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Motivation

Generalized Phrases

Generalized Phrases include

Skip-bigrams (SkipBs)

For example, skip-bigrams at a distance 2 in the sentence “This

tea helped me to relax”are:

“This*helped”, “tea*me”, “helped*to”...

Continuous and non-continuous linguistic phrases

For example, “cold cuts”and “White House”are continuous

phrases and “take over”and “turn off”are non-continuous.
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Motivation

Motivation

A particular task involving a word can be solved based only on

context of word.

Generalized phrases can be used to infer the attributes of the

context they enclose.

For example: He helped Xiulan to find a flat.

They can capture non-compositional semantics.

For example: “keep up”, “keep on”, “keep from”etc.

Embeddings of generalized phrases are better suited than word

embeddings for a coreference resolution and paraphrase

identification.
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Embedding Learning for SkipBs

Embedding Learning for SkipBs

Used word2vec on English Gigaword corpus.

The corpus is represented as a sequence of sentences, each

consisting of two tokens: a SkipB and a word that occurs

between the two enclosing words of the SkipB.

The distance between the two enclosing words can be k = 2 or

2 ≤ k ≤ 3.

when k = 2, the trigram wi−1wiwi+1 generates the single

sentence “wi−1 ∗wi+1 ∗wi”;

when 2 ≤ k ≤ 3, the fourgram wi−2wi−1wiwi+1 generates four

sentences “wi−2 ∗wi ∗wi−1”, “wi−1 ∗wi+1 ∗wi”,

“wi−2 ∗wi+1 ∗wi−1”and “wi−2 ∗wi+1 ∗wi”.
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Embedding Learning for Phrases Phrase Collection

Phrase Collection

Extracted two-word phrases defined in Wiktionary and two-word

phrases defined in Wordnet.

A collection of continuous and noncontinuous phrases of size

95218 is formed.
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Embedding Learning for Phrases Phrase continuity identification

Identification of Phrase Continuity

For each phrase “A B”, compute [c1,c2,c3,c4,c5] where ci ,

1 ≤ i ≤ 5, indicates there are ci occurrences of A and B in that

order with a distance of i.

If c1 is 10 times higher than (c2 + c3 + c4 + c5)/4, classify

“A B”as continuous, otherwise as discontinuous.

For example,

“pick off”: [1121,632,337,348,4052]
“Cornell University”: [14831,16,177,331,3471]
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Embedding Learning for Phrases Sentence Reformatting

Sentence Reformatting

Sentence “...A...B...”is reformated into “...A B...A B...”if

“A B”is a discontinuous phrase and is separated by maximal 4

words.

Sentence “...AB...”into “...A B...”if “A B”is a continuous

phrase.

word2vec is run on the reformatted corpus.
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Embedding Learning for Phrases Examples: Phrase Neighbors

Examples of Phrase Neighbors
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Experiments Animacy classification for markables

Animacy classification for markables

Figure : Example of markables

A markable in coreference resolution refers to an entity in the

real world or another linguistic expression.

Classifying markables as animate/inanimate is useful for

coreference resolution systems.

animate chains: an animate pronoun markable and no

inanimate pronoun markable

inanimate chains: an inanimate pronoun markable and no

animate pronoun markable
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Experiments Animacy classification for markables

Frequent Errors

Unspecific SkipBs

For example, “take*in”and “then*goes”

Untypical use of specific SkipBs

For example, “...the southeastern area of Fujian whose economy is the

most active”
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Experiments Animacy classification for markables

Examples of SkipB Neighbors
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Experiments Paraphrase Identification

Paraphrase Identification Task

Standard approaches are unlikely to assign a high similarity score

to the two sentences “he started the machine”and “he turned

the machine on”.

A sentence like “...A B...A B...”is considered as “A B”.
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Experiments Paraphrase Identification

Comparison of Word and Phrase Embeddings
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Figure : Generalized Phrases for Linguistic Tasks
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Conclusion Future Work

Future work

continuous phrases determined purely statistically, and

discontinous phrases by dictionaries.

