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Background

Background

Knowledge Graph (KG): A multi-relational directed graph
composed of entities as nodes and relations as edges

Examples of Knowledge graphs: WordNet, Freebase, DB-pedia

Application of Knowledge Graphs:

word sense disambiguation
named entity recognition
information extraction

Knowledge Graph Embedding: A research direction which
attempts to embed components of a KG into continuous
vector spaces, so as to simplify the manipulation while
preserving the inherent structure of the original graph
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Purpose of this Paper

To embed KGs consisting of entities and relations into
low-dimensional vector spaces

Requirement: learned embeddings should be compatible
within each individual fact

Aim: To also discover the intrinsic geometric structure of the
embedding space
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A Brief Review of KG Embedding

KG embedding aims to embed entities and relations into a
continuous vector space and model the plausibility of each
fact in that space.
In general, it consists of three steps:

1 Representing entities (as points) and relations (as vectors,
matrices or tensors) in a continuous vector space
? Each edge in the KG is represented as a triple of fact
〈ei , rk , ej〉, indicating that head entity ei and tail entity ej are
connected by relation rk .

2 For each candidate fact 〈ei , rk , ej〉, specifying a scoring
(energy) function f (ei , rk , ej) to measure plausibility

3 Learning the latent representations: To obtain the entity and
relation representations, a margin-based ranking loss L is
minimized

L =
∑
t+∈O

∑
t−∈Nt+

[γ + f (ei , rk , rj)− f (e′
i , rk , e

′
j )]+ (1)



Semantically Smooth Knowledge Graph Embedding

Semantically Smooth Embedding

Problem Formulation

Problem Formulation

The entities (e) are classified into multiple semantic
categories (ce)

An energy function on each candidate triple is defined (e.g.
the energy functions listed in Table 1)

To make the embedding space semantically smooth, the
entity category information ce is further leveraged
(entities within the same semantic category should lie close to
each other in the embedding space)

This smoothness assumption is similar to the local invariance
assumption exploited in manifold learning theory (i.e. nearby
points are likely to have similar embeddings or labels). Thus
two manifold learning algorithms Laplacian Eigenmaps (LE)
and Locally Linear Embedding (LLE) are employed to
model such semantic smoothness
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Modelling Semantic Smoothness by LE

Modelling Semantic Smoothness by LE

Laplacian Eigenmaps (LE): A manifold learning algorithm
that preserves local invariance between each 2 data points
Smoothness Assumption 1: If two entities ei and ej belong
to the same semantic category, they will have embeddings ~ei
and ~ej close to each other.

Adjacency Matrix W1: w
(1)
ij =

{
1 if cei = cej
0 otherwise

Measure of Smoothness:

R1 =
1

2

n∑
i=1

n∑
j=1

‖~ei − ~ej‖2
2.w

(1)
ij

Incorporate R1 as a regularisation term in margin-based
ranking loss(Eq.1), and hence minimize

L1 =
1

N
L + λ1R1 (2)
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Modelling Semantic Smoothness by LLE

Locally Linear Embedding(LLE)

Smoothness Assumption 2: Each entity ei can be roughly
reconstructed by a linear combination of its nearest neighbors
N(ei ) in the embedding space, i.e., ~ei ≈

∑
ej∈N(ei )

αj ~ej
N(ei ): K uniformly random entities from ei ’s category

Weight matrix W2: w
(2)
ij =

{
1 if ej ∈ N(ei )
0 otherwise

And normalize the rows so that ∀i
∑n

j=1 w
(2)
ij = 1

Measure of Smoothness:

R2 =
n∑

i=1

‖~ei −
∑

ej∈N(ei )

w
(2)
ij ~ej‖2

2

Incorporate R2 in Eq.1, and hence minimize

L2 = (1/N)L + λ2R2 (3)
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Data Sets

Three data sets of different sizes:
L and S: small-scale data sets containing 8 relations on topics
”location” and ”sport” respectively
N 186 : a larger data set containing the most frequent 186
relations

Entity category information is extracted from a specific
relation called Generalization

Table 3 gives some statistics of the three data sets after
pre-processing

Notice that all the three data sets suffer from the data
sparsity issue
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Brief

Link Prediction: To complete a triple 〈ei , rk , ej〉 with ei or ej
missing, i.e., predict ei given (rk , ej) or predict ej given (ei , rk).
Triple Classification: to verify whether a given triple 〈ei , rk , ej〉 is
correct or not
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Link Prediction
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conclusion

Conclusion

SSE imposes constraints on the geometric structure of the
embedding space

The semantic smoothness assumptions are constructed by
using entities’ category information, and then formulated as
geometrically based regularization terms to constrain the
embedding task

By leveraging additional information besides observed triples,
SSE can also deal with the data sparsity

SSE significantly and consistently outperforms state-of-the-art
embedding methods

Generalization: The smoothness assumptions can actually be
imposed to a wide variety of embedding models, and
constructed using other information besides entities’ semantic
categories
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Future Work

Future Work

1 Manifold regularization terms using other data sources:
Entity similarities can be derived in different ways, e.g.,
specified by users or calculated from entities textual
descriptions.

2 Efficiency and scalability enhancement: Processing the
manifold regularization terms can be time- and
space-consuming (especially the one induced by the LE
algorithm).

3 Impose the semantic smoothness assumptions on other KG
embedding methods (e.g. those based on matrix/tensor
factorization or Bayesian clustering), and even on other
embedding tasks (e.g. word embedding or sentence
embedding).
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Future Work

Thank You!

Questions?
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