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THE PROBLEM STATEMENT

We want to answer open-ended questions about images.

Does it appear to be
Does this person have 20/20 vision?

Is this person expecting company?
What is just under the tree?

What color are her eyes?
What s the mustache made of?

How many slices of pizza are there?
Is this a vegetarian pizza?

Figure: A teaser from the VQA dataset[Antol et al., 2015]



MOTIVATION

Visual Turing Test

An Al-complete task[Malinowski and Fritz, 2014b]. The specificity of
the questions enable automatic evaluation.

Helping the visually impaired

Apps like VizWiz[Bigham et al,, 2010] employ humans to answer
visual questions sent by visually impaired people.



DATASETS

VQA (VATech) [Antol et al., 2015]

750K questions on 250K images, 10 answers for every question.

Visual Madlibs (UNC) [Yu et al., 2015]

360K questions on 10K images. Lot of "high level” questions.

Toronto COCO-QA [Ren et al., 2015]

Automatically generated questions from COCO captions. 115K
question. Now obsolete.

DAQUAR [Malinowski and Fritz, 2014a]

Much smaller dataset with 12K questions Now obsolete.



MODELS



THE BASELINE BOW MODEL [REN ET AL., 2015]

1. Use word2vec[Mikolov et al.,, 2013] to extract bag of word features.

2. Use VGG ConvNet[Simonyan and Zisserman, 2014] to extract
features from image.

3. Treat the problem as multi-class classification.



LSTM-BASED MODEL[REN ET AL., 2015]

1. Reduce dimensionality of image features (down to the word vector
dimensionality) and feed this into the LSTM.

2. Use word2vec[Mikolov et al,, 2013] to convert every word to a
vector, which is then fed to the LSTM.

3. Make predictions after the last word has been fed.



WORK DONE SO FAR

1. VGGNet-based feature extraction pipeline for images complete.
2. Word2Vec-based feature extraction pipeline text for text complete.

3. A baseline model (multinomial logistic regression with lbfgs for
optimization) trained on 20K questions and evaluated on 10K
questions, performance only 16% so far.



IDEAS TO EXPLORE

1. Semantic alignment between questions and
images[Karpathy and Fei-Fei, 2014][Karpathy and Fei-Fei, 2015].

2. Use LSTM to encode questions, and decode
answers.[Sutskever et al., 2014]

3. Neural Net architectures like Memory
Networks.[Sukhbaatar et al., 2015]

4. Visual Attention [Xu et al., 2015].
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