Question classification for Code-Mixed text ARCHIT RATHORE PRABUDDHA CHAKRABORTY

Problem Statement

► Given:

- A code-mixed question
- ► To predict:
 - Expected type of the answer

Answer-type hierarchy [1]

Challenges

- No dataset available on the public domain
- Dearth of tools that handles code-mixed text no POS-taggers, chunkers, dependency parsers, language identification tools etc

Proposed Solution

- Create a new dataset of code-mixed questions
- Make dataset in a format compatible with the existing tools

Dataset Format

- QueNo#1 CoarseLabel:FineLabel <QueString in English>
- QueNo#2 CoarseLabel:FineLabel <QueString in Hindi>
- QueNo#3 CoarseLabel:FineLabel <QueString in Codemixed_scriptPreserved>
- QueNo#4 CoarseLabel:FineLabel <QueString in Codemixed_romanized>
- 185#1 DESC:reason Why do horseshoes bring luck ?
- 185#2 DESC: reason घोड़े की नाल भाग्य क्यों लाती है?
- 185#3 DESC:reason घोड़े की नाल luck क्यों लाती है?
- 185#4 DESC:reason Ghode ki naal luck kyon laati hai?

Dataset Creation

- Get English annotated questions from dataset created by Li and Roth [5]
- Use python's Goslate API to convert these questions to Hindi
- Manually do the following:
 - Fix translation errors in Goslate output
 - Repose the questions in a code mixed sense
- Transliterate the script-preserved code-mixed questions to roman script
 - Done using "Sanscript" API : has problems with schwa deletion [8]
 - Manually corrected as of now

Preliminary Results

Data of 200 code-mixed sentences

Used :

Linear kernel SVM (one-vs-rest approach)

Logistic regression classifier

Performed 100 iterations of training and testing with both classifiers

Split data randomly with 0.8 : 0.2 ratio

1	pr	ecision	recall	fl-score	support			
2								
3	0	0.64	0.65	0.64	727			
4	1	0.40	0.41	0.40	804			
5	2	0.74	0.65	0.69	845			
6	3	0.59	0.65	0.62	581			
7	4	0.60	0.61	0.60	643			
8								
9	avg / total	0.59	0.59	0.59	3600			
10								
11	LogisticRegression							
12	[[470 91 38	71 57]						
13	[86 331 105 1	19 163]						
14	[65 137 547	67 29]						
15	[44 117 29 3	76 15]						
16	[66 158 25	2 392]]						
17	CORRECT PREDICTIONS:							
18	2116							
19	TOTAL PREDICTIONS:							
20	3600							
21	ACCURACY:							
22:	0.58777777778							

1		precision	recall	f1-score	support			
2								
33	0	0.64	0.63	0.64	728			
4	1	0.36	0.41	0.38	761			
5	2	0.72	0.63	0.67	875			
6	3	0.61	0.65	0.63	608			
7	4	0.59	0.59	0.59	628			
8								
9	avg / total	0.59	0.58	0.58	3600			
10								
11	LinearSVC							
12	[[461 102 4	40 73 52]						
13	[92 309 10	06 112 142]						
14	[60 163 5	55 61 36]						
15	[43 114 3	35 395 21]						
16	[62 162 3	34 2 368]]					
17	CORRECT PREDICTIONS:							
18	2088							
19	TOTAL PREDICTIONS:							
20	3600							
21	ACCURACY:							
22	0.58							

Further Work

Use a tree kernel for SVM as proposed by Collin and Duffy [3]

- Introduce adjacency features as proposed by Raghavi et al [2]
- Use DCNN for sentence modelling Kalbrechhner et al [6]

Fig – Collin and Duffy

References

- 1. Xin Li and Dan Roth. "Learning question classifiers". Proceedings of the 19th international conference on Computational linguistics, 2002.
- 2. Khyathi Chandu Raghavi, Manoj Kumar Chinnakotla, and Manish Shrivastava. "Answer ka type kya he?" Learning to classify questions in code-mixed language. Proceedings of the 24th International Conference on World Wide Web, pages 853–858, 2015
- 3. Collins, Michael, and Nigel Duffy. "Convolution kernels for natural language." Advances in neural information processing systems. 2001.
- 4. Siva Reddy. Hindi dependency parser. https://bitbucket.org/sivareddyg/ hindi-dependencyparser, 2014
- 5. Xin Li and Dan Roth. Experimental data for question classification. <u>http://</u> <u>cogcomp.cs.illinois.edu/Data/QA/QC/</u>.
- 6. Kalchbrenner, Nal, Edward Grefenstette, and Phil Blunsom. "A convolutional neural network for modelling sentences." *arXiv preprint arXiv:1404.2188* (2014).
- 7. Source https://github.com/sanskrit/sanscript