
Indian Institute of Technology
Kanpur

CS671 - Natural Language Processing
Course project

Deep Learning for Document
Classification

Amlan Kar
Sanket Jantre

Supervised by
Dr. Amitabha Mukerjee

mailto:amlan@cse.iitk.ac.in
mailto:jsanket@cse.iitk.ac.in

Contents

1 Abstract 2

2 Introduction 2

3 Related Work 3

4 Theory 3
4.1 Distributed Representations . 3
4.2 Convolutional Neural Networks . 3
4.3 Dropout . 4

5 Methodology 5
5.1 Flowchart . 5
5.2 ConvNet Structure . 5
5.3 Datasets . 6

6 Results 7
6.1 Classification . 7

6.1.1 Pang-Lee MR . 7
6.1.2 Hindi-700 . 7

6.2 Fine-Tuning . 7
6.3 Discussion . 7

7 Conclusions 8

8 Future work 8

9 References 9

1

1 Abstract

Document Classification techniques have been applied to various tasks, such as au-
tomatic tag suggestion, document indexing, sentiment analysis etc. Traditionally,
most of these methods involve processes that do not utilize the information in the
order of occurence of words, such as BoW models or Tf-Idf techniques to create
document vectors. Later, powerful semantic word embeddings emerged, including
word2vec and GloVe that have been shown to work well for benchmark sentence clas-
sification tasks[1]. Recently, a new semantic sentence embedding method, dubbed
Skip-Thoughts[2] has emerged which models sentences as vectors. We intend to
explore how a Convolutional Neural Network(CNN) can work with these embed-
dings to model documents for various classification tasks. We also look at a method
suggested in[3] to fine tune pre-trained word vectors to yield much more powerful
semantic embeddings.

2 Introduction

In the recent past, deep learning methods have consistently set new benchmarks for
a variety of NLP Tasks, such as part-of-speech tagging [4], sentiment classification
[5], neural language models [6] and machine translation. These models have been
heavily influenced in the recent past by the availability of robust embeddings[1] and
a massive increase in computational capabilities with GPUs. Recently, a sentence
embedding model, dubbed Skip-Thoughts[2] has emerged, which employs a Gated
Recurrent Neural Network based encoder-decoder model to learn generic unsuper-
vised sentence encodings. We attempt to train a convolutional neural network, which
given a representation of a document, learns to to perform various Document classi-
fication tasks on it. We present the network doing a binary sentiment classification
task, but show how other tasks can be easily performed by slightly modifying the
network’s structure.

Figure 1: Project Aim

2

3 Related Work

Our main motivation came from work done in [3] where the author introduces the
idea of fine-tuning word vectors and using a convolutional neural network for mod-
eling classification tasks. The work done by Kalchbrenner et al.[7] is another model
where sentence representations are being learned within their DCNN(Dynamic Con-
volutional Neural Network) structure. We use some aspects of their Dynamic Con-
volutional Network with Y.Kim’s model to form a hybrid which beats the state of
the art in Sentiment Classification on the Pang-Lee[8] binary sentiment classification
dataset.

4 Theory

4.1 Distributed Representations

Distributed Representations are a way to encode data in much lesser space than it
would take to store the whole data itself. In a neural network context, we try to learn
neurons that learn some features that alone cannot answer a complex question but
when activated together, can represent a very intricate concept. It can be seen as a
many-to-many relationship between neurons and concepts. So instead of letting each
neuron learn each example, we learn a representation of the examples. In NLP, word
vectors are exactly distributed representations of words. Each word is represented
by a vector in Rk for a decided value of k. The values of different dimensions
represent some coarse information, but all dimensions used together represent a
succinct encoding of the word such that it retains it’s usage such that a certain degree
of the trends in the training data can be reproduced. In the case of Mikolov’s[1] word
vectors, the bag of words model gives each vector a representation that would put it
closer to other words that occur in similar contexts.

4.2 Convolutional Neural Networks

A Convolutional neural network (CNN, or ConvNet) is a type of feed-forward artifi-
cial neural network where the individual neurons are tiled in such a way that they
respond to overlapping regions in the visual field. Convolutional networks were in-
spired by biological processes and are variations of multilayer perceptrons which are
designed to use minimal amounts of preprocessing.1 They are widely used models
for image and video recognition. Recently, these models have been used in Natural
Language Processing tasks.

