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Folding snapshots of a 10-ALA chain [1]
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[2]Amino acid model; each amino acid has 2 degrees of freedom, the phi and psi torsional angles.
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Text

Levinthal’s Paradox

NP or P ?

[3]
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of feasible pathways.

(a) (b) (c)

Fig. 1. (a) The energy landscape is the set of all conformations and their associated energy.

Building an approximate map of the energy landscape consists of two steps: (b) conformation sam-

pling and (c) connecting samples together with feasible transitions.

prm-based approaches have been applied to several molecular domains. Singh,

Latombe, and Brutlag first applied prms to protein/ligand binding [49]. In subsequent

work, our group applied another prm variant to this problem [7]. Our group was the

first to apply prms to model protein folding pathways [4, 3, 53, 52, 50, 62, 61, 64, 60]

and RNA folding kinetics [57, 58, 59, 55]. Subsequent to our work, a number of groups

have used prms to study proteins. The work of Apaydin et al. [6, 5] is similarly

motivated but differs from ours in several aspects. First, they model the protein at

a much coarser level, considering all secondary structure elements in the native state

to be already formed and rigid. Second, while our focus is on studying the transition

process, their focus has been to compare the prm approach with other computational

methods such as Monte Carlo simulation. More recently, Cortes and Simeon used a

prm-based approach to model long loops in proteins [13, 12], and Chiang et al. [10]

applied prms to calculate quantities related to protein folding kinetics such as Pfold

and Φ-value analysis.

Map Analysis Tools for Folding Kinetics. Maps provide an approximate

model of the molecule’s energy landscape. With this model, we can use map-based

analysis tools to study important kinetic measures such as folding rates, equilibrium

distributions, population kinetics, transition states, and reaction coordinates. In re-

cent work [57, 60, 58, 59], we developed two such techniques: Map-based Master

Equation solution (MME) and Map-based Monte Carlo simulation (MMC). These

tools are inspired by existing kinetics tools (namely, traditional master equation for-

malism and standard Monte Carlo simulation) but can be applied to much larger

molecules because they work on approximate landscape models instead of the com-

plete, detailed energy landscape.

Map-based Master Equation (MME). The traditional master equation calculation

gives insight into the folding rate, the equilibrium distribution, population kinetics,

and transition states [29, 66]. In master equation formalism, the stochastic folding

Feasible TransitionsPotential Energy Landscape Conformation Sampling

[4]
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or molecules whose kinetics were restricted in some way (e.g., Higgs performed a

Monte-Carlo simulation on a 135 residue RNA using only stem-based conformations

[23]).

An important feature of MMC is its computational efficiency in both time and

memory usage. For instance, we have shown that the cost of MMC is proportional to

the map size and model complexity [59]. For 53 to 86 residue proteins, this translates

into 23 to 36 minutes of computation on a 2.4 GHz desktop PC with 512 MB RAM [60].

Correspondingly, the memory usage is also reduced. For example, on a 18 nucleotide

hairpin RNA, 485MB of memory is required to store 1000 traditional Monte Carlo

RNA pathways produced from the program Kinfold [19]. On the other hand, 1000

MMC pathways are stored in a file of just 61MB and a map of 684KB [59].

3. Protein Motions. We have successfully applied our prm framework for

molecular motions to study protein folding and motion [4, 3, 53, 50, 52, 62, 61, 64, 60].

Here we first describe the specifics of our protein application (e.g., protein model, en-

ergy functions, map construction details) and then provide results.

3.1. Method Details. Protein Model and Energy Function. We model

the protein as an articulated linkage. Using a standard modeling assumption for

proteins that bond angles and bond lengths are fixed [54], the only degrees of freedom

(dof) in our model are the backbone’s phi and psi torsional angles which are modeled

as revolute joints with values [0, 2π).

