
CS671: Natural Language Processing Vol. 00 no. 00
Pages 1–5

Author Identification : A Deep Approach and Comparative
Study
Anand Pandey 1, Ankit Pensia 2,
1Department of Computer Science and Engineering,IIT Kanpur
2Department of Electrical Engineering,IIT Kanpur

ABSTRACT
Author identification has been one of the classical problem in

Natural Language Processing. In this project, we tried different
architectures of neural network to identify authors of the text. Each
architecture has different requirements for the format of input and
output data. Each architecture has its own merits and downside.
The task of Author identification can be transformed into a multi-class
classification problem given a vector representation of the document
which contains all the information needed for author-identification.
The objective is to effectively learn this vector-representation of the
document.

Keywords: Author Identification, Deep Learning, Natural Language
Processing, Tree-LSTM

1 INTRODUCTION
In this project, we wish to explore the problem of author
identification in the field of Natural Language Processing. This
problem has been studied extensively using hand-designed features.
Hand-designed features require domain expertise and great insight
of the problem. We want to explore how deep learning can be used to
learn the abstract and higher-level features of the document, which
could be used to identify author. We wish to explore several variants
from deep architecture, which could be used to tackle this problem.
Although the title contains the word ”deep”, the models used had
single layer for the lack of computational power and large data.
Layers could be stacked to produce deep architectures.

Problem statement can be formalised as - Given a text document
and a set of authors, learn a function that maps the document to
a single author. The training data includes the documents, labelled
with their authors.

2 PREVIOUS WORK
A lot of features have been suggested based on n-grams, characters,
grammar to identify authors[5][1][3]. Many of these features have
been designed by experts of the field. Such features quantify the
use of punctuation, sentence structure, vocabulary in the given
document. The philosophy behind such features is that these
features don’t change much for a specific author across his writings.
There has been a recent revival of interest in using deep learning
methods for various NLP problems[4], in order to learn more robust
features using easily available large data.

For the task of author identification, we came across
recent project works which made use of neural network
architecture for author attribution which included Long Short-
Term Memory, Convolutional Neural Network and Recursive
Neural Network[6][7][8]. All of these architectures were tested
on very different type of datasets and a comparison couldn’t be
drawn. In this project, we have used LSTM and have tried two
new architectures for author attribution including Tree-LSTM and
Paragraph Vector.

3 DATASET GENERATION
Neural Networks require large amount of data to learn the problems.
This is so because as the model architecture grows in complexity and
size, the number of parameters also explode.

We required documents with considerable number of words and
containing semantically rich sentence. The documents should also
have been written by people reflecting their distinct writing style.
Copied content shouldn’t appear in dataset, both training and testing
as it defeats the purpose of author identification.

Quora is a Qu(estion) or A(nswer) platform where people ask
questions belonging to wide variety of domains. These questions
are answered by people, usually by those who have expertise in
that domain. The answers written by Quora Top-Writers do satisfy
aforementioned desired properties. The dataset was generated by
using Quora RSS feed. Each answer was treated as a different
document. We collected around 1700 answers from 47 Quora Top
Writers. All these answers had minimum word length. Such a filter
was used so that the document (each answer) should reflect author’s
writing style.

Number of Authors 47
Total Answers 1732

Vocabulary Size 46804
Total Words 723502

4 ARCHITECTURES USED
4.1 Long Short-Term Memory
Long Short Term Memory Networks[11], or LSTMs have been very
successful in modelling sequences. They have provided a significant
increase in our ability to remember the history in sequential data. In
the context of natural languages, they have proved to be a great leap
in abstract representation of sentences. LSTMs allow us to model

c© . 1

CS671A-J

text as a sequence of words. Many state-of-the-art benchmarks in
Natural Language Processing currently use LSTM or its variants.

The effectiveness and wider applications of LSTMs compared
to traditional Recurrent Neural Network can be attributed to the
fact that the addition of gates enable LSTMs to solve Vanishing
or Exploring Gradient problem prevalent in Recurrent Neural
Networks while using Back Propagation Through Time (BPTT).

