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ABSTRACT

Intelligent Motion Planning and Analysis

with Probabilistic Roadmap Methods

for the Study of Complex and High-Dimensional Motions. (December 2009)

Lydia Tapia, B.S., Tulane University

Chair of Advisory Committee: Dr. Nancy M. Amato

At first glance, robots and proteins have little in common. Robots are commonly

thought of as tools that perform tasks such as vacuuming the floor, while proteins

play essential roles in many biochemical processes. However, the functionality of

both robots and proteins is highly dependent on their motions. In order to study

motions in these two divergent domains, the same underlying algorithmic framework

can be applied. This method is derived from probabilistic roadmap methods (PRMs)

originally developed for robotic motion planning. It builds a graph, or roadmap, where

configurations are represented as vertices and transitions between configurations are

edges. The contribution of this work is a set of intelligent methods applied to PRMs.

These methods facilitate both the modeling and analysis of motions, and have enabled

the study of complex and high-dimensional problems in both robotic and molecular

domains.

In order to efficiently study biologically relevant molecular folding behaviors we

have developed new techniques based on Monte Carlo solution, master equation cal-

culation, and non-linear dimensionality reduction to run simulations and analysis on

the roadmap. The first method, Map-based master equation calculation (MME), ex-

tracts global properties of the folding landscape such as global folding rates. On the

other hand, another method, Map-based Monte Carlo solution (MMC), can be used
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to extract microscopic features of the folding process. Also, the application of dimen-

sionality reduction returns a lower-dimensional representation that still retains the

principal features while facilitating both modeling and analysis of motion landscapes.

A key contribution of our methods is the flexibility to study larger and more complex

structures, e.g., 372 residue Alpha-1 antitrypsin and 200 nucleotide ColE1 RNAII.

We also applied intelligent roadmap-based techniques to the area of robotic mo-

tion. These methods take advantage of unsupervised learning methods at all stages

of the planning process and produces solutions in complex spaces with little cost

and less manual intervention compared to other adaptive methods. Our results show

that our methods have low overhead and that they out-perform two existing adaptive

methods in all complex cases studied.
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CHAPTER I

INTRODUCTION

At first glance, robots and proteins have little in common. Robots are commonly

thought of as tools that perform tasks such as vacuuming the floor, while proteins

play essential roles in many biochemical processes. However, the functionality of both

robots and proteins is highly dependent on their motions. For these two divergent

domains, the same underlying algorithmic framework can be applied. This method is

derived from probabilistic roadmap methods (PRMs) originally developed for robotic

motion planning. It builds a graph, or roadmap, where configurations are represented

as vertices and transitions between configurations are edges. The contribution of this

work is a set of intelligent methods applied to PRMs. These methods facilitate both

the modeling and analysis of motions, and have enabled the study of complex and

high-dimensional problems in both robotic [117, 119, 165] and molecular [172, 162,

174, 164, 163, 160, 161] domains.

A. Molecular Motion

Molecular motions play an essential role in many biochemical processes. For example,

as proteins fold to their native, functional state, they sometimes undergo critical con-

formational changes that affect their functionality, e.g., diseases such as Mad Cow or

Alzheimer’s are associated with protein misfolding and aggregation [36]. Knowledge

of the stability, kinetics and detailed mechanics of the folding process may provide

insight into how and why the protein misfolds. Also, it has recently been found that

some RNA functions are determined by the folding process itself and not just by the

The journal model is IEEE Transactions on Automatic Control.
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sequence and the resulting native state [65, 89, 112].

Since it is difficult to experimentally observe molecular motions, computational

methods for studying such issues are essential. Traditional computational approaches

for generating folding trajectories such as molecular dynamics (MD) [105, 66, 42, 52]

and Monte Carlo [41, 90] simulation are so expensive that they can only be applied

to relatively small structures even when they use massive computational resources,

such as tens of thousands of PCs, XBoxes, and PlayStations in the Folding@Home

project [16, 149] or large supercomputers [52, 191]. In a recent study, IBM’s massive

Blue Gene Server ran a protein of record size, just less than 130 amino acids [191].

