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ABSTRACT

Solving large state space problems within the given computational limits is an active area of research in the  
recent years and a lot of work is being done on finding better methods. In our project we study one such method,  
the Bootstrapping Procedure[1], used to solve 24 sliding tile puzzle and investigate the results associated with  

solving this large state space problem and also the interleaving procedure for solving single problem instances.  
Experimental results indicate that the time taken for solving is reduced significantly with some reasonable sub-

optimality in the solution cost.

1. Introduction

The 24 tile puzzle (known as “24 puzzle”) is a sliding tile puzzle that consists of 24 numbered square 
tiles (in a 5x5 board) in random order with one tile missing. It is a single player puzzle. The objective 
of  the  player  is  to  move  the  tiles  adjacent  to  the  blank  position  successively  so  that  the  final 
configuration resembles the goal (which has two possibilities). 

An Initial State                 Goal State

It has 25 ! /2 (~ 1025 ) solvable states. Solving it using brute force search takes time of the order of 
billion years whereas using an efficient search algorithm like IDA* with Manhattan Distance heuristic 
also takes few thousand years on an average. Using stronger heuristics with IDA* significantly reduces 
the number of nodes generated and the time required to solve problem instances. The bootstrapping 
procedure[1]  aims  at  finding stronger  heuristics(which  may be  inadmissible)  which  would  help  in 
solving problem instances in reasonable time using machine learning.

2. Related Work

Machine  learning approach to create heuristic functions was first applied successfully to 15-puzzle and 
other similar puzzles (Ernandes and Gori [2] and Samadi, Felner, and Schaeffer [3] ), but could not be 
applied to larger spaces, e.g., the 24-puzzle, due to difficulties in the creation of a sufficiently large 
training set with various possible distances to goal. Ernandes and Gori [2] also proposed a way of 
extending the machine learning approach for larger problems, called “bootstrap learning of heuristic 



functions”(i.e.bootstrapping) but could not implement it. Later, automatic bootstrapping was practically 
implemented for  the  24-puzzle by Jabbari,  Holte  and Zilles  [1]  and their  results  showed that  this  
method is successful in creating strong heuristics (though inadmissible) outperforming Weighted IDA* 
and  other  previous  methods.  They  also  implemented  a  method  to  solve  single  problem instances 
quickly by interleaving learning and problem-solving phases which we have also tried to implement 
similarly.

3. Bootstrapping Procedure
 
In this iterative method, we start with a set of problems called 'bootstrap instances' as a training set. We 
try to solve these problems using IDA* with the initial weak heuristic which is the maximum of 13  
heuristics used namely: manhattan distance, misplaced tiles, blank tile position and four 6-tile disjoint 
PDBs(pattern databases),their sum and their reflections about diagonal and their sum. The set of solved 
problem instances together with all the states along their solution paths are passed on to the learning 
phase  along  with  their  solution  lengths.  These  solved  problems  are  removed  from  the  bootstrap 
instances. In the learning phase, single hidden layer feed-forward back-propagation neural networks are 
used to learn a new heuristic function (h1) which can predict the solution length for any state. This 
process is repeated for the next iteration with h1 in lieu of h0, then h2 in place of h1 and so on. Finally, 
when  there  are  only  a  few bootstrap  instances  left,  we discontinue  this  process  and  the  obtained 
heuristic hn is strong enough to solve random test instances reasonably quickly.

Schematic Diagram showing the Bootstrapping Procedure

The total  time needed for learning a sufficiently  strong heuristic  is  rather  large for large problem 
domains(like 24-puzzle). That makes bootstrapping useful only when a large number of test problem 
instances  need to  be solved.  In case a  single test  instance is  to  be solved,  we decrease total  time 
substantially so that Bootstrap becomes practical by Interleaving method.
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3.1 Artificial Neural Network (ANN)

A Feed Forward Neural Network[1] with back-propagation learning algorithm is used in the learning 
phase of the Bootstrapping procedure. The new heuristic is trained as a function of the 13 heuristics.  
Its architecture can be described as follows

1. An input layer consisting of 13 input neurons which represent the 13 heuristics as stated earlier.
2. A single hidden layer with three hidden neurons with tangent sigmoid (tansig) as the activation 

function/transfer function.
3. An output layer comprising of a single neuron with linear transfer function (purelin).