We have used both a coarse energy function similar to [38] and an all atom energy

model [36]. For the coarse model, we use a step function approximation of the van der

Waals component and model all side chains as equal radii spheres with zero dof. If

two spheres are too close (e.g., their centers are < 2.4Å during sampling and < 1.0Å

during connection), a very high potential is returned. Otherwise, the potential is:

(2) Utot =
∑

restraints

Kd{[(di − d0)
2 + d2

c ]
1/2 − dc} + Ehp

where Kd is 100 kJ/mol and d0 = dc = 2Å as in [38]. The first term represents

constraints favoring known secondary structure through main-chain hydrogen bonds

and disulphide bonds, and the second term is the hydrophobic effect. The hydrophobic

effect (Ehp) is computed as follows: if two hydrophobic residues are within 6Å of each

other, then the potential is decreased by 20 kJ/mol. A detailed description of our

potential can be found in [4].

Biased Sampling. As previously discussed, samples are retained based on their

energy. In our protein work, a sample q, with potential energy Eq, is accepted with

probability:

Prob(accept q) =











1 if Eq < Emin
Emax−Eq

Emax−Emin
if Emin ≤ Eq ≤ Emax

0 if Eq > Emax

(3)
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where Emin is the potential energy of the open chain and Emax is 2Emin.

The map produced by our technique is an approximation of the protein’s en-

ergy landscape. The quality of the approximation depends on the sampling strategy.

Generally, we are most interested in regions ‘near’ the native state and so seek to

concentrate sampling there. In our original work [4, 3, 53, 50], we obtained a denser

distribution of samples near the native state through an iterative sampling process

where we apply small Gaussian perturbations to existing conformations, beginning

with the native state. This approach works fairly well, but still requires many sam-

ples (e.g., 10,000) for relatively small proteins (e.g., 60–100 residues). In [64], we used

rigidity analysis [26, 27, 28, 25, 37] to determine which portions of the protein to

perturb. This approach increased the protein size we can handle.

Connection. For each node in the map, we attempt to connect it with its k

nearest neighbors with a straight-line in the protein’s energy landscape. The weight

for the edge (q1, q2) is a function of the intermediate conformations along the edge

{q1 = c0, c1, . . . , cn−1, cn = q2}, where the number of intermediate conformations

depends on the resolution, which is a parameter of the method. For each pair of

consecutive conformations ci and ci+1, the probability Pi of transitioning from ci to

ci+1 depends on the difference in their potential energies ∆Ei = E(ci+1) − E(ci):

Pi =

{

e
−∆Ei

kT if ∆Ei > 0

1 if ∆Ei ≤ 0
(4)

This keeps the detailed balance between two adjacent states, and enables the weight

of an edge to be computed by summing the negative logarithms of the probabilities

for consecutive pairs of conformations in the sequence. (Negative logs are used since

each 0 ≤ Pi ≤ 1.) A similar weight function, with different probabilities, was used in

[49].

MMC Transition Probability. We apply MMC to protein folding as described

previously and set the transition probabilities as follows. We cluster the edge weights

into disjoint buckets. Bucket probabilities (Qij) are assigned in a biased Gaussian

fashion that favors clear discrimination of low edge weights, yet reflects the relative

differences between edges of all weights. The transition probability between two states,

kij , is calculated as

kij =







Qij

1+
∑ n−1

j=0 Qij
if j #= i

1
1+

∑ n−1
j=0 Qij

if j = i
(5)

where n is the number of outgoing edges from node i. This ensures the sum of all

probabilities (including the self-transition probability) out of node i is 1.

3.2. Results. Here we present results that have validated our technique against

experimental data by comparing secondary structure formation order along folding

pathways, relative folding rates, and population kinetics for several small proteins.
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Sampling Strategy

Bins filled according to the Contact Number of a conformation

[5]
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• Data Available in PDB files [Protein Data Bank]

Code and Data Available

Code we have Written

• Code available for calculating Dihedral Angles(Phi, Psi) from Coordinates of atom.[google 
code library]

• To calculate energy of a conformation from the atom coordinates.

• For generating sample nodes by using inducing Gaussian perturbations in existing 
conformations.

• To calculate atom coordinates from the dihedral angles of a node sampled.
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