In comparison, biochemists are studying the prion protein that misfolds and causes

diseases such as Mad Cow and human Creutzfeldt-Jakob. Prion proteins have been

found to be larger, e.g., 209 amino acids for human PrP and 467 amino acids for yeast

Sup35 [189, 92]. Another computational method, statistical mechanical models, has

been applied to compute statistics related to the global folding process for protein

and RNA molecules [121, 2, 120, 113, 43, 34, 26, 190]. While computationally more

efficient than molecular dynamics or Monte Carlo simulation, these methods do not

produce individual folding trajectories and are limited to studying global averages of

the folding process.

In order to computationally study interesting, large, and biologically-relevant

molecules, this work explores a novel and efficient computational technique for study-

ing molecular motions [6, 5, 7, 152, 154, 158, 159, 160, 161, 162, 172, 173]. In a matter

of a few hours on a desktop PC, both microscopic folding pathways and global fold-

ing properties for protein and RNA molecules of hundreds of residues can be studied

with our PRM-based method. The roadmap we construct approximates a molecule’s

energy landscape. As shown in Figure 1, the energy landscape relates conformations

to energy. While each molecule has its own unique landscape, the global minimum of
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each landscape is the lowest energy point, the native state. The unique physical fea-

tures of a folding landscape, e.g., the hills and valleys, determine the folding behavior

for that molecule. Our approximate map of the landscape quickly and efficiently cap-

tures the principal features of the landscape through both global views of the folding

process and microscopic views of many (typically thousands) folding pathways.

(a) (b) (c)

Fig. 1. (a) The folding energy landscape is the set of all protein conformations and
their associated energy. Building an approximate map of the energy landscape
consists of two steps: (b) conformation sampling and (c) connecting samples
together with feasible transitions.

The main contribution of this work is the development of new intelligence-based

techniques derived from Monte Carlo solution, master equation calculation, non-linear

dimensionality reduction, and Markov Decision Process policy learning to run folding

simulations on and analysis of the approximate map [162, 160, 161, 163, 164].

• Map-based master equation calculation (MME) extracts global properties of the

folding landscape such as global folding rates [162, 160, 161].

• Map-based Monte Carlo solution (MMC) can be used to extract microscopic

features of the folding process [162, 160, 161].

• Dimensionality reduction returns a lower-dimensional representation that still

retains the principal features while facilitating both modeling and analysis of

motion landscapes [164].
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• Markov Decision Process policy learning adapts the way maps are constructed

based on previous successes and failures.

The key advantage of our methods is the efficiency with which biologically relevant

folding behaviors can be studied.

Protein Folding. In our preliminary work, we studied protein folding by build-

ing approximate maps, or roadmaps, for several proteins of varied length and struc-

ture. We obtained promising results that were validated by comparing secondary

structure formation order with known experimental results [172, 173]. Subsequently,

we were able to extend these results through the introduction of the MMC and MME

techniques for roadmap-based analysis [162]. Both MMC and MME use the roadmap

as a framework for computation and encode the edges as Boltzmann probabilities.

These new methods have allowed us to compare time-ordered structural events

extracted from our roadmaps to lab experimental methods that give insight as to

how the molecule moves, folding kinetics. For example, we have explored the rate of

conformational change from the unfolded state to the native state (folding rate), the

times at which the different conformations are populated (population kinetics), and

structural measurements that relate to experimental techniques such as fluorescence,

CD spectra, and hydrogen exchange [162, 174].

