## CS671: NLP

## Neural Network based translation and parallel corpus generation

Basis: As of the current scheme in machine translation, Statistical Machine Translation (SMT) is prefered to Neural Network based systems. Also, making a system that learns translation requires the availability of a one to one correspondence between the sources and target sentences, i.e., having parallel corpora at one's disposal is crucial. However, commonly available parallel corpora contain hardly more than a 100,000 words. Therefore, the translators trained using them are naturally weak.

Project schema: We propose to train a system that learns translation as well as generates parallel corpus using comparable corpus (which is readily available) for any 2 languages. We achieve this by:

- 1. Training a weak translator using the limited parallel corpus available.
- 2. Assuming we have a corpus X and its comparable counterpart Y, we use this weak translator to translate X into Y's language yielding a corpus Z.
- 3. An aligner like <u>Hunalign</u> or <u>LF Aligner</u> (again based on hunalign) is used to match the concepts within sentences in Z to the concepts within sentences in Y.
- 4. The above step outputs matching pairs of sentences in Y and Z (both in the same language, of course). For instance, if Y had sentences from  $Y_1, Y_2, \ldots, Y_N$  while Z had sentences from  $Z_1, Z_2, \ldots, Z_M$ , the aligner produces sentence pairs:  $\{Y_1, Z_1\}, \{Y_2, Z_2\}, \ldots, \{Y_K, Z_K\}$ . Note that the output numbering may not be the same as input numbering of sentences.
- 5. The Z sentences in the pair are mapped back to their counterparts in X and we get pairs  $\{Y_1, X_1\}, \{Y_2, X_2\}, \dots, \{Y_K, X_K\}$ .
- 6. Note that the above generated parallel corpus is free of any noise associated with translation.
- 7. The weak translator is retrained on the generated parallel corpus in a similar way.

Prefered languages are English and Hindi.

## Papers referenced

- 1. Kalchbrenner and Blunsom, Recurrent Continuous Translation Models, 2013
- 2. Sutskever et al, Sequence to Sequence Learning with Neural Networks, 2014
- 3. Cho et al, On the Properties of Neural Machine Translation: Encoder-Decoder Approaches, 2014
- 4. Hermann and Blunsom, Multilingual Distributed Representations without Word Alignment, 2014
- 5. Cho et al, Neural Machine Translation by jointly learning to align and translate, ICLR 2015
- 6. Wolk and Marasek, Building subject-aligned comparable corpora and mining it for truly parallel sentence pairs, 2014