The equations of LSTM are:-

it = σ(W (i)xt + U (i)ht−1 + b(i))
ft = σ(W (f)xt + U (f)ht−1 + b(f))
ot = σ(W (o)xt + U (o)ht−1 + b(o))

ut = tanh(W (u)xt + U (u)ht−1 + b(u))
ct = it � ut + ft � ct−1

ht = ot � tanh(ct)

As the sequence length increases, the error doesn’t propagate
back to the start of sentence. So, the hidden vector at the end of
sequence is not able to capture the context of sequence completely.
Several answers were longer than a conventional page. So, we first
break the answer into chunks of fixed maximum size. To do so, we
first split each document into sentences. The consecutive sentences
are then grouped together till the combined number of words exceed
a word-limit size.
For training and testing purposes on LSTM, each chunk with its
author-label was treated as separate example. For this experiment,
we chose the max-length of sequence to be 150. This parameter was
not tuned.

Theoretically, the hidden vector of at the last time-step of
sequence should be able to capture every information of sentence
and if a classifier is trained on this fixed-size vector, it would be able
to predict author completely. But as told earlier, LSTMs sometimes
suffer from the problem of having memory of finite-length past.
To overcome this, the classifier was trained on the average of
hidden-representation of every node. Instead of simple average, any
differentiable function of hidden-representations of every time-step
can be used.

Experiment results are given at the end.

4.2 Tree-LSTM
LSTMs model each sentence as a causal system, with the
assumption that the future depends only on the past(captured
using hidden vector) and the present (input). But as we know, the
sentences have more structure than a simple Causal linear relation.
Although, Bidirectional LSTM try to capture anti-causal relation,
but a more natural and comprehensive structure of a sentence is
given by the parse tree of the sentence.

Tree-LSTMs are a recursive neural network, first proposed in
2015 in [2]. In [2], author makes use of the parse-tree by using the
recursive neural network architecture.

Fig. 1. Model used for training LSTM for author identification.

Fig. 2. Tree-LSTM, as shown in [2]

Author proposes two variants of Tree-LSTM. We have used the
’Constituency Tree-LSTMs’ which handles the left and right child
of a node differently (for binary tree).

The equations of Tree-LSTM are :-

ij = σ(W (i)xj +
N∑
l=1

U
(i)
l hjl + b(i))

2

CS671A-J

fjk = σ(W (f)xj +
N∑
l=1

Ukl
(f)hjl + b(f))

oj = σ(W (o)xj +
N∑
l=1

U
(o)
l hjl + b(o))

uj = tanh(W (u)xj +
N∑
l=1

U
(u)
l hjl + b(u))

cj = ij � uj +
N∑
l=1

fjl �cjl

hj = oj � tanh(cj)

The obvious requirement for using Tree-LSTM is a parser.
As suggested by author and keeping the size of data, time and
computational power in mind, we are using Binarized version
of parse trees. We split each document into sentences and each
sentence is labelled with the same author-label as the original
document. Each sentence thus becomes a separate example, for
training or testing purpose.

After forward propagation through Tree-LSTM, we will have a
hidden vector representation of the sentence at the root node of
the tree. A Softmax Classifier was trained on hidden vector of the
root node. As the number of matrices have increased compared to
the LSTM model, the number of parameters have also increased
rapidly. For a recursive Neural Net, the parameters converge to a
good optima if at each node(can be thought of as neural network at
each time step) has a label to achieve. For author attribution task,
only the sentences have label and thus, the error gradient decreases.
It leads to the slow convergence (if any) of the parameters of model.

4.3 Paragraph Vectors
Bag-of-words feature have two major weaknesses: they lose the
ordering of the words and they also ignore semantics of the words.
In Word2vec[10] also, after learning the word-embeddings, the
paragraph embedding is not obvious. To overcome this, Paragraph
Vector model was proposed in [9].

As proposed in [9], the paragraph-id is also fed to neural network,
and corresponding vector is also learnt while training the word-
vectors of the corpus.

