 2013)
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Embeddings for

Generalized I_I B I_I N EA R

CSZ:?S:‘SLP Fan et al. (2008)
@ library large-scale linear classification.
@ Homepage: http://www.csie.ntu.edu.tw/ cjlin/liblinear/
@ supports logistic regression and linear support vector machines
@ available in MATLAB, Octave, Java, Python, Ruby, Perl, Weka,
L/':z'"“c' R, Common LISP, Scilab

Compositional
Vectors
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ot word2vec: Word Representations in Vector Space

Phrases

CS671, NLP (Mikolov et al., 2013b)

e Code: https://code.google.com/p/word2vec/

o an efficient implementation of the continuous bag-of-words and

skip-gram architectures for computing vector representations

@ word vectors can be successfully applied to automatic extension

of facts in Knowledge Bases, and also for verification of

LibLinear . .
correctness of existing facts.

word2vec

wang2vec

Compositional
Vectors
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e word2vec Models
CS671, NLP
Motivation INPUT PROJECTIOMN ouTPUT INPUT PROJECTION OuUTPUT
Embedding
T w(t2) wit2)
SkipBs -

Embedding

wit-1) J wit-1)
Learning fol
Phrases o o /
Mt] —t

Experiments — wit)

Conclusion \

wit+1) wit+1)
References
Appendi

o wit+2) —‘w{wz}
Appendix | L .

LibLinear

word2vec cBOW Skip-gram
wang2vec

Compositional

Vectors Figure : CBOW architecture predicts current word based on context, and

Appendix II Skip-gram predicts surrounding words given current word
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wang2vec: Adaptations to word2vec

Code: https://github.com/wlin12/wang2vec
structured skip-gram: improved version of skip-gram
continuous window: improved version of CBOW

lead to improvements when used in state-of-the-art neural
network systems for part-of-speech tagging and dependency

parsing, relative to the original models
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CWINDOW Structured Skip-Ngram
input projection output input projection output
W D_)_ O Wz
w1 o w.
Wo Wo I:I—’—
wi [ w,
w. L] w.

bLinear Figure : lllustration of the Structured Skip-gram and Continuous
e Window (CWindow) models

wang2vec

Compositional
Vectors
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Pg = so-called climate change

w, = climate wy, = change
. Used in:
LibLinear
word2vec
ng | @ Knowledge Base completion (Neelakantan et al., 2015)
ompositional
Vectors

@ Parsing, in conjunction with RNN (Socher et al., 2013)
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Sentence Classification
Yin and Schutze (2015)

@ MVCNN, a convolution neural network (CNN) architecture for
sentence classification

i. combines diverse versions of pretrained word embeddings

ii. extracts features of multi-granular phrases with variable-size

convolution filters.

@ pretraining MVCNN is critical for good performance
MVCNN
S @ MVCNN achieves state-of-the-art performance on four tasks:
on small-scale binary, small-scale multi-class and large-scale
Twitter sentiment prediction and on subjectivity classification.

CS671, NLP (CSE IIT Kanpur) Embeddings for Generalized Phrases 24 / 26



Appendix I Parsing with CVGs
Embeddings for

Generalied Parsing with Compositional Vector Grammars

Phrases

G, (L Socher, Bauer, Manning, and Ng (2013)

@ parsing model that combines the speed of small-state PCFGs
with semantic richness of neural word representations and
compositional phrase vectors item compositional vectors are
learned with a new syntactically untied recursive neural network
(RNN)

@ linguistically more plausible since it chooses different
composition functions for a parent node based the syntactic

MVCNN categories of its children
Parsing with
CVGs
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Parsing with CVGs

RNNs vs. SU-RNNs

Standard Recursive Neural Network

Syntactically Untied Recursive Neural Network

0 s b
P Nm
(B, b=@9) (C, c=©9)

[P‘” pP=Gw =

®0) | b
’ /‘{\ LH]
(B,b=@5) (C, c=@9)

(A, a=@D)

(a) Tree with a simple RNN: same
weight matrix is replicated and used
to compute all non-terminal node
representations. Leaf nodes are
n-dimensional vector representations

of words

Figure :

(b) A syntactically untied RNN in
which the function to compute a

parent vector depends on syntactic
categories of its children which are

assumed to be given.

Comparison of RNNs and SU-RNNs

Embeddings for Generalized Phrases
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