A CNN differs from an ordinary neural network in several ways. First, neurons in
a CNN are organized topographically according to dimensions in the input data. So
for images, the neurons are laid out on a 2D grid. Similarly in our case, the neurons
are laid out in a 2D grid, one dimension representing the word/sentence number in
the sentence/document and the second dimension representing the word vector di-
mension. Second, neurons in a CNN apply local filters and which are centered at the
neuron’s location in the topographically. This is reasonable for datasets where we
expect the dependence of input dimensions to be a decreasing function of distance,
which is the case for pixels in natural images. The same might not hold true for Nat-
ural Language in all cases, but the concept of n-grams have this implicit assumption.
In particular, we expect that useful clues to the identity of the object in an input can

1Definition from wikipedia.org

3

be found by examining small local neighborhoods. Third, all neurons in the input
apply the same filter, but as just mentioned, they apply it at different locations in
the input. This is reasonable for datasets with roughly stationary statistics, such
as natural images, or sentences. We expect that the same kinds of structures can
appear at all positions in an input, so it is reasonable to treat all positions equally
by filtering them in the same way. In this way, a bank of neurons in a CNN applies
a convolution operation to its input. A single layer in a CNN typically has multiple
banks of neurons, each performing a convolution with a different filter. These banks
of neurons become distinct input channels into the next layer.2 Non-linearities are
applied to the data at the end of a convolution layer. In this project, we employ a
ReLU (Rectified Linear Unit) non-linearity which basically is a max(0, x) function.
Normally, pooling is also done in CNNs as a sub-sampling method to see larger trends
in the local features learnt by the previous layers. Pooling could select the maximum
in a neighborhood, average the neighborhood or apply other functions. The first two
cases are called max-pooling and average-pooling respectively.

4.3 Dropout

Dropout is a neat method to prevent overfitting in neural networks as shown in [9].
Basically, dropout gives a probability p(generally 0.5) to each node which determines
its presence during a training epoch. This ensures that the weights of a neuron do not
get too tuned to the data and do not depend a lot on a particular other neuron. This
is not applicable during testing, and each node is present normally during testing.
Figure 23 gives a sketch of the dropout method. This can be seen as an ensemble
learner as it is a large combination of different neural networks that give a joint
output during testing. In the implementation, the weights of the neural network
are multiplied by p as probabilistically, the number of neurons during testing is 1/p
times the number of neurons during training.

Figure 2: Dropout

2adapted from ”Improving neural networks by preventing co-adaptation of feature detectors”,
Hinton et al.

3Image taken from cs231n.github.io

4

5 Methodology

In this section, we discuss the methodology used in the project. We consider a
document/sentence as a 2-D matrix consisting of concatenated vectors of its sen-
tences/words. The size of the input to the convNet is calculated according to the
dataset. The height of the 2-D input is set to the maximum length of a document(in
sentences)/sentence(in words). Short documents are zero-padded and fed to the Con-
volutional Neural Network. The ConvNet is trained with 0.5 dropout in the fully
connected layers. The adadelta update rule[10] is used to determine the learning
rate. The loss function is the negative log-likelihood of the output. In our results,
we employ a simple softmax layer to output the probability distribution over the
outputs. But since our neural network is small, we do not expect to learn very high
level features from the data. This leaves the door open for use of other more com-
plex classifiers such as a Random Forest Classifier to take the pre-final FC layer’s
activations as inputs for the classification task. Effectively, we would be using the
CNN as a feature generator then.

5.1 Flowchart

Figure 3: Basic Flowchart

5.2 ConvNet Structure

The Convolutional Neural Network used here is a slight variation of the network
proposed in [3] which is based on the structure proposed in [4]. It contains a single
convolution layer full-width filters. For our experiment, we use 100 feature maps each
of filter heights 3,4 and 5. This gives us a total of 300 filters which are essentially

5

learning features on 3,4 and 5-grams. We employ wide convolution as suggested in [7].
Wide convolution ensures that all weights in the filters reach all the words/sentences
in our input document. This in turn ensures that we do not exclude features that
might occur at the edge of a document. Intuitively, for the movie review sentiment
classification, it is a trend for reviews to have a short ending or introduction giving
most of the sentiment describing data. After the convolution, we employ a k-max
pooling of each channel. This gives us an idea of the occurence of a certain feature
of a document within 4 chances. This in theory should work better for a larger value
of k as we would only include more information with increasing k. But larger values
of k also introduce redundancy as there are only a maximum number of times we
expect a feature to be seen in a document. In our experiments, we use 4 for the value
of k. The k-max pooling layer gives us our feature representation which is then put
through a softmax layer to predict the output. We can extend this model to various
classification tasks by changing the size of the ouput layer and suitably choosing a
loss function for learning. This CNN can also be used as a feature generator to train
other classifiers for learning.

Figure 4: ConvNet Structure

5.3 Datasets

• Pang-Lee Movie-Review Dataset [8]

The Pang-Lee Movie Review dataset is a collection of 10,000 sentences from
movie reviews found on rotten tomatoes. These sentences are classified to be
positive or negative reviews. The dataset is roughly balanced and has been
used as a standard dataset for sentiment classification tasks since 2002.

• Hindi700 Movie Review Dataset [11]

The Hindi movie review dataset was collected by Pranjal Singh for his M.Tech
thesis. This dataset contains movie reviews extracted from the Jagran and
NavBharat. It contains around 16,000 lines which around 10,000 positive and
6,000 lines of negative reviews.