The paragraph vector is then representative of the whole
paragraph and could be used to find similarity among other
paragraphs. Our idea is to check whether we are able to learn the
vector representation of each author and use some similarity metric
to identify author.

To use it for the task of author identification, in place
of paragraph-id, we provide the author-label of the document.
The training process will then learn a vector-representation for
each author-label and vector-representation for each word. The
optimization task is same as that of word2vec[10] and paragraph
vector [9], which is to correctly predict the word, given its context
words and author-vector.

Fig. 3. Paragraph Vector, as proposed in [9]

As mentioned in [9], while testing, the author-vector for
document is initialised randomly. Then keeping the word-
embeddings fixed, the author-vector is allowed to change for the
same prediction problem, i.e. predicting the word given its context-
word and author-vector. Once author-vector is obtained (i.e. after
convergence), its similarity with the existing authors is checked
using cosine similarity. The author-label corresponding to the most-
similar author-vector is then reported as prediction.

5 EXPERIMENT AND RESULTS
Implementation of LSTM was done in theano, by modifying the
tutorial code given for LSTM on theano official website[12][13].
The paragraph-vector implementation was available in gensim[15].
For tree-LSTM, the code was modified slightly for our purpose,
taking the implementation provided by [14] as underlying base.

5.1 LSTM
As mentioned earlier, for training and testing of LSTM, each
example was a chunk of original document. The word-embeddings
of words were initialised randomly as opposed to using word2vec
embeddings as initialization. Random initialization was done
because similar words are close in vector representation of
word2vec but such a property is not desired here. Instead, the use
of different words (although similar in sense) to convey the same
information, is one of the key feature to identify authors.

A vocabulary was learnt on training set, prior to training
LSTM. The size of vocabulary was fixed to 10,000 keeping the
computational power in mind. For LSTM, input was sequence
of word-indices, which represented the words with respect to the
vocabulary. Each input represented a chunk of document. The
maximum length of such sequence was set to 150 with the batch
size of 16 examples. The dimensions of word-embedding and the
hidden vector were both set to 100. The accuracies are with respect
to the chunks of size 150.

Dataset Top-1 Accuracy Top-5 Accuracy
Train 0.929334011 0.954289905
Valid 0.285024155 ...
test 0.274973712 0.542060988

3

CS671A-J

5.2 Tree-LSTM
Tree-LSTM is most effective when input is a sentence instead
of a pragragraph. So, for Tree-LSTM, each document was split
into sentences. Each sentence was labelled with the author-label
of original document. Each labeled sentence was then a separate
example. Stanford Parser was used to generate the parse-trees of
each example (i.e. sentence). The tree was then binarized so that the
binary architecture model could be used. Each node in tree then had
either two,one or no children. Very large sentences were ignored due
to parsing constraints and errors.

The reported accuracies are with respect to each sentence.

Dataset Top-1 Accuracy
Train 0.197
Test 0.182

5.3 Paragraph-Vector
The pre-processing required for training paragraph-vector was
minimal. Every document was given a paragraph-id which was
the same as that of author-label. The standard implementation of
paragragph-vector was then run which after convergence, learnt the
word-embeddings for each word and author-embedding for each
author.

At inferring stage, the model returned a vector-embedding of
the document, representing in this problem-setting, a vector-
representation of author. Its similarity with the trained author-
representations were checked and most similar author-id reported.

Dataset Top-1 Accuracy Top-5 Accuracy
Train 0.038106236 0.123556582

6 CONCLUSION
For our limited dataset, LSTM architecture outperformed other
models for our problem. Tree-LSTM suffered from lack of large
data and vanishing gradient (only root node had a label). With the
addition of more data, we think Tree-LSTM will be able to learn
the grammatical style of author better. Our hypothesis that we could
learn an author-embedding was not applicable.

• The reason why we think Tree-LSTM was not able to
outperform LSTM was that only the root node had a label.
The errors vanished when back propagated through time after
certain node-depth. A heuristic to replicate the root label to few
of the children can be tried.

