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Abstract

This project is aimed at solving the task 8 of SemEval 2016, in which, any English sentence
had to be converted into its Abstract Meaning Representation (AMR) [ISI, 2015]. All the
data and the code for the baseline algorithm was provided by the organizer of the task. In the
baseline algorithm provided for the same [Flanigan et al., 2014], we noticed that the AMR
graph generation hugely depended on the focus of the sentence. And the baseline failed to
recognize the focus quite often. So we used an LSTM to recognize the focus separately and
use this new focus for generating the rest of the graph.

1 Abstract Meaning Representation

“Abstract Meaning Representation (AMR) is a compact, readable, whole-sentence semantic anno-
tation. Annotation components include entity identification and typing, PropBank semantic roles,
individual entities playing multiple roles, entity grounding via wikification, as well as treatments
of modality, negation, etc.” [May, 2015]

1. Who is doing what to whom in a sentence

2. Different from a parse tree, it is abstract

3. AMR does not say anything about how it wants to be processed.

4. It is not an interlingua.

Figure 1: An ideal AMR graph for the sentence “The boy wants the girl to believe him.”
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1.1 Representation

AMR is a rooted, directed acyclic graph with labels on edges (relations) and leaves (concepts), as
shown in figure 1.

The representation of the above graph in the output is:
1. (w / want-01
2. :ARG0 (b / boy)
3. :ARG1 (b2 / believe-01
4. :ARG0 (g / girl)
5. :ARG1 b))

1.2 More Logical than Syntax

A single AMR can be expressed in various ways in English. For example, figure 1 can be expressed
in the following ways:

• The boy wants the girls to believe him

• The boy desires the girl to believe him.

• The boy desires to be believed by the girl.

• The boy has a desire to be believed by the girl.

• The boy’s desire is for the girl to believe him.

• The boy is desirous of the girl believing him

2 Related Work

2.1 Baseline Algorithm

The method is based on a novel algorithm for finding a maximum spanning, connected subgraph,
embedded within a Lagrangian relaxation of an optimization problem that imposes linguistically
inspired constraints.
JAMR parsing represents an AMR parse as a graph G = 〈V,E〉; vertices and edges are given
labels from sets LV and LE, respectively. G is constructed in two stages. The first stage identifies
the concepts evoked by words and phrases in an input sentence w = 〈w1, · · · , wn〉, each wi a
member of vocabulary W . The second stage connects the concepts by adding LE-labeled edges
capturing the relations between concepts, and selects a root in G corresponding to the focus of
the sentence w.

2.1.1 Concept Identification

The concept identification stage maps spans of words in the input sentence w to concept graph
fragments from F , or to the empty graph fragment φ. These graph fragments often consist of just
one labeled concept node, but in some cases they are larger graphs with multiple nodes and edges.
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Concept identification is illustrated below using the example, “The boy wants to visit New
York City.”:
1. (c / city
2. :name (n / name
3. :op1 ”New”
4. :op1 ”York”
5. :op1 ”City”))

Let the concept lexicon be a mapping clex : W → 2F that provides candidate graph fragments
for sequences of words. (The construction of F and clex is discussed below.) Formally, a concept
labeling is

1. a segmentation of w into contiguous spans represented by boundaries b, giving spans 〈wb0:b1 , wb1:b2 , · · ·wbk1:bk〉,
with b0 = 0 and bk = n

2. an assignment of each phrase wbi1:bi to a concept graph fragment ci ∈ clex(wbi1:bi) ∪ φ.

A sequence of spans b and a sequence of concept graph fragments c, both of arbitrary length
k, are scored using the following locally decomposed, linearly parameterized function:

score(b, c; θ) =
k∑
i=1

θTf(wbi1:bi , bi1, bi, ci) (1)

where f is a feature vector representation of a span and one of its concept graph fragments in
context. The features are:

• Fragment given words: Relative frequency estimates of the probability of a concept graph
fragment given the sequence of words in the span. This is calculated from the concept-word
alignments in the training corpus (2.1.3).

• Length of the matching span (number of tokens).

• NER: 1 if the named entity tagger marked the span as an entity, 0 otherwise.

• Bias: 1 for any concept graph fragment from F and 0 for φ.

