Music Recommender System
CS365: Artificial Intelligence

Shefali Garg
11678
Dept. of CSE

Fangyan SUN
EXY1329
Dept. of CSE

Indian Institute of Technology, Kanpur

Guide: Prof. Amitabha Mukherjee
24th April, 2014

Abstract

In this project, we have designed, implemented and ana-
lyzed a song recommendation system. We used Million
Song Dataset[1] provided by Kaggle to find correlations
between users and songs and to learn from the previous
listening history of users to provide recommendations for
songs which users would prefer to listen most. In this
paper, we will discuss the problems we faced, methods
we have implemented, results and their analysis. We have
got best results for memory based collaborative filtering
algorithm. We believe that content-based model would
have worked better if we would have enough memory and
computational power to use the whole available metadata
and training dataset.

Keywords- recommendation systems, music, Million
Song Dataset, collaborative filtering, content-based

1 Introduction

Rapid development of mobile devices and internet has
made possible for us to access different music resources
freely. The number of songs available exceeds the lis-
tening capacity of single individual. People sometimes
feel difficult to choose from millions of songs. Moreover,
music service providers need an efficient way to manage
songs and help their costumers to discover music by giv-

ing quality recommendation. Thus, there is a strong need
of a good recommendation system.

Currently, there are many music streaming services, like
Pandora, Spotify, etc. which are working on building
high-precision commercial music recommendation sys-
tems. These companies generate revenue by helping their
customers discover relevant music and charging them for
the quality of their recommendation service. Thus, there
is a strong thriving market for good music recommenda-
tion systems.

Music recommender system is a system which learns
from the users past listening history and recommends
them songs which they would probably like to hear in fu-
ture. We have implemented various algorithms to try to
build an effective recommender system. We firstly im-
plemented popularity based model which was quite sim-
ple and intuitive. Collaborative filtering algorithms which
predict (filtering) taste of a user by collecting preferences
and tastes from many other users (collaborating) is also
implemented. We have also done experiments on content
based models, based on latent factors and metadata.

2 Dataset

We used data provided by Million Song Data Challenge
hosted by Kaggle. It was released by Columbia Univer-
sity Laboratory for the Recognition and Organization of
Speech and Audio. The data is open; meta-data, audio-

content analysis, etc. are available for all the songs. It is
also very large and contains around 48 million (userid,
songid, play count) triplets collected from histories of
over one million users and metadata (280 GB) of millions
of songs[7]. But the users are anonymous here and thus
information about their demography and timestamps of
listening events is not available. The feedback is implicit
as play-count is given instead of explicit ratings. The con-
test was to predict one half of the listening histories of
11,000 users by training their other half and full listening
history of other one million users.

Since, processing of such a large dataset is highly mem-
ory and CPU-intensive, we used validation set as our main
data. It consists of 10,000,000 triplets of 10000 users.
We used metadata of only 10,000 songs (around 3GB).
From the huge amount of song metadata, we focus only
on features that seem to be most relevant in characterizing
a song. We decided that information like year, duration,
hotness, danceability, etc. may distinguish a song most
from other songs. To increase processing speed, we con-
verted user and song ids from strings to integer numbers.

3 Algorithms

We have implemented four different algorithms to build
an efficient recommendation system.

3.1 Popularity based Model

It is the most basic and simple algorithm. We find the
popularity of each song by looking into the training set
and calculating the number of users who had listened to
this song. Songs are then sorted in the descending order of
their popularity. For each user, we recommend top most
popular songs except those already in his profile. This
method involves no personalization and some songs may
never be listened in future.

3.2 Collaborative based Model

Collaborative filtering involves collecting information
from many users and then making predictions based on
some similarity measures between users and between
items. This can be classified into user-based and item-
based models.

Figure 1: Item Based

In item-based model [Figurel][8], it is assumed that
songs that are often listened together by some users tend
to be similar and are more likely to be listened together in
future also by some other user.

According to user based similarity model [Figure2][8],
users who have similar listening histories, i.e., have lis-
tened to the same songs in the past tend to have similar
interests and will probably listen to the same songs in fu-
ture too.

We need some similarity measure to compare between
two songs or between two users. Cosine similarity weighs
each of the users equally which is usually not the case.
User should be weighted less if he has shown interests
to many variety of items (it shows that either she does
not discern between songs based on their quality, or just
likes to explore). Likewise, user is weighted more if lis-
tens to very limited set of songs. The similarity measure,
w;i; = P(%) also has drawbacks that some songs which
are listened more by users have higher similarity values
not because they are similar and listened together but be-
cause they are more popular.