Many computational techniques struggle when simulating the motions of large

proteins because the space of possible conformations grows exponentially with protein

size. For this reason, we have explored an analysis method that can be applied to

landscape models, called dimensionality reduction [164]. This computational tech-

nique finds the principal features of a high-dimensional space, represented by our

motion landscapes, and returns a lower-dimensional representation that still captures

the principal features. Dimensionality reduction enables more efficient and useful
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global analysis of our landscapes. Through a new use of it as an analysis tool, it can

reduce our original model size by almost half, thus facilitating the study of larger

proteins.

Our results are quite promising. Our new techniques have been able to capture

structural events that have been shown in lab experiments, such as those found for

protein G and its mutants, NuG1 and NuG2 [162]. We also demonstrated in [162] that

kinetic measurements based on lab experimental techniques give greater detail into

the folding process and provide new ways to validate our methods. In [174] we show

that these kinetic methods are critical to detailed insight into the folding process,

e.g., identifying the folding core. Also, the application of dimensionality reduction to

our roadmaps produced maps that were up to 53% smaller for the proteins studied,

yet were still able to capture the experimentally determined folding orders including

those for Protein G and its mutants [164].

RNA Folding. Ribonucleic acid (RNA) motions are responsible for many bio-

logical processes including synthesizing proteins, catalyzing reactions, splicing introns,

and regulating cellular activities. For example, it has recently been found that RNA

folding velocity may regulate the number of copies of DNA strands that are present

in a cell (plasmid copy number) [65, 89].

Due to the exponential costs, enumerating all secondary structure conformations

is only possible for small RNA (less than 20 nucleotides). We have explored the use of

a probabilistic Boltzmann sampling method for larger RNA. Kinetic analysis of our

approximate RNA folding landscapes through the application of the MMC and MME

techniques has produced results that we can validate against experimental methods

[160, 161]. For example, we were able to replicate the kinetic functional rates of MS2

phage RNA and three mutants that were seen in experiment.

Despite the fact that RNA conformations can be represented with a secondary
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structure model, the configuration space represented by all possible RNA conforma-

tions is not simple. We have shown that non-linear dimensionality reduction tech-

niques are well-suited to find the representative features of the RNA landscape [164].

With these reduced models, we have demonstrated that important landscape features

such as coverage can be better explored.

B. Robotic Motion

While there have been many different algorithmic methods developed for motion

planning, no one method works well in all planning spaces. For example, some spaces

might have narrow passageways that are difficult to plan in or open regions that

are easier. These space characteristics can exist in any planning domain (such as

proteins and RNA), but they have been best explored in the area of robotic motion

planning. In this domain, there are many individual planning methods developed

whose strengths are known by domain experts, e.g., the original PRM method [85]

for open regions and the Obstacle-based PRM [4] in constrained regions. Also, the

complexity of the robot may impact the complexity of the planning problem. High-

dimensional robots have additional constraints on their motions, therefore they can

require more complex planning methods.

In order to take advantage of this existing library of methods, we have explored

using the features of the planning space to help decide where and when to apply

particular planners. In preliminary work, a supervised learning method classified

features of the space and selected a sampler to apply in a certain region of the space

[117, 119]. In recent work, we have used spatially and temporally identified features

in order to better decompose the problem and selectively apply planners that adapt

over time [165]. This new strategy takes advantage of unsupervised learning methods
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Fig. 2. Automatic region identification in a maze environment. (a) Environment shown
with movable body shown above and enlarged. Notice there are three different
regions which the robot must traverse: open, constrained, and open. (b) Clus-
tering identifies 3 regions (circled) corresponding to the features of the space.
(c) Continued clustering can unnecessarily split the regions further. (d) An
automated method, the elbow criterion, determines the best number of regions
(red star).

at all stages of the planning process and produces solutions in complex spaces with

little cost and less manual intervention compared to other adaptive methods.

An example is shown in Figure 2 for a maze environment with a movable object.