The input  is  a 13-dimensional  heuristic vector  which is  transformed finally into an output i.e.  the 
solution length (need not be optimal). Gradient descent is used as the weight update function. The 
performance/evaluation function used is MSE (mean square error). The neural network is trained for 
100 epochs or until MSE falls below 0.005.

After this process is complete, we obtain the weights and biases of the network and to compute 
the value of the new heuristic for a state 's', we pass the feature vector H(s) into the ANN. The output of 
the ANN (using the weights and biases) is used as the new heuristic value for that state 's'.

4. Interleaving Procedure

Interleaving that we used in our project is an extension of the bootstrapping procedure for solving 
single test instances. In this we start with no training set. We first try to solve a given problem using 
IDA* with the initial heuristic within a certain manually set time-limit tmax. In case it is unsuccessful, 
we perform random-walks backwards from the goal, using a Random Walk method as described below, 
to generate problems which can be solved using the present heuristic within manually set time limits.  
Then using this as the training data, we learn a new heuristic function. The test problem is again tried to 
be solved within given tmax using the new heuristic and this procedure is used until the test problem is 
solved.

4.1 Random Walk Procedure

The random walk  method generates  problem instances  of  varying lengths  which  are  subsequently 
incremented after each iteration. Starting from the goal state, random walks are taken ensuring that the 
previous  step  is  not  followed  back.  This  gives  a  collection  of  problem  instances  which  can  be 
supposedly be solved using the current heuristic to generate training data over which learning of better 
heuristic may take place during the interleaving procedure. The choice of time limits for solving each 
of these random walk instances that we did were experimental and their effects haven't been looked 
upon in detail but have worked so far.



5. Implementation

• The code for the Bootstrapping procedure was in two parts as follows:
1. C++ code which solves using IDA* and generates training data of 13-feature vector and 

solution length.
2. MATLAB code which uses the training data to generate stronger heuristic function 

using feed-forward back-propagation neural network through a built-in function newff 
available in Neural Network Toolbox.

• The code for the Random walk procedure was written in C language.
• The interleaving procedure was implemented using bash scripts which made use of the above 

codes.

6. Results
Bootstrapping for 5000 instances

Iteration
Number 
Solved

Remaining 
Unsolved

Nodes 
Generated

Solving 
Time(sec)

Learning 
Time(sec)

0 3301 1699 659,791,749 2,167.42 2,139.64

1 1290 409 529,834,012 2,886.16 1,327.79

2 288 121 201,783,421 959.83 686.29

3 68 53 58,824,222 350.52 304.28

Comparison of Initial Heuristic & Final Heuristic (Bootstrapping)
 for 50 random easy problem instances

Initial Heuristic Final Heuristic

Time taken (sec) 94.39 3.31

Total nodes generated 40,770,726 1,378,488

We observe that the total nodes generated above substantially decrease in case of final heuristic hence 
the search by IDA* speeds up  thus it is a stronger heuristic. A stronger heuristic function can hence be 
achieved  by  applying  the  bootstrapping  process  on  weak  heuristics  to  reduce  the  solving  time 
significantly. The Bootstrapping we did was on easier problem sets mostly and then the final heuristic  
obtained was tested on easier problem instances.   

The Interleaving procedure when we applied to some single problem instances that we took 
from a set of problems from 50 problems given in [4] for which we set solving timelimit : learning 
timelimit =100:200 (in which 200 random walk instances were generated for each iteration with a 
length increment which we set to be 20 starting from random-walk length=10) solved the problems 
with average optimal costs 88.8 in about 24 minutes on an average with a reasonable sub-optimality 
less  than  10% on an  average.  Thus,  the  interleaving  procedure  seems to  work  effectively  on  the 
problems that we tested on and saves total time. The machine that we used throughout had a 2.33 GHz 
processor.
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