JAMR highest-scoring b and c using a dynamic programming algorithm: the zeroth-order case
of inference under a semiMarkov model [Janssen and Limnios, 1999]. Let S(i) denote the score of
the best labeling of the first i words of the sentence, w0:i ; it can be calculated using the recurrence:

S(0) = 0

S(i) = max
j:0j<i,

c∈clex(wj:i)∪φ

{S(j) + θTf(wj:i, j, i, c)}

The best score will be S(n), and the best scoring concept labeling can be recovered using back-
pointers, as in typical implementations of the Viterbi algorithm. Runtime is O(n2).

clex is implemented as follows. When clex is called with a sequence of words, it looks up
the sequence in a table that contains, for every word sequence that was labeled with a concept
fragment in the training data, the set of concept fragments it was labeled with. clex also has a
set of rules for generating concept fragments for named entities and time expressions. It generates
a concept fragment for any entity recognized by the named entity tagger, as well as for any word
sequence matching a regular expression for a time expression. clex returns the union of all these
concept fragments.
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2.1.2 Relation Identification

The relation identification stage adds edges among the concept sub-graph fragments identified
in the first stage (2.1.1), creating a graph. We frame the task as a constrained combinatorial
optimization problem.

Consider the fully dense labeled multigraph D = 〈VD, ED〉 that includes the union of all labeled
vertices and labeled edges in the concept graph fragments, as well as every possible labeled edge

u
l−→ v, for all u, v ∈ VD and every l ∈ LE.
We require a subgraph G = 〈VG, EG〉 that respects the following constraints:

1. Preserving: all graph fragments (including labels) from the concept identification phase
are subgraphs of G.

2. Simple: for any two vertices u and v ∈ VG, EG includes at most one edge between u and v.
This constraint forbids a small number of perfectly valid graphs, for example for sentences
such as “John hurt himself”; however, we see that < 1% of training instances violate the
constraint. We found in preliminary experiments that including the constraint increases
overall performance.

3. Connected: G must be weakly connected (every vertex reachable from every other vertex,
ignoring the direction of edges). This constraint follows from the formal definition of AMR
and is never violated in the training data.

4. Deterministic: For each node u ∈ VG, and for each label l ∈ LE, there is at most one
outgoing edge in EG from u with label l.
Linguistically, the determinism constraint enforces that predicates have at most one semantic
argument of each type.

One constraint we do not include is acyclicity, which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced by JAMR. In fact, none of the graphs produced
on the test set violate acyclicity.

Given the constraints, we seek the maximum-scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;ψ) =
∑
e∈EG

ψTg(e) (2)

The features are shown in Table 2.1.2.
The solution to maximizing the score to Eq. 2, subject to the constraints, uses a Lagrangian

relaxation that iteratively adjusts the edge scores to an algorithm which ignores the constraint
4 (but respects the others) so as to enforce the constraint 4. For details about the mathematics
involved, please go through [Flanigan et al., 2014].

2.1.2.1 Focus Identification
In AMR, one node must be marked as the focus of the sentence. We notice this can be accomplished
within the relation identification step: we add a special concept node root to the dense graph D,
and add an edge from root to every other node, giving each of these edges the label FOCUS. We
require that root have at most one outgoing FOCUS edge. Our system has two feature types for
this edge: the concept it points to, and the shortest dependency path from a word in the span to
the root of the dependency tree.
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Name Description
Label For each l ∈ LE, 1 if the edge has that label
Self edge 1 if the edge is between two nodes in the same fragment
Tail fragment root 1 if the edge’s tail is the root of its graph fragment
Head fragment root 1 if the edge’s head is the root of its graph fragment
Path Dependency edge labels and parts of speech on the shortest syntactic path

between any two words in the two spans
Distance Number of tokens (plus one) between the two concepts’ spans (zero if the

same)
Distance indicators A feature for each distance value, that is 1 if the spans are of that distance
Log distance Logarithm of the distance feature plus one.
Bias 1 for any edge.

Table 1: Features used in relation identification. In addition to the features above, the following
conjunctions are used (Tail and Head concepts are elements of LV ): Tail concept ∧ Label, Head
concept ∧ Label, Path ∧ Label, Path ∧ Head concept, Path ∧ Tail concept, Path ∧ Head concept
∧ Label, Path ∧ Tail concept ∧ Label, Path ∧ Head word, Path ∧ Tail word, Path ∧ Head word
∧ Label, Path ∧ Tail word ∧ Label, Distance ∧ Label, Distance ∧ Path, and Distance ∧ Path ∧
Label. To conjoin the distance feature with anything else, we multiply by the distance.