First, features from a small sampling of the space are identified and used to cluster

the samples. Each cluster relates to a region of the space (Figure 2(b)). In order

to define the optimal number of clusters (n), the elbow criterion is calculated from

the variance in the clusters (Figure 2(d)). Intuitively, this criterion selects n such

that adding additional clusters does not add sufficient information. Subsequently, an

appropriate planner can be selected from a library and applied in each region.

C. Our Contribution

In this thesis we provide intelligent methods for constructing and analyzing roadmaps

for high-dimensional and complex problems. First, we demonstrate these techniques

in molecular motion domains: an approximate map of a protein’s potential energy
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landscape [6, 172] and an RNA’s folding landscape [160]. Through the development

of two new map-based analysis techniques, MME and MMC, we have been able to

provide quantitative kinetic measurements such as relative folding rates and popula-

tion kinetics [162, 160, 161]. Through the use of dimensionality reduction, we have

demonstrated that high-quality roadmaps can be constructed at a reduced size, and

important landscape features such as coverage can be better explored [164]. Sec-

ond, intelligent roadmap-based techniques are applied to domain of robotic motion

[117, 119]. For example, the use of new techniques such as the unsupervised adaptive

strategy [165], automatically answers the questions of where and when to apply to

apply particular planning methods.

D. Outline

A summary of related work in molecular and robotic motion is presented in Chapter II.

In Chapter III we begin with an overview of energy landscapes for protein and RNA

folding. Subsequently, in Chapter IV we present a primer on motion planning and also

present the basic model of the Probabilistic Roadmap Method (PRM). We extend

this introduction with a presentation of the use of PRMs to model Protein and RNA

folding landscapes in Chapter V. In Chapter VI we present our intelligent tools for

improved modeling of the folding process. These tools are based on Markov Decision

Process policy learning and dimensionality reduction. In Chapter VII we focus on the

processes after the model is built through the presentation of a set of tools for analysis.

These tools are based on Monte Carlo, master equation, and dimensionality reduction.

We also show some computational and experimental validation of the methods on

RNA in Chapter VIII. We follow this with a presentation of the application of

intelligent methods for roadmap construction for robotics applications in Chapter
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IX. In Chapter X we summarize the contributions of this work and offer some ideas

for future study.
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CHAPTER II

RELATED WORK

In this chapter we present related methods for studying protein, RNA, and robotic

motion. First, we explore molecular motion. We begin with an introduction of some

of the primary experimental methodologies for the study protein motions. This is

followed with a discussion of computational techniques that are used for the study

of protein and RNA motion. Finally, a summary is given of intelligent techniques to

develop roadmaps for robotic motion planning.

A. Molecular Motions

There are many ways that protein and RNA folding have been studied previously. In

this section, we explore some of the primary methodologies that have been used both

experimentally and computationally.

1. Experimental Studies

In recent years there have been several advances in experimental techniques to study

protein dynamics and motion including circular dichroism, fluorescence experiments,

hydrogen exchange and pulse labeling, NMR spectroscopy, and time-resolved X-ray

crystallography. Below, we highlight just a few of the prominent methods.

Circular Dichroism. Circular dichroism (CD spectra) measures the absorption

of polarized light for the entire population of states as a function of thermal stability

[53]. There are two main methods: near UV (250nm–350nm wavelengths) which ex-

amines the formed tertiary structure and far UV (190nm–250nm wavelengths) which

examines the formation of secondary structure [138]. CD experiments had been lim-

ited to 10 milliseconds, but recently has been extended to 400 microseconds [1].
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Fluorescence. Fluorescence experiments monitor change in fluorescence as a

function of denaturant. Three primary categories of fluorescence experiments are

stopped-flow methods (i.e., denaturant is added over a series of timesteps and fluo-

rescence is measured after each addition), continuous flow methods (i.e., fluorescence

is monitored with a continuous addition of denaturant), and independent equilib-

rium methods (i.e., measures fluorescence intensity in different denaturant conditions)

[138].