6

6 Results

6.1 Classification

6.1.1 Pang-Lee MR

Method Accuracy

Socher2012 79.0
Dong2014 79.5
Kim2014 81.5

This Method 81.8

Table 1: Sentiment Classification on Pang-Lee dataset

6.1.2 Hindi-700

Method Accuracy

Pranjal2014 0.91
Kalchbrenner20144 0.71

This method 0.70

Table 2: Sentiment Classification on Hindi-700

6.2 Fine-Tuning

Figure 5: Fine Tuning

6.3 Discussion

The classification accuracy beats Kim’s method. We think this is due to the intro-
duction of wide convolution and a k-max pooling layer to the network. As discussed
before, the wide convolution ensures that all the inputs get all the values of the fil-
ters. Especially in movie reviews, one tends to find small portions in the beginning
and the end that contain most of the pertinent information regarding the sentiment
being conveyed.

7

81% for a binary classification task is very low by modern standards. This can
be explained to be the property of the dataset itself. The data was collected as
many complete movie reviews which were classified as positive or negative. Then
each sentence of these reviews was extracted to make an input instance with the
same class as the parent document. Some cleaning was done, but this shows the high
probability of the data set being skewed and irregularly aligned with respect to the
output classes.

The very low classification accuracy on the hindi dataset can be attributed to
the weak word vectors that were used in the experiment. 1 in 3 words of the input
vocabulary was not even present in the word vectors and these words had to be
randomly initialized. The randomly initialized words in the english case were only 1
in 20.

Fine-Tuning does not always fine tune towards more semantic similarity. It fine
tunes the word vector to make it work better for the given task. The gradient will
make the word vector go closer to other vectors that would co-occur with it in similar
examples in the data. As we have shown in the 3rd example in the fine tuning results,
Happiness being close to Loneliness is clearly a mistake, but these two words seem
to be together more in positive reviews of movies. This could be attributed to the
large number of inspirational new-age movies and their reviews.

7 Conclusions

• A simple convolutional neural network shows the capacity to learn good fea-
tures for classification tasks in NLP. This goes in line with the deep learning
revolution, where feature learning within the learning framework greatly in-
creases performance over hand-crafted features.

• Accuracies in the testing results obtained from the simple convolutional neural
network are surprisingly high. So it is highly expected that when a deeper
CNN is would be trained using much bigger dataset then results will be better
than we see them now.

• The low performance on the Hindi classification task may be due to lack of
availability of robust word vectors like English-300 word vectors. We obtained
100 length Word Vectors 5 trained on a 32GB dataset of hindi sentences. But
still, we found that one third of the vocabulary of the Hindi-700 dataset was
missing in the word vector vocabulary, which is definitely a big reason for the
low performance of the model.

8 Future work

• Use this approach further for multi-class document classification task.

• Fine tune word vectors by training the CNN over a huge corpus to generate
more semantically rich word vectors.

• Use this model as a feature generator to train other standard classifiers for
various tasks to test the power of the CNN as a robust feature generator.

• Use skip-thought vectors i.e. sentence vectors instead of word vectors in this
model to test multi-sentence document level classification tasks.

5Thanks to Nirbhay Modhe and Drishti Wali, IIT Kanpur

8

9 References

References

[1] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111–3119, 2013.

[2] Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S Zemel, Antonio Tor-
ralba, Raquel Urtasun, and Sanja Fidler. Skip-thought vectors. arXiv preprint
arXiv:1506.06726, 2015.

[3] Yoon Kim. Convolutional neural networks for sentence classification. EMNLP
2014, 2014.

[4] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel P. Kuksa. Natural language processing (almost) from
scratch. CoRR, abs/1103.0398, 2011.

[5] Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D
Manning, Andrew Y Ng, and Christopher Potts Potts. Recursive deep models
for semantic compositionality over a sentiment treebank. In EMNLP, 2013.

[6] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev
Khudanpur. Recurrent neural network based language model. In INTER-
SPEECH 2010, 11th Annual Conference of the International Speech Commu-
nication Association, Makuhari, Chiba, Japan, September 26-30, 2010, pages
1045–1048, 2010.

[7] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional
neural network for modelling sentences. arXiv preprint arXiv:1404.2188, 2014.

[8] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?: sentiment
classification using machine learning techniques. In Proceedings of the ACL-
02 conference on Empirical methods in natural language processing-Volume 10,
pages 79–86. Association for Computational Linguistics, 2002.

[9] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[10] Matthew D Zeiler. Adadelta: An adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[11] Amitabha Mukerjee Pranjal Singh. Decompositional semantics for document
embedding. 2015.

9

	Abstract
	Introduction
	Related Work
	Theory
	Distributed Representations
	Convolutional Neural Networks
	Dropout

	Methodology
	Flowchart
	ConvNet Structure
	Datasets

	Results
	Classification
	Pang-Lee MR
	Hindi-700

	Fine-Tuning
	Discussion

	Conclusions
	Future work
	References