2.1.3 Automatic Alignments

In order to train the parser, we need alignments between sentences in the training data and
their annotated AMR graphs. More specifically, we need to know which spans of words invoke
which concept fragments in the graph. To do this, we built an automatic aligner and tested its
performance on a small set of alignments we annotated by hand.

The automatic aligner uses a set of rules to greedily align concepts to spans. The list of rules
is given in Table 2.1.3. The aligner proceeds down the list, first aligning named-entities exactly,
then fuzzy matching named-entities, then date-entities, etc. For each rule, an entire pass through
the AMR graph is done. The pass considers every concept in the graph and attempts to align
a concept fragment rooted at that concept if the rule can apply. Some rules only apply to a
particular type of concept fragment, while others can apply to any concept. For example, rule
1 can apply to any NAME concept and its OP children. It searches the sentence for a sequence of
words that exactly matches its OP children and aligns them to the NAME and OP children fragment.

Concepts are considered for alignment in the order they are listed in the AMR annotation (left
to right, top to bottom). Concepts that are not aligned in a particular pass may be aligned in
subsequent passes. Concepts are aligned to the first matching span, and alignments are mutually
exclusive. Once aligned, a concept in a fragment is never realigned. However, more concepts can
be attached to the fragment by rules 8-14.

We use WordNet to generate candidate lemmas, and we also use a fuzzy match of a concept,
de- fined to be a word in the sentence that has the longest string prefix match with that concept’s
label, if the match length is 4. If the match length is < 4, then the concept has no fuzzy match.
For example the fuzzy match for ACCUSE-01 could be “accusations” if it is the best match in the
sentence. WordNet lemmas and fuzzy matches are only used if the rule explicitly uses them. All
tokens and concepts are lowercased before matches or fuzzy matches are done.
The aligner was trained on hand-aligned data (200 sentences [Flanigan et al., 2014]).

5



1. (Named Entity) Applies to name concepts and their opn children. Matches a span that
exactly matches its opn children in numerical order.
2. (Fuzzy Named Entity) Applies to name concepts and their opn children. Matches a span
that matches the fuzzy match of each child in numerical order.
3. (Date Entity) Applies to date-entity concepts and their day, month, year children (if
exist). Matches any permutation of day, month, year, (two digit or four digit years), with or
without spaces.
4. (Minus Polarity Tokens) Applies to - concepts, and matches “no”, “not”, “non.”
5. (Single Concept) Applies to any concept. Strips off trailing ‘-[0-9]+’ from the concept (for
example run-01 → run), and matches any exact matching word or WordNet lemma.
6. (Fuzzy Single Concept) Applies to any concept. Strips off trailing ‘-[0-9]+’, and matches
the fuzzy match of the concept.
7. (U.S.) Applies to name if its op1 child is united and its op2 child is states. Matches a word
that matches “us”, “u.s.” (no space), or “u. s.” (with space).
8. (Entity Type) Applies to concepts with an outgoing name edge whose head is an aligned
fragment. Updates the fragment to include the unaligned concept. Ex: continent in (continent

:name (name :op1 "Asia")) aligned to “asia.”
9. (Quantity) Applies to .*-quantity concepts with an outgoing unit edge whose head is
aligned. Updates the fragment to include the unaligned concept. Ex: distance-quantity in
(distance-quantity :unit kilometer) aligned to “kilometres.”
10. (Person-Of, Thing-Of) Applies to person and thing concepts with an outgoing .*-of

edge whose head is aligned. Updates the fragment to include the unaligned concept. Ex: person
in (person :ARG0-of strike-02) aligned to “strikers.”
11. (Person) Applies to person concepts with a single outgoing edge whose head is aligned.
Updates the fragment to include the unaligned concept. Ex: person in (person :poss (country

:name (name :op1 "Korea")))

12. (Goverment Organization) Applies to concepts with an incoming ARG.*-of edge whose
tail is an aligned government-organization concept. Updates the fragment to include the un-
aligned concept. Ex: govern-01 in (government-organization :ARG0-of govern-01) aligned
to “government.”
13. (Minus Polarity Prefixes) Applies to - concepts with an incoming polarity edge whose
tail is aligned to a word beginning with “un”, “in”, or “il.” Updates the fragment to include the
unaligned concept. Ex: - in (employ-01 :polarity -) aligned to “unemployment.”
14. (Degree) Applies to concepts with an incoming degree edge whose tail is aligned to a word
ending is “est.” Updates the fragment to include the unaligned concept. Ex: most in (large

:degree most) aligned to “largest.”

