
Question Answering System using PLSA

CS-365 Project Report

By

AnuragGautam ,HarshitMaheshwari

Advisor :Dr. Amitabha Mukherjee

Dept. of Computer Science and Engineering

IIT-Kanpur ,India

{ganurag, harshitm, amit}@iitk.ac.in

April 15, 2012

Abstract

Question answering systems is a wide and active area, with much scope of further

research. In our project we look into the semantics of the web documents (taken

from Wikipedia) to answer the questions, asked from the user. The principal

algorithm used is PLSA to find the sentences, in which the topic is similar to the

query. Then we use cosine similarity algorithm to rank the answers.

1 Introduction

In order for the computers to interact with the users more naturally,the

computer must understand and infer what the user wants to say from what he

actually says(the latent meaning). Question Answering System (referred to

QAS henceforth) is basically a search program that strives to give the best

possible answers to the questions asked from it by the users from the

knowledgebase it has. The knowledgebase could be local or stored in a remote

machine. Probabilistic Latent Semantic Analysis (PLSA) is a statistical

technique for the analysis of two-mode and concurrent data. PLSA evolved

from latent semantic analysis, adding a sounder probabilistic model. PLSA has

mailto:amit%7d@iitk.ac.in

applications in information retrieval and filtering, natural language processing,

machine learning from text, and related areas.

There is a two-fold complexity of the question which must be considered,

before answering a question:

1. Acquire user’s true intentions from question

2. The answer should be complete in best possible way and at same time

non-redundant.

We use Wikipedia as the web knowledge base as this specific knowledge

database usually contains the entire information neededto answer a complex

question.

2 Question Answering System

Our project was to use Wikipedia as the knowledge base for all questions.

Hence, some part of our project code is Wikipedia specific. Our approach is

described below:

2.1 Extraction of useful terms from the query

This was one of the challenging parts. The accuracy of the answer lies heavily

on this process. Since, we extract the concept from the question asked and

search for the same on Wikipedia if ever we made a mistake in extracting the

relevant concepts, then we will not get the correct document from Wiki, forget

about answering. So, the first step wastagging. It is done to find the group of

words to be considered together. For example terms like ‘Artificial Intelligence’

should be considered together rather than two different words. We used nltk

library for tagging. The words tagged with NN* were extracted. Contagious

words tagged with NNP are considered to be one concept. Second step was to

remove all the stop words. For this purpose we have a list of the stop words

from ftp://ftp.cs.cornell.edu/pub/smart/english.stop.

2.2 Finding the knowledge database for answer retrieval

After the extraction step, we search for all the concepts on Wikipedia and

download the web pages. From the numerous pages generated the first k pages

ftp://ftp.cs.cornell.edu/pub/smart/english.stop

are considered for further processing.In our program, we have taken the value

of k to be 1, because on most counts the other pages generated were not

relevant at all, and they adversely affected the quality of our answers. Though,

this ‘k’ is configurable.

2.3 Parsing the html pages for the removal of html tags

This step involves the removal of the html tags from the generated web pages.

We used BeautifulSoup html parsing library for this. This generates a plain text

document without any tags. This is done so that PLSA algorithm can be applied

effectively, and it also immensely reduces the dimension.

2.4 Term-Document Matrix Generation

A term document matrix (T-D matrix) is generated from the plain text

document generated in the above step. First we tokenize the document into

sentences. Every sentence is considered is to be separate document in its own

regard. The T-D matrix is a 2 dimensional matrix whose row contains the terms

and the columns contains the documents containing them.We also map the

query in this matrix by considering it also a separate document in itself. This T-

D matrix is then passed to the PLSA algorithm.

2.5 PLSA algorithm

PLSA is a statistical model which has been called aspect model. It

introduces a conditional independence assumption, namely that d

(for documents) and w (for words in them) are independent

conditioned on the state of the associated latent variable. The basic

equation for the model is

 𝑷 𝒅, 𝒘 = 𝑷 𝒛 𝑷 𝒅 𝒛 𝑷 𝒘 𝒛 𝒛∈𝒁

computationally PLSA involves Model Fitting with EM

Algorithm.

The E-Step equation is

𝑃 𝑧 𝑑, 𝑤 =
𝑃 𝑧 𝑃 𝑑 𝑧 𝑃 𝑤 𝑧

 𝑃 𝑧′ 𝑃 𝑑 𝑧′ 𝑃 𝑤 𝑧′ 𝑧 ′ ∈𝑍

The M-Step formulae

 𝑃 𝑤 𝑧 ∝ 𝑛 𝑑, 𝑤 𝑃 𝑧 𝑑, 𝑤 𝑑∈𝐷

𝑃 𝑑 𝑧 ∝ 𝑛 𝑑, 𝑤 𝑃 𝑧 𝑑, 𝑤

𝑤∈𝑊

𝑃 𝑧 ∝ 𝑛 𝑑,𝑤 𝑃 𝑧 𝑑,𝑤

𝑤∈𝑊𝑑∈𝐷

The T-D matrix is fed into the PLSA Algorithm. It returns the ZxD matrix, where

Z is the number of topics sorted. Here we get the document vectors mapped into

the concept space.

2.6 Answer Ranking

For ranking we use the standard cosine similarity algorithm. It simply calculates

the dot product between the various document vectors and the query vector. The

document vectors giving maximum value are considered to be the most relevant

answer.

𝑆𝑖𝑚 𝑠1, 𝑠2 =
 𝑃 𝑤 𝑠1 𝑃(𝑤|𝑠2)𝑤∈𝑊

 𝑃(𝑤|𝑠1)2
𝑤∈𝑊 𝑃(𝑤|𝑠2)𝑤∈𝑊

2

2 Implementation Details

The engine of our program was coded in Python and we used JavaFX for

developing the interface.