Hydrogen Exchange. Hydrogen exchange mass spectrometry and pulse la-

beling can investigate protein folding by identifying which parts of the structure are

most exposed or most protected [178]. From this data, one can infer which portions

of the protein fold first and which are last to form, up to the millisecond timescale.

NMR spectroscopy is another experimental tool well-suited to study protein

dynamics because it can acquire site-specific, detailed information on a variety of

timescales, ranging from picoseconds [86] to milliseconds [132]. It has been used to

study both side-chain motion and backbone motion. See [116] for a recent review of

current techniques.

X-Ray Diffraction. Time-resolved Laue X-ray diffraction has been used to

identify intermediate structures along a reaction pathway. This technique aims to

not only study intermediate structures, but to also gather their rates of transition.

The first work on myoglobin [137] and photoactive yellow protein [155] identified

motions on the picosecond to microsecond timescale.

2. Computational Protein Folding

There are many different methods for computationally studying protein folding. In

this section we briefly introduce some of the methods, give insight into their strengths

and weaknesses, and discuss the kinetic information that each method provides.
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Molecular Dynamics. Molecular dynamics simulates the dynamics of the fold-

ing process using Newton’s classical equations of motion. The forces applied are

usually approximations computed using the first derivative of an empirical poten-

tial function. Molecular dynamics studies are highly realistic and help give insight

into how proteins fold in nature. They also facilitate study of the underlying folding

mechanism, provide folding pathways, and identify intermediate folding states. While

they give physically realistic simulations, these simulations come at a large compu-

tational cost. For example, it has taken months of supercomputer time to simulate

a microsecond of a very small (36 residues) protein folding [52] using molecular dy-

namics! Researchers are identifying ways to counteract the cost of MD simulations.

For example, the The Folding@Home distributed computing project [149] computes

MD simulations with a cluster of over 30,000 computers worldwide.

Monte Carlo Simulation. Monte Carlo simulation finds a single folding trajec-

tory [41, 90]. However, each run is computationally expensive because at each point

in the conformation space search, complex kinetics and thermodynamics are simu-

lated. Multiple runs are often done because the search is stochastic. Like molecular

dynamics, Monte Carlo simulations provide highly realistic insight into the folding

process.

Master Equation Kinetics. Folding kinetics have also been studied through

a computation across the folding landscape. One way this has been done is through

the use of lattice models that have enumerated the folding landscape, and then the

master equation is computed for this landscape [37, 130, 131, 129]. One advantage

of these approaches is that the transition state emerges from the dominant modes of

the master equation solution. However, these models are very simplistic and do not

represent real structures or sequences. Recent applications of the master equation

have studied proteins with full structures [181]. However, the enumeration of the
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folding landscape is limited to the formation of contact clusters, which are groupings

of nearby contacts as derived from the native-state contact map.

Statistical Mechanical Methods. Statistical mechanical methods have also

been successful in studying protein folding kinetics. These methods have provided

estimates of the transition state ensemble, folding rates, and Φ-values [120, 2]. Only

recently has this method been applied to larger protein structures of up to 349 residues

[43, 44]. However, these models use a very simplified energy function that depends

only on the topology of the protein’s native state and hence are not as accurate as

the distance from the native state increases (as the protein unfolds).

SRS and PFold. Stochastic Roadmap Simulations (SRS) samples motions and

studies kinetics by modeling the folding energy landscape as a network of conforma-

tions where the connection between two conformations in the network reflects the

transition probability between them. In early SRS work [10], the protein structure

was modeled as a sequence of rigid secondary structure pieces and the packing order

of these elements was studied.

