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Abstract

Study of protein folding has been a highly studied problem for quite a while. Past years have seen a lot of
work from the Amato Group from the Texas A & M University. We present an attempt to implement their work
on finding the sequence of intermediate protein conformations a protein molecule may adapt to fold into the most
stable state also known as its native state. We implement the calculation of energy and other useful parameters
for a protein conformation as well as the sampling technique used to generate nodes for a PRM based RoadMap.
We also verify the work of N. S. Bogatyreva and D. N. Ivankov by observing the behaviour of protein energy with
variation in its native contact number. Future work involves creating the map and extracting the path of folding
from a conformation to the native state.

1 Introduction

Proteins play a vital role in our metabolic systems. They perform a lot of functions especially for our Immmune
System. To be functionally active, a protein molecule needs to get itself to a specific 3 — D conformation known as
its native state. It’s the least energetic state of the molecule. This process of transitting from a conformation to the
native conformation with many intermediate conformations, is known as the folding process of the protein molecule.
Sometimes, proteins are unable to fold properly, which results into malfunctioning leading to diseases like Mad Cow’s
and Alzheimers’. So, a knowledge of the sequence of intermediate conformations might help medical diagnosis and
cure of these diseases. Thus, protein folding is a very important problem to study.

Protein have a large number of degrees of freedom [refer Section 2.1]. Between any 2 conformations of a protein
molecule, there are a large number of them possible as intermediates. Thus, prediction of the path which a protein
molecule might take to go from one conformation to another involves search through a very high dimensional space
involving an exponentially large number of points. As mentioned in a talk [Bisll] by Dr. Somenath Biswas, IIT
Kanpur, the problem of predicting the complete 3 — D structure of a protein’s most stable state given the sequence
of amino acids, is an NP-Hard problem. But, it is widely observed that even large protein molecules fold into their
native state within a matter of microseconds. This is a somewhat paradoxical situation [Levinthal’s Paradox].

So, nature has a time-efficient algorithm which we haven’t been able to find out yet. This poses a challenge for
theoretical Computer Science to come up with an efficient algorithm which even a small protein molecule knows and
executes.

As we can now say that protein folding study is computationally very intensive. To reduce the time consumed,
we must reduce our search space. Various approaches (like ab-initio) involve a large search space and hence are



inefficient. Approaches like Genetic Programming [LYYBOS8], Probabilistic Road Map [Tap09] are promising as they
are efficient. They reduce their search space by using randomised search and applying certain heuristics. Neverthe-
less, they aren’t deterministic. So, till date we don’t have any deterministic polynomial time algorithm to solve the
protein folding puzzle.

In this scenario, the Amato Group from the Texas University has done a lot of work on this problem. They
have developed efficient techniques like Map Based Monte Carlo simulation, to find out the path from the huge
search space of conformations. They use a PRM-based approach [Tap09] [TTA10] to study the folding kinetics of
protein and RNA molecules. In this report, we present an attempt to implement their ideas as a course project
and explore more about protein folding. We implement the node generation and sampling phases of their approach.
Meanwhile, we observe that the results of [BIO§] about the relationship between the contact number [Section 2.2]
and the potential energy of a protein molecule are verified by our work for 1IBMR protein molecule.



2 Preliminaries

2.1 Protein Molecule and Its Degrees of Freedom
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Figure 1: Amino acid model each amino acid has 2 degrees of freedom, the phi and psi torsional angles. [Uni]

A protein molecule is a long sequence of amino acids (residues) joined together by peptide linkages. Consider the
figure 1. Each amino acid has N, C,, and C' atoms, which in sequence form the main backbone chain for the protein
molecule. During folding, the bond angles and bond lengths in the molecule remain unchanged. The dihedral angles
¢ and v are the ones which change. Thus, to articulate it, we can say that a protein molecule is a linkage where each
amino acid has 2 degrees of freedom. The side chains (attached to Cz atom) are assumed to be spheres with 0 dof.
We can think it in terms of a robotic arm with so many degrees of freedom, where we want to go from some
conformation to another. Thus, some similarities between robot motion and protein folding can be realised.

2.2 Contact Number

As defined in [ADS02], a native contact is a pair of C,, atoms in the native state of a protein molecule, which are
in the range of about 7 A. The contact number for a conformation is defined as the number of native contacts in it,
or in other words, number of common native contacts between the conformation and the native state for the protein
molecule corresponding to the conformation.

A protein molecule folds from an open chain structure to a highly folded native state in order to minimise its
potential energy. Hydrogen bond interactions among the H and O atoms and the hydrophobic nature of long
hydrocarbon chains attached to the main chain of protein serve as the driving force for it to fold. As the protein
folds, the hydrocarbon chains come near to each other trying to shield each other from the polar solvent around.
Thus, we can observe that the C, atoms would come closer as the protein folds. As aptly described in [BIO§], the
surface area of the molecule accessible to the solvent decreases gradually and the molecule stabilises resulting in an
overall decrease in its potential energy. A simultaneous increase in contact number may be noted.