The Back End

http://python.org/

For parsing the html tags we use Beautiful Soup html/xml parsing library. We

use NLTK library for tagging, tokenizing and stemming. There was also a need

for SciPy and NumPy libraries because of the PLSA algorithm. Apart from

them PyYAML was another need.

The Front End

Front End is developed in Java, using JavaFX 2.0 libraries. There is no other

external dependency.

We also, display an image on the program. This image is the first image

produced by the first Wikipedia page. Usually this picture is also, quite relevant

to the question asked and helps the user facilitate in understanding the answer

generated.

3 Some Experimental Results

Some successful results of the queries were:

1. Who was the first man sent on moon by NASA?

2. How high is Mount Everest?

3. What is photosynthesis?

4. When did India became independent?

4.1 Success cases

Some success cases with TREK’08 are also listed:

1. When was London's Docklands Light Railway constructed?
ANS: The station first opened up in 1987.The residents lost the case.

2. How far is Yaroslavl from Moscow?
ANS: Yaroslavl (Russian: ??????????) is a city and the administrative center of Yaroslavl Oblast,

Russia, located 250 kilometers (160 mi) northeast of Moscow. The historic part of the city, a
World Heritage Site, is located at the confluence of the Volga and the Kotorosl Rivers.

4.2 Failure cases

http://www.crummy.com/software/BeautifulSoup/
http://www.nltk.org/
http://www.scipy.org/
http://numpy.scipy.org/
http://pyyaml.org/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

There were also many incorrect results mainly because of the following

reasons:

1. We were not able to take data from the correct Wikipedia page because of

the complexity of the question and the words to be searched after step 2.1

were not able to generate the correct Wikipedia pages. This is mainly

because the query extraction in our system is syntax driven.

2. The relevant data was not available on Wikipedia.

3. PLSA was not able to map the topics in the web knowledge database to the

query correctly.

Some queries from the TREK’08 database for which our program failed along

with the reason of failure are

1. What was the monetary value of the Nobel Peace Prize in 1989?

There was no data available on Wikipedia for the question.

2. Who was President Cleveland's wife?

PLSA was not able to correctly map the answer to the query.

3. What was the name of the US helicopter pilot shot down over North Korea?

In this case we have 2 proper nouns: US and North Korea, which are related

with each other by the incident of the pilot being shot down. Here the system

fails because it is syntax driven and it searches for US and North Korea and

nothing related to the incident.

4. What two US biochemists won the Nobel Prize in medicine in 1992?

Similarly in this case also, there were many nouns like: US, biochemists,

Nobel Prize and medicine. The system was not able to find the correct web

page.

4 A different approach

Our program is different from most of the other question answering systems as

they use a static knowledge base while our system dynamically searches for the

query on Wikipedia and downloads the relevant pages. It can be easily modified

to take data from any other web source.

Acknowledgements: The authors would like to acknowledge Matthieu for his

PLSA code that is modified and used for this project. The Sarvagya logo is

inspired by Google logo. We will also, like to thank Dr. Amitabh Mukherjee for

stimulating discussions and helpful hints.

Codes and Libraries Used

nltk library http://www.nltk.org

Beautiful

Soup

http://www.crummy.com/software/BeautifulSoup/

PyYaml http://pyyaml.org

NumPy http://numpy.scipy.org

SciPy http://scipy.org

Matthieu’s
Log

http://www.mblondel.org/journal/2010/06/13/lsa-
and-plsa-in-python/

JavaFX2.0 http://www.oracle.com/technetwork/java/javase/dow

nloads/index.html

References

[1] Han Ren, DonghongJi, Chong Teng, Jing Wan (2011).A Web Knowledge

 Based Approach for Complex Question Answering

 M.V.M. Salem et al. (Eds.): AIRS 2011, LNCS 7097 pp. 470–478, 2011.

 http://www.springerlink.com/content/9646253882343438/

http://www.mblondel.org/journal/2010/06/13/lsa-and-plsa-in-python/
http://www.google.com/
http://www.nltk.org/
http://www.crummy.com/software/BeautifulSoup/
http://pyyaml.org/
http://numpy.scipy.org/
http://scipy.org/
http://www.mblondel.org/journal/2010/06/13/lsa-and-plsa-in-python/
http://www.mblondel.org/journal/2010/06/13/lsa-and-plsa-in-python/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.springerlink.com/content/9646253882343438/

 [2] Protima Banerjee and Hyoil HanModeling Semantic Question Context for

 Question Answering: Proceedings of the Twenty-Second International

 FLAIRS Conference (2009)pp 9-15 ,2009

 http://www.aaai.org/ocs/index.php/FLAIRS/2009/paper/viewFile/31/235

 [3] Thomas Hoffmann. Probabilistic Latent Semantic Indexing

Published in: SIGIR'99 Proceedings of the 22 annual international ACM

SIGIR conference on Research and development in information retrieval

 1999. pp 50-57

 http://dl.acm.org/citation.cfm?id=312624.312649

[4] Thorsten Brants, Francine Chen, IoannisTsochantaridis. Topic -Based

 Document Segmentation with Probabilistic Latent Semantic Analysis

 Published in: CIKM'02 Proceedings of the eleventh international

 conference on Information and knowledge management (2002).pp 211-218

http://dl.acm.org/citation.cfm?id=584792.584829

 [5] TREC question answer database

http://trec.nist.gov

http://www.aaai.org/ocs/index.php/FLAIRS/2009/paper/viewFile/31/235
http://dl.acm.org/citation.cfm?id=312624.312649
http://dl.acm.org/citation.cfm?id=584792.584829