• For Paragraph-Vector, the unexpectedly bad performance could
be attributed to the absence of a penalty term for wrongly
classifying authors in the loss function. The parameters were
tuned for the problem of correctly classifying the word, given
context words. For the problem of fixed-set of authors, instead
of appending paragraph-vector in the input of neural-network
as proposed in [9], predicting the author in output while
simultaneously learning the word-embedding could be tried.

7 FUTURE WORK
With the exciting results shown by LSTM and Tree-LSTM without
tuning many hyper-parameters and being trained on only a small
dataset, the availability of large dataset and proper-training of
models show a great promise in improving result. Apart from these,
the key ideas (the reason why present models didn’t work or the
way they could be improved are) which could be tried in future are

• Replicating the root label to some of children using a heuristic.

• Instead of only taking paragraph-vector as an input, the
paragraph vector should be given as output with a large context
window, with a soft-max classifier on top of it to predict author
directly. The end-to-end neural network can then be trained and
should outperform the current paragraph-vector model.

• To see how real deep architecture would work, LSTMs could
be stacked on top of each-other.

8 ACKNOWLEDGEMENT
We thank Prof. Amitabha Mukherjee for his valuable support and
consistent guidance throughout the project.

9 REFERENCES
[1] Green, R. M., Sheppard, J. W. Comparing Frequency- and
Style-Based Features for Twitter Author Identification (2013, May).
Twenty-Sixth International Florida Artificial Intelligence Research
Society Conference :64-69

[2] K. S. Tai, R. Socher, and C. D. Manning. Improved
semantic representations from tree- structured long short-term
memory networks.(2015),ACM Computing Research Repository
Vol: abs/1503.00075

[3] Patrick Juola. Authorship attribution. Foundations and Trends
in Information Retrieval , 1(3):233334, 2006

[4] Ronan Collobert, Jason Weston, L eon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural language
processing (almost) from scratch. The Journal of Machine Learning
Research , 12:24932537, 2011.

[5] Stamatatos, E. (2009), A survey of modern authorship
attribution methods. J. Am. Soc. Inf. Sci., 60: 538556. doi:
10.1002/asi.21001

[6] Pranav Jindal, Ashwin Paranjape: Deanonymizing Quora
Answers (2015).CS224,Stanford University

[7] Stephen Macke, Jason Hirshman: Deep Sentence-Level
Authorship Attribution (2015). CS224,Stanford University

[8] Dylan Rhodes: Author Attribution with CNNs(2015).
CS224,Stanford University

4

CS671A-J

[9] Quoc Le, Tomas Mikolov ;Distributed Representations of
Sentences and Documents arXiv:1405.4053

[10] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeffrey Dean. Distributed representations of phrases and their
compositionality. In NIPS.

[11] Hochreiter, S., Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8), 1735-1780. Addition of the
forget gate to the LSTM model

[12] Bastien, Frdric, Lamblin, Pascal, Pascanu, Razvan, Bergstra,
James, Goodfellow, Ian, Bergeron, Arnaud, Bouchard, Nicolas, and
Bengio, Yoshua. Theano: new features and speed improvements.
NIPS Workshop on Deep Learning and Unsupervised Feature
Learning, 2012.

[13] Bergstra, James, Breuleux, Olivier, Bastien, Frdric, Lamblin,
Pascal, Pascanu, Razvan, Desjardins, Guillaume, Turian, Joseph,
Warde-Farley, David, and Bengio, Yoshua. Theano: a CPU and
GPU math expression compiler. In Proceedings of the Python for
Scientific Computing Conference (SciPy), June 2010.

[14] Shenxiu Liu, Qingyun Sun: Conquering vanishing gradient:
Tensor Tree LSTM on aspect-sentiment classification.(2015)
CS224,Stanford University

[15] EHEK, Radim and Petr SOJKA. Software Framework for
Topic Modelling with Large Corpora. In Proceedings of LREC 2010
workshop New Challenges for NLP Frameworks. Valletta, Malta:
University of Malta, 2010. p. 46–50, 5 pp. ISBN 2-9517408-6-7.

5

