Event Driven Headline Generation

Rui Sun† , Yue Zhang‡ , Meishan Zhang‡ and Donghong Ji† † Computer School, Wuhan University, China ‡ Singapore University of Technology and Design

M.Arvind 12385 CS671A

Introduction

- Given an input document, the system identifies a key event chain by extracting a set of structural events that describe them.
- Then a novel multi-sentence compression algorithm is used to fuse the extracted events, generating a headline for the document.
- This model can be viewed as a novel combination of extractive and abstractive headline generation, combining the advantages of both methods using event structures.
- Headline generation models consist of two steps: Candidate extraction and Headline generation

Candidate extraction in the proposed model

- Candidate event extraction is performed on a bipartite graph, where the two types of nodes are lexical chains and events.
- An event is a tuple (S, P, O), where S is subject, P is predicate and O is object.
- Extracting events: Stanford dependency parser was used to obtain the Stanford typed dependency structures of the sentence.

• Extracting lexical chains : Lexical chains are used to link semantically related words and phrases.

Mutual Reinforcement Principle

• **Mutual Reinforcement Principle** is applied to jointly learn chain and event salience on the bipartite graph for a given input.

• Suppose that there are n events: {e1, · · · , en} and m lexical chains: {l1, · · , lm} :

$$sal(e_{i}) \propto \sum_{j=1}^{m} r_{ij} * sal(l_{j}) \qquad sal(l_{j}) \propto \sum_{i=1}^{n} r_{ij} * sal(e_{i})$$
$$r_{ij} = \frac{w(l_{j}) * w(e_{i})}{A} \qquad w(l_{j}) = \sum_{w \in l_{j}} sal_{abs}(w) \qquad w(e_{i}) = \sum_{s \in Sen(e_{i})} sal_{ext}(s)$$

Word-Graph Construction

• Salience information is introduced into the calculation of the weights of vertices.

 $w(V_i) = \sum_{e \in CE} sal(e) * \exp\{-\operatorname{dist}(V_i, w, e)\}$

• Edge weights are computed as follows:

$$w'(E_{ij}) = \sum_{s} \operatorname{rdist}(V_i.w,V_j.w)$$

$$w(E_{ij}) = \frac{w(V_i)w(V_j).w'(E_{ij})}{w(V_i)+w(V_j)}$$

Scoring Method

• The key to our MSC model is the path scoring function.

• The overall score of a path is compute by:

 $score(p) = edge(p) + \lambda * flu(p)$

$$edge(p) = \frac{\sum_{E_{ij} \in p} \ln\{w(E_{ij})\}}{n}$$

$$flu(p) = \frac{\sum_{i} ln\{p(w_i/w_{i-2}w_{i-1})\}}{n}$$

Beam Search Algorithm for Headline generation

```
Input: G \leftarrow (\mathcal{V}, \mathcal{E}), LM, B
Output: best
candidates \leftarrow \{ \{ \langle S \rangle \} \}
loop do
   beam \leftarrow { }
   for each candidate in candidates
     if candidate endwith \langle E \rangle
       ADDTOBEAM(beam, candidate)
       continue
     for each V_i in \mathcal{V}
       candidate \leftarrow ADDVERTEX(candidate, V_i)
       COMPUTESCORE(candidate, LM)
       ADDTOBEAM(beam, candidate)
     end for
   end for
   candidates \leftarrow TOP-K(beam, B)
   if candidates all endwith \langle E \rangle: break
end loop
best \leftarrow BEST(candidates)
```

Parameter value optimization

Figure 6: Results with different beam sizes.

Figure 7: Results using different fluency weights.

Figure 8: Results using different numbers of candidate events.

Comparison of headlines generated by the different methods

Method	Generated Headlines
Reference	Honduras, other Caribbean countries brace
	for the wrath of Hurricane Mitch
SentRank	Honduras braced for potential catastrophe
	Tuesday as Hurricane Mitch roared through
	northwest Caribbean
PhraseRank	Honduras braced catastrophe Tuesday
	Hurricane Mitch roared northwest
	Caribbean
EventRank	Honduras braced for Hurricane Mitch
	roared through northwest Caribbean
Reference	At Ibero-American summit Castro protests
	arrest of Pinochet in London
SentRank	Castro disagreed with the arrest Augusto
	Pinochet calling international meddling
PhraseRank	Cuban President Fidel Castro disagreed
	arrest London Chilean dictator Augusto
	Pinochet
EventRank	Fidel Castro disagreed with arrest in
	London of Chilean dictator Augusto
	Pinochet

Conclusion

- Experimental results demonstrate that event-driven model can achieve better results than extractive and abstractive models, and the proposed graph-based MSC model can bring improved performances compared with previous MSC techniques. Our final event-driven model obtains the best result on this dataset.
- The proposed graph-based MSC model is not limited to our event-driven model. It can be applied on extractive and abstractive models as well