2.3 Energy

The potential energy of a protein molecule can be defined as

U= Z Ka{[(di — do)* + dcz]% —d.} + Enp

restraints



where K4 = 100K.J/Mol, dy = d. = 2A as described in [TTA10].

The first term represents the energy decrement due to the hydrogen bond interactions, while the second term rep-
resents that due to the Van der Waals’ interaction where the hydrophilic hydrocarbon chains shield each other from
the polar solvent. d; represents the distance between the atoms involved in hydrogen bonding. Ej, = 20K J/Mol,
if 2 hydrophobic hydrocarbon chains (assumed to be spheres located at Cz atoms for computational reasons) are
within the range of 6A from each other. If any pair of Cg atoms are at a distance less than 2.4/1, then that molecule
is given a very high potential energy owing to high Van der Waals repulsion.

We see that calculation of the potential energy requires the coordinates of the atoms of the molecule conformation.
Suppose, all information we have is the values of the parameters which are the degrees of freedom for the molecule; in
other words, we only know the dihedral angles on the main chain of the protein conformation. We need to compute
the atom coordinates from that data. We implemented these calculations which involve simple geometry concepts
first worked upon by [PHRT05].

2.4 Energy Landscape

A conformation for a protein molecule can be represented as an n dimensional (say) vector (n is the number of
degrees of freedom). Consider a function E : R™ — R. Consider a conformation ¢ € R™ of the molecule, E(c) is the
potential energy of the conformation ¢. An energy landscape can be thought of as a map of protein conformations
(n + 1 dimensional), with each point mapped to its potential energy. A 3 — D map with protein conformations of 2
degrees of freedom, would look like figure 2. This landscape is funnel shaped with the native state at the bottom.
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Figure 2: Visualization of the energy landscape. [Uni]

2.5 Distance Between 2 Conformations

Each protein conformation (with n degrees of freedom) is a vector of the form ¢ € R™. We can define the distance
between 2 conformations as the Ly norm of their difference vector.

dist(ci,c2) = || 1 — ¢2 ||y



3 Methodology

3.1 Overview

We try to implement the PRM based approach discussed in Lydia Tapia’s paper [TTA10]. This approach was
originally developed for robot motion planning i.e., to find out the series of feasible conformations (or intermediate
states) a robot may adapt to go from one conformation (or orientation) state to another. On similar basis, this
can be used for protein motion planning (predicting the folding pathway). In this approach, we know the native
state of the protein molecule under consideration. A large number of conformations are sampled from the molecule’s
energy landscape. Then, for each conformation (sample point), transitions from it to its neighbours are considered.
This sample space can be represented as a directed graph G = (V, E), where each v € V represents a sample point
and each (u,v) € F represents the transition from conformation u to v. The edge weights represent the energetic
feasibility of the transition. This graph (connected) is the Road Map for the protein molecule, where we have a
large number of paths between any 2 points. Next, starting with a conformation, the native state can be reached by
traversing the graph.

3.2 Sampling of Nodes

Node generation for the map is started by giving Gaussian perturbations to the native state. Next, the new nodes are
used as seeds for the next random perturbation. Firstly, a large number of nodes are generated by giving Gaussian
perturbance to the native state. The perturbation is chosen from Gaussian distribution centred about the seed con-
formation with standard deviation as 1°. Next, with the generated nodes as seeds, perturbation is chosen cyclically
from the set {3°,5°,10°,20°,40°} of standard deviations. This method restricts the set of nodes from being com-
pletely random. Instead, it looks as if the protein molecule is being opened gradually with increasing perturbations.

3.2.1 Biased Sampling

The conformation map is desired to have enough nodes around the native state. Nodes far off (having very high
energy) from the native state are discouraged to join the map. The graph should be dense around the minimum
potential energy region so that the sequence of transitions leading to the native state can be observed. It is ensured
by assigning probability to each sampled node, of being accepted in the map. For a conformation ¢ with potential
energy F(c) the probability of acceptance to the map is defined as

1 if B, < Emin
P(e)=Q gree=PCif By < B() < Eae
if B, > Epax

where E,,;, = 50000 KJ/Mol and E;,q, = 89000 KJ/Mol as mentioned in [ADS02].

3.2.2 Variety in Sampled Nodes

The sampling is biased around the native state with some thresholds of energy mentioned above. It is also de-
sirable that the map covers states spread widely around the native state. As shown in [BI08], the degree of folding
of a protein molecule can be characterised by its contact number. The more the contact number, the more the
protein has folded. Thus, by keeping enough number of sampled nodes for each contact number, it can be ensured
that the conformation map generated will have enough width around the native state. A suitable strategy discussed
in [ADS02] has been implemented with results showing a decrease in potential energy with increase in contact number.



The strategy involves keeping bins to store the generated nodes. The number of bins is proportional to the contact

number of the native state (which is the maximum, by definition). Each bin can take a maximum number of sampled
nodes. During each iteration of sampling, a few nodes are randomly selected from a bin as seeds for Gaussian
perturbations. The sampled and selected nodes are put into the bins according to their contact number. The bin
with contact number 1 less is selected for the next round of seeds. This process goes on until all (or as per user
needs) bins are full. A bin is full if it has atleast N nodes, where N < capacity(Bin) is the user choice.
The strategy discussed by [ADS02] is not an algorithm as it doesn’t provide complete details about the parameters
chosen. It’s left upto the researcher. There is a possibility that this method won’t terminate or might take a long
long time (because we need to wait until the bins get full), which restricted us to be able to generate only about
1000 sample nodes, see results section 5.