In recent work [35], SRS was shown to identify the transition state ensemble,

and it was used to compute folding rates and Φ-values. In order to identify the

transition state ensemble, the conformation is modeled as a binary vector where each

bit represents a sequence of five residues. The bit is set to 0 if the subsequence is

non-native or 1 if it is native-like. All possible conformations and transitions (i.e., a

single bit change) were enumerated in the model. To compute Pfold, the probability of

folding, they perform random walks from every conformation until it reaches either

the folded state or the unfolded state. Pfold for a given conformation is then the

percentage of times a random walk from that conformation reaches the folded state

before the unfolded state. Transitions are not allowed out of either the folded or the

unfolded state.
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In this model, Pfold helps identify the transition state ensemble. They use this

ensemble to calculate relative folding rates and Φ-values. However, their model only

contains a single unfolded state. Thus each conformation in their model does not

represent the same volume of the energy landscape. In a more realistic model, it

is unlikely that there will be a single, unique unstructured (‘unfolded’) state, thus

making the Pfold calculation more difficult for use with more structurally accurate

models.

3. Computational RNA Folding

Computational research on RNA folding falls into two main categories: structure

prediction and folding kinetics. Structure prediction attempts to compute the native

state given only the nucleotide sequence. Folding kinetics, on the other hand, is

concerned with the folding process itself and not just the end result.

Structure Prediction. Structure prediction is commonly solved with dynamic

programming. Nussinov introduced a dynamic programming solution to find the

conformation with the maximum number of base pairs [126]. Zuker and Stiegler

[192] formulated an algorithm to address the minimum energy problem. Today,

Zuker’s MFOLD algorithm is widely used for structure prediction. McCaskill’s al-

gorithm [114] uses dynamic programming to calculate the partition function Q =

∑

s exp(−∆G(s)/kT ) over all secondary structures s, while Chen [34] uses matrices

for approximation.

Folding Kinetics. The partition function can also be used to study folding

kinetics. Wuchty extended the algorithm to compute the density of states at a pre-

defined energy resolution [186]. The ViennaRNA package [71], based on the above

work, implements Zuker and McCaskill’s algorithms as well as some energy functions.

Ding and Lawrence [51] extended this algorithm to generate statistical samplings of
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RNA structures based on the partition function.

Several approaches other than thermodynamics have been used to investigate

RNA kinetics. For example, [56, 70, 187] used Monte Carlo algorithms to find folding

pathways. Gultyaev and Shapiro et. al. [65, 147] used genetic algorithms to study

RNA folding pathways.

Some methods involve computations on the folding landscape. Dill [34] used ma-

trices to compute the partition function over all possible structures and approximate

the complete folding landscape. Wuchty [186] modified Zuker’s algorithm to gener-

ate all secondary structures within some given energy range of the native structure.

Flamm and Wolfinger [56, 185] extended this algorithm to find local minima within

some energy threshold of the native state and connect them via energy barriers. The

resulting energy barrier tree represents the energy landscape. To calculate the energy

barrier, they used a flooding algorithm that is exponential in the size of RNA. Thus,

it is impractical for large RNA.

Some statistical mechanical methods are also used to study the RNA folding

kinetics. For example, the Master Equation is used to compute the population kinetics

of the folding landscape. It uses a matrix of differential equations to represent the

probability of transition between different conformations. Once solved, the dominate

modes of the solution describe the general folding kinetics [129, 83, 34].

B. Adaptive Robotic Planning Methods

This section provides an introduction to many of the adaptive planning methods that

have been proposed for robotic motion planning. The methods are summarized in

Table I. A discussion of their strengths and weaknesses for adaption is given below.
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Table I. Comparison of adaptive methods. “User Intervention” refers to the amount of user input needed for successful
application. “Topology Adaption” reflects if a method is able to map or model the planning space. “Sampler
Adaptation” refers to whether different planners can be applied during the planning process. “C-space Type”
considers the types of C-spaces that can be addressed by the method. If new sampling methods can easily be be
applied, it is reflected in “Add New Sampler”.