We have used conditional probability based model of
similarity[2] between users and between items:
W = P(v/u)*P(v/u)t =% ae(0,1)

[1(w) N I(v)] 2]

W = o=

* S »:\

Audia § € i S
\ | /

Audio i

Figure 2: User Based

Different values of a were tested to finally come
with a good similarity measure.

Then, for each new user u and song i, user-based
scoring function is calculated as

hgi = Zveui f(wuv)m

Similarly, item-based scoring function is

hqlu = Z_jeI,i f(wij)[2]

Locality of scoring function is also necessary to empha-
size items that are more similar. We have used exponential
function to determine locality.

f(w) = w9, geN|2]

This determines how individual scoring components af-
fects the overall scoring between two items. The similar
things are emphasized more while less similar ones con-
tribution drop down to zero.

After computing user-based and item-based lists, we
used stochastic aggregation to combine them. This is
done by randomly choosing one of them according to
their probability distribution and then recommending top
scored items from them. When the song history of a
user is too small to utilize the user-based recommenda-
tion algorithm, we can offer recommendations based on
song similarity, which yields better results when number

item1 | item2 | item3 | item4 | item5 | item6

userl

user2

user3

user4

Figure 3: Matrix M

of songs is smaller than that of users.

We got the best results for stochastic aggregation of
item-based model with values of q and o as 3 and 0.15,
and of user-based model with values 0.3 and 5 for o and
q respectively, giving overall mAP 0.08212. (See details
about mAP in the Sec 3.5)

This method does not include any personalization.
Moreover, majority of songs have too few listeners so they
are least likely to be recommended. But still, we as well
as Kaggle winner got best results from this method among
many others. Here, we have not used play count informa-
tion in final result as they did not give good result because
similarity model is biased to a few songs played multiple
times and calculation noise was generated by a few very
popular songs.

3.3 SVD Model

Listening histories are influenced by a set of factors spe-
cific to the domain (e.g. genre, artist). These factors are
in general not at all obvious and we need to infer those so
called latent factors[4] from the data. Users and songs are
characterized by latent factors.

Here, to handle such a large amount of data, we build a
sparse matrix[6] from user-song triplets and directly oper-
ate on the matrix [Figure 3], instead of looping over mil-
lions of songs and users. We used truncated SVD for di-
mensionality reduction.

We used SVD algorithm in this model as follows:

Firstly, we decompose Matrix M into latent feature
space that relates user to songs.

M =U>_V, where

]\4€Rm*n7 U‘m*k’7 Zk*k and Vk*n

Here, U represents user factors and V represents item
factors. Then, for each user, a personalized recommen-
dation is givn by ranking following item for each song as
follows-

W, =UL.V,

Though the theory behind SVD is quite compelling,
there is not enough data for the algorithm to arrive at a
good prediction. The median number of songs in a users
play count history is fourteen to fifteen; this sparseness
does not allow the SVD objective function to converge to
a global optimum.

3.4 KNN Model

In this method, we utilize the available metadata. We
create a space of songs according to their features from
metadata and find out neighborhood of each song. We
choose some of the available features (e.g., loudness,
genre, mode, etc.) which we found most relevant to dis-
tinguish a song from others. After creating the feature
space, to recommend songs to the users, we look at each
users profile and suggest songs which are neighbors to the
songs present in his listening history. We have taken top
50 neighbors of each song. This model is quite personal-
ized and uses metadata. But since, we had 280GB file of
metadata which takes huge amount of time in processing,
we extracted features of only 3GB (10,000 songs), which
is less than 2 % of total number. Due to this, we had fea-
tures of only small number of songs, which gives us very
small precision.

3.5 Evaluation Metrics

We used mean Average Precision (mAP) as our evalu-
ation metric. The reason behind using this is that this
metric was used in the Kaggle challenge which helps us
to compare our results with others. Moreover, precision is
much more important than recall because false positives
can lead to a poor user experience. Our metric gives the
average of the proportion of correct recommendations
giving more weight to the top recommendations. There
are three steps of computing mAP as follows:

Firstly, precision at each k is calculated. It gives the
proportion of correct recommendations within the top-k
of the predicted rankings.