3.3 Map Generation: Connecting the nodes with edges

An edge from node 7 to nodes j denotes the transition from conformation represented by 4 to that of j. The edge
weights reflect the feasibility of the transition involved. Nature always favours the transition from high energy to
lower energy. Thus, we keep edge weights for such transitions low. But, there are times when a protein molecule has
to take a high energy conformation (intermediate) only to go into a very low energy state. Such transitions happen
because of a tradeoff among the Hydrogen Bonding, Van der Waals’ interaction and solute solvent interaction. Some-
times a more favourable hydrogen bond (low energy state) can only be formed by going through a highly repulsive
(high energy state) Van der Waals’ interaction state. Such interactions can be taken care of by allowing transitions
from a lower energy state to a higher energy state; but their feasibility is low and hence the edge weights are kept high.

For each roadmap node, possible transitions are selected by considering its k-nearest neighbours. The distance
function used is discussed in Section 2.5. Consider, 2 conformations ¢; and ¢y of a protein molecule. Consider the vec-
tor joining them in the conformation space (n— D, where n is the number of degrees of freedom). Let a1, as, as, ..., ax
are some intermediate conformations lying on the vector joining ¢; and co. The feasibility of the transition from ¢y to
¢o depends upon the feasibility of the sequence of transitions (ag = ¢1) = a1 — as — ...ax — (ax+1 = ¢2). This is
considered because the conformations ¢; and ¢ may be quite far on the map generated. The nodes ay,as,as, ..., ax
allow us to bridge this gap (if any) and observe the transition feasibility correctly. For each pair of consecutive states
(say a; and a;41), the transition feasibility is a function of AF; = E(a;+1) — E(a;). The probability of transition
[TTA10] can be seen as

P,{ et i AE>0

1 otherwise
k
Thus, the edge (c1,¢2) in the graph will get weight Z —log P;. Thus, energetically feasible transitions get 0 weight
i=0

while others get a positive weight.

Now, a graph is generated. What remains is given 2 conformations (one is preferably the native state), finding the
sequence of intermediate conformation states that the protein molecule may adapt during the folding process.

3.4 A Random Walk

When the roadmap (graph) is constructed, for each node, probabilities can be assigned to all the outgoing edges
based on their weights. This determines the probability with which a conformation can transit to another. According
to the technique discussed in [TTA10], from the initial conformation by choosing the subsequent state by the edge
probabilities assigned, the native state can be reached.



4 Data And Implementation

Data for the native state for a large number of protein molecules is publicly available on various Protein Data
Bank websites in the form of .pdb files, including the WorldWide Protein Data Bank ([BHNO03]), RCSB Protein Data
Bank ([RU03]). We took data (.pdb file) for IBMR protein from the Folding Results Database of the Protein Folding
Server, Texas A & M University [Gro].

Among various other details, the data file contains the coordinates of all the atoms in the protein molecule in the
native state. The atom coordinates facilitated the calculation of the dihedral angles of the protein molecule which are
to be perturbed. Next, from the new set of dihedral angles, atom coordinates are recalculated in order to compute
the potential energy of the conformation. All the distances used are in Angstroms and all the angles are in Degrees.

5 Results So Far

The sampling technique discussed, allowed us to generate data points for 1IBMR protein molecule. The FEnergy
vs. Contact Number plots indicate that with increase in the contact number of a protein molecule, the associated
potential energy decreases. We find them more or less in accordance with the idea of [BIO8]. They argue that during
folding, the surface area of the protein accessible by the polar solvent around decreases which must be characterised
by the contact number of the protein conformation. As a protein molecule folds, its potential energy decreases and
the contact number increases.

We sampled around 900 and 2000 nodes and observed the change in contact numbers with energies. The contact
number for the native state was found to be 269. See figure 3.

1BMR: Energy distribution around the native state (842 nodes) 1BMR: Energy distribution around the native state (1932 nodes)
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Figure 3: 1BMR : Energy vs. Contact Number Plots

6 Conclusion

We conclude that the potential energy of the conformations for the 1BMR molecule around the native state
decreases as the native contact number of the conformation increases. This was a result of [BIO8], where they



characterise the degree of protein folding by the solvent accessible surface area which can be seen in terms of the
native contact number.

7 Future Work

We could implement calculating the details for a protein conformation given the parameters; i.e. given the values
of all the dihedral angles, we can calculate the potential energy and the native contact number for the molecule. We
are also able to generate around 1000 sample nodes, which needs to be increased to of the order of say 10° nodes for
the PRM approach to work properly. The main work left can be seen as:-

1. Increasing the capacity to generate a large number of sample nodes.
2. Creating the roadmap by assigning weights and transition probabilities to the edges.

3. Given an intermediate conformation, finding the sequence of states it may take to fold into the native state.
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