Characteristics
User Topology Sampler C-space Add New

Method Intervention Adaption Adaption Type Sampler
UAS little yes, modeled yes any easy

Traditional PRM little none none any N/A
Basic Feature Sensitive MP [117] supervised planner training yes, modeled yes, fixed mapping any difficult

Hybrid PRM [76] manual parameter tuning none yes any easy
Information IG/Entropy-based [23, 24] manual parameter tuning yes, implicit N/A any N/A

Theory-Based RESAMPLE [139] manual parameter yes, implicit N/A any N/A
Workspace Workspace Hybrid PRM [97] little yes, mapped yes restricted easy

Adaption-Based Watershed-based Method [17] manual parameter tuning yes, mapped yes, fixed mapping restricted N/A
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Feature Sensitive Motion Planning Framework. This approach was in-

troduced as a method that used machine learning to characterize and partition a

planning problem [117]. In this approach, the planning space is recursively subdi-

vided until a machine learning method is able to classify a subdivision as appropriate

for a planner from a given library. This topology mapping may be defined in either

workspace or C-space. The strength of this method lies in its ability to identify a

model of a problem’s topology that make certain regions appropriate for certain plan-

ners. However, other than recursive subdivision calls, it is not able to adapt planner

applications over time. Another drawback of this approach is that it requires a map-

ping of samplers to regions, typically generated by machine learning techniques that

require an “expert” to label hundreds of examples of training data. Such a mapping

must be repeated as new planners are developed.

Hybrid PRM. Here, a reinforcement-learning approach provides sampler adap-

tion by selecting a node generation method that is expected to be the most effective at

the current time in the planning process [76]. Variations of this method that changed

the learning process [188] and employed workspace information [97] have also been

explored. The theory behind this method is that as the space becomes over-sampled

by simple samplers, more complex samplers will be able to take over. However, these

samplers are applied globally over the whole problem, and the features of the plan-

ning space, such as topology, are not used when deciding where to apply the selected

method. Also, there are many parameters that need to be set for optimal application

of the Hybrid PRM method such as initial sampler weights, sampler reward/cost as-

signment, how weights are adjusted during learning, and how long before beginning

adaptation, to name a few. As new samplers become available, it is straightforward

to add them to Hybrid PRM.

Information Theory Approaches. Burns and Brock [23, 24] demonstrated
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the applicability of ideas from information theory (e.g., information gain and entropy)

to guide sampling to regions where it is predicted to be useful. This guidance helps

explore the spatial constraints of the space, and the implicit modeling of spatial

regions helps guide future sampling.

RESAMPL [139], uses local region information (e.g., entropy of neighboring sam-

ples) to make decisions about both how and where to sample, which samples to

connect together, and to find paths through the environment. This use of spatial

information about the planning space enables RESAMPL to increase sampling in

regions identified as “narrow” and decrease sampling in regions identified as “free”.

Workspace Adaptation Methods. Many methods have been proposed to ex-

plore the impact of adaptation in response to the features of the planning workspace.

A recent adaptation of the Hybrid PRM method [97] uses workspace information,

extracted from a cell decomposition, to define locations where samplers should be ap-

plied. Another workspace-based approach applies the watershed method (previously

applied in image processing) to identify narrow passageways in the workspace [17].

After such features are identified, the planning can be adapted based on the charac-

terization of the region. While these approaches rely heavily on spatial characteristics

in order to decide where to apply a planner, they do not consider the change in the

topology that is discovered as a space is explored. Their performance also degrades in

more complex problems (different C-space types) where difficult (e.g., narrow) regions

of C-space can no longer be identified from difficult regions of the workspace (such as

with articulated linkages and other constrained robots).
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CHAPTER III

A PRIMER ON ENERGY LANDSCAPES

In this chapter, energy landscapes are introduced. First, we define the basic definition

of an energy landscape. Next, we explore the idea of transitions on the energy land-

scape, the process of moving from one conformation to another. Finally, we explore

some specifics of the energy landscapes of proteins and compare those to the energy

landscapes for RNA.