- combination of two methods desirable

to distinguish between phrases that only occur in continuous

form and phrases that must or can occur discontinuously

given a sentence containing the parts of a discontinuous phrase

in correct order, how to determine that co-occurrence of the two

parts constitutes an instance of the discontinuous phrase?

which tasks benefit most significantly from the introduction of

generalized phrases?
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Appendix I:

about LIBLINEAR

more about word2vec

wang2vec: improvements to word2vec

concept of compositional vectors.

Appendix II:

overview of recent work by same authors

related work: (Socher et al., 2013)
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Appendix I LibLinear

LIBLINEAR
Fan et al. (2008)

library large-scale linear classification.

Homepage: http://www.csie.ntu.edu.tw/ cjlin/liblinear/

supports logistic regression and linear support vector machines

available in MATLAB, Octave, Java, Python, Ruby, Perl, Weka,

R, Common LISP, Scilab
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Appendix I word2vec

word2vec: Word Representations in Vector Space
(Mikolov et al., 2013b)

Code: https://code.google.com/p/word2vec/

an efficient implementation of the continuous bag-of-words and

skip-gram architectures for computing vector representations

word vectors can be successfully applied to automatic extension

of facts in Knowledge Bases, and also for verification of

correctness of existing facts.
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Appendix I word2vec

word2vec Models

Figure : CBOW architecture predicts current word based on context, and

Skip-gram predicts surrounding words given current word
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Appendix I wang2vec

wang2vec: Adaptations to word2vec

Code: https://github.com/wlin12/wang2vec

structured skip-gram: improved version of skip-gram

continuous window: improved version of CBOW

lead to improvements when used in state-of-the-art neural

network systems for part-of-speech tagging and dependency

parsing, relative to the original models
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Appendix I wang2vec

wang2vec Models

Figure : Illustration of the Structured Skip-gram and Continuous

Window (CWindow) models
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Appendix I Compositional Vectors

Compositional Vectors

Used in:

Knowledge Base completion (Neelakantan et al., 2015)

Parsing, in conjunction with RNN (Socher et al., 2013)

CS671, NLP (CSE IIT Kanpur) Embeddings for Generalized Phrases 23 / 26



Embeddings for

Generalized

Phrases

CS671, NLP

Motivation

Embedding

Learning for

SkipBs

Embedding

Learning for

Phrases

Experiments

Conclusion

References

Appendix

Appendix I

Appendix II

MVCNN

Parsing with
CVGs

Appendix II MVCNN

Multichannel Variable-Size Convolution for

Sentence Classification
Yin and Schutze (2015)

MVCNN, a convolution neural network (CNN) architecture for

sentence classification

i. combines diverse versions of pretrained word embeddings

ii. extracts features of multi-granular phrases with variable-size

convolution filters.

pretraining MVCNN is critical for good performance

MVCNN achieves state-of-the-art performance on four tasks:

on small-scale binary, small-scale multi-class and large-scale

Twitter sentiment prediction and on subjectivity classification.
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Appendix II Parsing with CVGs

Parsing with Compositional Vector Grammars
Socher, Bauer, Manning, and Ng (2013)

parsing model that combines the speed of small-state PCFGs

with semantic richness of neural word representations and

compositional phrase vectors item compositional vectors are

learned with a new syntactically untied recursive neural network

(RNN)

linguistically more plausible since it chooses different

composition functions for a parent node based the syntactic

categories of its children
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Appendix II Parsing with CVGs

RNNs vs. SU-RNNs

(a) Tree with a simple RNN: same

weight matrix is replicated and used

to compute all non-terminal node

representations. Leaf nodes are

n-dimensional vector representations

of words

(b) A syntactically untied RNN in

which the function to compute a

parent vector depends on syntactic

categories of its children which are

assumed to be given.

Figure : Comparison of RNNs and SU-RNNs
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