Table 2: Rules used in the automatic aligner
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2.2 Our Inspiration

Zhou and Xu, in their work [Zhou and Xu, 2015] have done a similar thing. They also created
a graph based on the meaning of the statement. But they did not have any formalism in the
representation of their output.
Their goal was semantic role labeling (SRL), which they performed using a Deep Bi-directional
Long Sort-Term Memory (DB-LSTM).

2.2.1 A Brief about the paper

Semantic role labeling (SRL) is a form of shallow semantic parsing whose goal is to discover the
predicate-argument structure of each predicate in a given input sentence.
Given a sentence, for each target verb (predicate) all the constituents in the sentence which fill
a semantic role of the verb have to be recognized. Typical semantic arguments include Agent,
Patient, Instrument, etc., and also adjuncts such as Locative, Temporal, Manner, Cause, etc..

SRL is considered as a supervised machine learning problem. In traditional methods, linear
classifier such as SVM is often employed to perform this task based on features extracted from
the training corpus.

To address the above issues, [Collobert et al., 2011] proposed a unified neural network architec-
ture using word embedding and convolution. They applied their architecture on four standard NLP
tasks: Part-Of-Speech tagging (POS), chunking (CHUNK), Named Entity Recognition (NER) and
Semantic Role Labeling (SRL). They were able to reach the previous state-of-the-art performance
on all these tasks except for SRL. They had to resort to parsing features in order to make the
system competitive with state-of-the-art performance.

To address the above difficulties, [Zhou and Xu, 2015] proposed an end-to-end system using
deep bi-directional long short-term memory (DB-LSTM) model. This model takes only original
text as the input features, without any intermediate tag such as syntactic information. The input
features are processed by the following 8 layers of LSTM bidirectionally. At the top locates the
conditional random field (CRF) model for tag sequence prediction. It achieves the state-of-the-art
performance of f-score F1 = 81.07 on CoNLL-2005 shared task and F1 = 81.27 on CoNLL-2012
shared task.

3 Methodology

Our idea was to implement the algorithm described in [Zhou and Xu, 2015] on the concepts created
by [Flanigan et al., 2014], and then label the edges using a similar technique. We also wanted to
support the relation-label identification using Word2Vec by giving greater weight to labels that
occur more frequently with a particular concept.
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Concept Iden-
tification

Start

Graph Formation
using DB-LSTM

Word2Vec support

Relation Iden-
tification

But due to time constraints in the course project, we thought of implementing some change
similar to [Zhou and Xu, 2015] that would be most critical to the algorithm. So we targetted the
focus of the word, which was critical in the relation identification step.

Focus Identification
using LSTM

Start

Concept Iden-
tification

Word2Vec support

Relation Iden-
tification

We trained an LSTM on the data to learn the focus of a sentence, and assigned greater weight
to the focus in the relation identification step.

4 Results

We evaluate the performance of the full parser using Smatch v1.0 [Cai and Knight, 2013], which
counts the precision, recall and F1 of the concepts and relations together. Using the full pipeline
(concept identification and relation identification stages), our parser achieves ¡¿% F1 on the test
data (Table 3).

—– Evaluation on Test —–

Algorithm Precision Recall F1 Score
JAMR claimed result 0.52 0.66 0.58
JAMR + LSTM 0.763 0.438 0.557

Table 3: Parser Performance

Test Sentence-
“However , most of the buildings in this hard - hit area did not meet these requirements”

AMR produced by:
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• JAMR:

• JAMR + LSTM:

• Ideal output:

5 Future Work

• AMR have only been developed for english language. Hence extension to other languages.

• Train LSTM with the sentence parsed recursively to capture more features.

• Deep Bidirectional LSTM are in general much more promising than the single layered LSTM
as the earlier work by [Zhou and Xu, 2015] suggests.
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