Polu,r) = £ Y M(u,r ()

8.2117

8
6
4 3.18
2.0138
i B =
0 | |
NN

collaborative SVD Ki

popularity Kaggle

Figure 4: Results

Then, for each user, average precision at each k is
evaluated.
AP(u,7) = = 357 | P(u, 7). M (u,r(k))

Finally, mean of all the users is taken.
mAP= L5 AP(u,ry)

4 Results

We got best results for memory based collaborative fil-
tering algorithm. Our SVD based latent factor model
gives better results than popularity based model. It lags
behind collaborative filtering algorithm because the ma-
trix was too sparse which prevented objective functions to
converge to global optimum. Our K-NN model did not
work well and performs worse than even the popularity
model. The reason behind this is that we have the features
of only 10,000 songs, which is less than 3 % of the whole
dataset so only some of these 10,000 songs could be rec-
ommended. The huge lack of information leads to the bad
performance of this method.

5 Conclusion

This is a project of our Artificial Intelligence course. We
find it is very good as we got a chance to practice theories
that we have learnt in the course, to do some implemen-
tation and to try to get a better understanding of a real
artificial intelligence problem: Music Recommender Sys-

tem. There are many different approaches to this problem
and we get to know some algorithms in detail and espe-
cially the four models that weve explained in the paper.
By manipulating the dataset, changing the learning set and
testing set, changing some parameters of the problem and
analyzing the result, we earn a lot practicing skills. Weve
faced a lot of problem in dealing with this huge dataset,
how to explore it in a better way and we also had difficul-
ties in some programming details. However, with lot of
efforts, we have overcame all of these.

The best part of this project is the teamwork. Both of
us come from different countries and thus have different
cultures and ways of working. We took a bit of time to
get to know each other, to adjust ourselves and to perform
like a team. We become much more efficient by the time
the team spirit is formed and we also enjoy more. We both
find this project a nice experience and all the effort put is
worthy. We have learnt a lot from this project.

In terms of research, we still have a lot to do to make
our studies a better one. Music Recommender System is
such a wide, open and complicated subject that we can
take some initiatives and do a lot more tests in future.

We also got to realize that building a recommender sys-
tem is not a trivial task. The fact that its large scale dataset
makes it difficult in many aspects. Firstly, recommending
500 correct songs out of 380 million for different users
is not an easy task to get a high precision. Thats why
we didnt get any result better than 10 %. Even the Kag-
gle winner has only got 17 %. Secondly, the metadata
includes huge information and when exploring it, it is dif-
ficult to extract relevant features for song. Thirdly, techni-
cally speaking, processing such a huge dataset is memory
and CPU intensive.

All these difficulties due to the data and to the system
itself make it more challenging and also more attractive.
We hope that we will get other opportunities in the future
to work in the domain of artificial intelligence. We are
certain that we can do a better job.

6 Future work

e Run the algorithms on a distributed system, like
Hadoop or Condor, to parallelize the computation,
decrease the runtime and leverage distributed mem-
ory to run the complete MSD.

e Combine different methods and learn the weightage
for each method according to the dataset

e Automatically generate relevant features

e Develop more recommendation algorithms based on
different data (e.g. the how the user is feeling, social
recommendation, etc)

7 Acknowledgements

We would like to acknowledge the efforts of Dr.
Amitabha Mukherjee as without his constant support and
guidance this project would not have been possible.

References

[1] McFee, B., BertinMahieux,T., Ellis, D. P., Lanck-
riet, G. R. (2012, April). The million song dataset
challenge. In Proceedings of the 21st international

conference companion on World Wide Web (pp.
909916).ACM.

[2] Aiolli, F. (2012). A preliminary study on a recom-
mender system for the million songs dataset chal-
lenge. PREFERENCE LEARNING: PROBLEMS

AND APPLICATIONS IN Al
(3]

Koren, Yehuda. "Recommender system utilizing col-
laborative filtering combining explicit and implicit
feedback with both neighborhood and latent factor

models.”

Cremonesi, Paolo, Yehuda Koren, and Roberto Tur-
rin. "Performance of recommender algorithms on top-
n recommendation tasks.”Proceedings of the fourth
ACM conference on Recommender systems. ACM,
2010

[5] T. Bertin et al., The Million Song Dataset, Proc. of
the 12th International Society for Music Information

Retrieval Conference, 2011

[6] Sparse Matrices
http://docs.scipy.org/doc/scipy/reference/sparse.html

[7] Mahiux Ellis 2-11
http://labrosa.ee.columbia.edu/millionsong/tasteprofile

[8] http://www.bridgewell.com/images_en

