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ABSTRACT

Using stochastic search methods to find solutions to Constraing Satisfaction Problems (CSPs) has
been reasonably successful in the recent years, with the deterministic search methods performing
worse in many combinatorially hard problems. This motivated us to test this ‘superiority’of Stochas-
tic Search methods over Deterministic Search methods. In this project, we implement Progressive
Stochastic Search and Incremental Progressive Stochastic Search as methods to solve Sudoku puzzles
of order-2,3 and 4. The results show that these methods do converge to correct solutions, build-
ing heuristics during the process, without exploiting any problem-specific standard solving methods.
The timings show that deterministic methods have an extremely fast convergence, solving order-2
& 3 puzzles in time less than 20 ms. On the other hand, PSS solves order-2 puzzles in about 11.55/
1, order-8 puzzles in about 545.850 ms, easy, intermediate €& hard order-4 puzzles in about 2, 12
and 30 minutes respectively.

1 Previous Work

This project is based on a 2003 paper titled ‘PSS for solving CSPs’[1], by Bryan Chi-ho Lam and
Ho-fung Leung. PSS requires no previous knowledge of the problem and builds heuristics during
the period problem is being solved. The paper also suggests a modified PSS algorithm, termed
as Incremental Progressive Stochastic Search (IPSS). The results talk about timing comparisons
when PSS, IPSS, max-PSS, max-IPSS and LSDL are tested over N-queens problem, permutation
generation problem, Latin squares, Quasigroup completion problems and random CSPs.

Stochastic optimization approaches have previously been applied to solve sudoku CSP. Perez
and Marwala used Cultural Genetic Algorithm (CGA), Repulsive Particle Swarm Optimization
(RPSO), Quantum Simulated Annealing (QSA) and Hybrid Genetic Algorithm with Simulated
Annealing (HGASA) to solve sudoku CSP[4].

2 Introduction

A CSP is conventionally defined as a problem of finding a consistent assignment, if any, of discrete
values to a finite set of variables such that the assignment satisfies a finite set of given constraints
over these variables. The characteristic of PSS is that it maintains a list of variables, which dictates
the sequence of variables to repair. When a variable is designated to be repaired, it always has to
choose a new value even if its original value should give the best cost value.

Intuitively, the search can be thought to be driven by a force so that the search is able to rush
through the local minima and plateaus. The search paths are also slightly marked by worsening
at every point on the paths as the search proceeds. Random restarts are no longer necessary, and



expensive heuristic learning is replaced by simple path marking.[T]

An order-N sudoku puzzle has 4N* constraints: Each of the N2 rows, columns, blocks must have
exactly N? values, while each of the N* cells must be filled with only one value.[2]

3 Progressive Stochastic Search

In Progressive Stochastic Search (PSS)EL a CSP is modelled as a network of variables, each repre-
sented by a cluster of label nodes, each of which correspond to the values present in the domain
of the variable. At any moment, only one of these label nodes is active in a cluster (is in on state)
while the others are in off state. In other words, this active node corresponds to the current value
assigned to the cluster. In the following notes, the terms variables, cells and clusters are used
interchangeably.

A constraint ¢ € C on two clusters z and y is represented as weighed connections between the
label nodes of these clusters, xz; and y;. These two label nodes are connected if and only if
(x = z;) A(y = y;) is prohibited. Each connection is associated with a weight W(z;,y;) which is
initialised to 1. An assignment of values to the variables from their domains is called a state of
the problem, with the solution state being the one in which no two on label nodes are connected
to each other.

The clusters E| are initialised using their minimum conflicting values in accordance with the given
values in the sudoku puzzle, until the first complete assignment is reached.

All clusters are then added to a list (). In each iteration, the head of the queue h is removed and
‘repaired’to a new value ny, (its minimum conflicting value among all values other than the present
value) even if the present value p, gives a better cost, unless the present value is the only possible
value in the domain. Each cluster, with its on value connected to this new value ny, i.e. having
the same on node as the just-switched-on label node of h, is appended to @, if it is not already
present. We then increase the weights of all the connections between the on label nodes and py, by 1.

These iterations are continued till the queue is empty. In this situation, PSS is in a solution state.

4 Incremental PSS

Incremental PSQEI is a variant of PSS, which finds a consistent partial assignment and extends it
until a complete solution is found. In IPSS, the underlying network architecture is same as that
of PSS with a difference that the state represents a partial assignment of values to variables from
their respective domains.

IPSS divides the set of clusters into two subsets, () pss which contains the clusters with one on
label node and Q7 pss which contains the rest. Initially, all clusters are in Q7 pgs which are selected
and moved to @Qpgs one by one. While moving a cluster ¢ to Qpgg, its label node m; with the
minimum conflicting value is turned on.

The list @pgs is initialised to empty. Any cluster in Q;pgg, having its on label node connected to
m; is appeneded to @), unless it is already present. Then the convergence step in PSS is applied to

IFor details, consult the paper[I] by Lam and Leung
2cluster : a cell in the sudoku puzzle
3For details, consult the paper[I] by Lam and Leung
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Figure 1: PSS Network

@ pss until it becomes empty. This is followed by moving next head cluster and conflicting clusters
from Qrpss to @pss. Convergence is achieved once both the lists are empty.

5 Implementation

The code has been written in C++ and compiled using GNU C++ v4.3.2. The code was compiled
and tested on Intel i7 @2GHz machine. The code can be found in [5][6]. The order-2 and 3 puzzles
were generated using generator available at [7]. The order-4 puzzles were taken from [§]. The
Norvig-like Python code was taken from [9] and edited to get it working on order-2 and order-3
puzzles.

6 Results

PSS, IPSS and Norvig’s code were tested on the generated puzzle set, while the remaining results
are from [4].

Table 1: Average Time required to solve a puzzle

Algorithm/Code 4X4 9X9 16X16
Stochastic Algorithms
PSS[I] 11.554p | 545.850 ms | 902.599 s
IPSS[I] 125150 | 7.260 s
Cultural Genetic Algorithm (CGA)[] - 28s
Quantum Simulated Annealing (QSA)[] - 65 s
Repulsive Particle Swarm Optimization (RPSO)[4] - Unable
Hybrid Genetic Algorithm with Simulated Annealing (HGASA)[4] - 1.447 s
Deterministic Algorithms
Norvig’s Code (python)[3] 0.539 ms | 18.500 ms
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Figure 2: 4X4 Sudoku: Average Time = 11.554 p
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Figure 3: 9X9 Sudoku: Average Time

average =0.545855

= 545.850 ms
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Figure 4: 16X16 Sudoku: Average Time = 902.599 s
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6.2 Incremental Progressive Stochastic Search
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Figure 5: 4X4 Sudoku: Average Time = 12.515 us
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