A. Energy Landscapes

Energy landscapes are a common way to describe the folding process. In the energy

landscape definition, each point in the energy landscape space represents a single

conformation of a molecule and its associated energy. The visual representations of

an energy landscape are usually two dimensions of continuous conformational change

plotted against a third dimension of energy, shown in Figure 1(a). While there is

quite a bit of debate about the physical characteristics of the energy landscape, this

intuitive definition is a commonly accepted way to describe the folding process. Due

to the fast speed of protein folding and the low energy of the native, folded state of

the protein, the energy landscape is often portrayed as a funnel-shape with the native

conformation at the tip of the funnel [48].

Folding occurs when a molecule transitions from one configuration to another on

the energy landscape. Since motion is a continuous action, the molecule transitions

to configurations with similar structure, typically nearby configurations on the energy

landscape. With a model of the energy landscape, we can calculate the probability

of transitioning from one configuration to another. This would allow us to simulate

a likely sequence of transitions.
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B. Probabilistic Transitions on the Energy Landscape

In this section we describe how a model of an energy landscape can be used to

probabilistically identify possible transitions. These transitions exist between a pair of

configurations, and specify how dynamic motion can occur between the configurations.

1. Markov Model of Transitions

Markov models define probabilistic processes where the future state depends on the

present state [60]. The folding process can be viewed as a Markov process where

the current state (configuration, qi) defines the next state (configuration, qj) during

folding. However, the probabilities that define the likelihood of transitioning from

one configuration to another, transition probabilities, must be defined.

2. Transition Probability

There are several different methods for calculating transition probabilities [48]. In

our work, we use a common one, Boltzmann transition probabilities. The Boltz-

mann transition probability Kij (or transition rate) of moving from qi to qj using the

Metropolis rules [48]:

Kij =















e
−∆E

kT if ∆E > 0

1 if ∆E ≤ 0
(3.1)

where ∆E = Ej − Ei, k is the Boltzmann constant, and T is the temperature of

folding.

3. Detailed Balance

The transition probabilities between qi and qj should satisfy the detailed balance so

that in the equilibrium distribution, the mutual flow of population in both directions
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is balanced:

Pi ×Kij = Pj ×Kji (3.2)

Here Pi and Pj are the populations of configuration qi and qj , respectively. In equi-

librium, the population of RNA or protein configurations will stay in the Boltzmann

distribution [83]. So the transition probabilities should satisfy the detailed balance:

Kij

Kji
= e

−(Ej−Ei)

kT (3.3)

The Metropolis rules shown in Equation 3.1 satisfy the detailed balance.

C. Energy Landscape of Protein Folding

Being able to model the energy landscape for protein folding may provide critical

insights into the folding process. For example, despite the wealth of experimental

techniques available to study protein folding, computational techniques are necessary

to provide additional details at shorter time-scales and when experimental techniques

are unable to operate [48, 149]. Also, detailed insight into the folding process is

required when protein misfolding is detrimental. Diseases such as Mad Cow and

Alzheimer’s Disease are caused by protein misfolding [98].

1. Structure

A protein is a sequence of amino acids, a grouping of atoms that consists of one com-

mon part and a side chain that is unique to each type of residue. The sequence of

amino acids that link together to define a protein, is referred to as the primary struc-

ture of a protein [22]. The bonds between the amino acids can bend and twist, taking

on regular structure patterns. The formation of these common structural patterns,

including alpha helices, beta strands, and turns, defines the secondary structure of
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a protein [144]. The tertiary structure of a protein is defined as the protein’s three

dimensional structure. This structure commonly occurs when certain attractions are

present between the secondary structure elements of a protein. The native state of

the protein is a stable, closely-packed three-dimensional structure that can be formed

spontaneously by the protein under certain physiological conditions [8].

The process of protein folding, the transition to the native state, is a dynamic

process of structural formation. It is generally believed that in many cases the pro-

tein’s native state is the lowest free energy state [48].

2. Model

We model the protein as an articulated linkage. Using a standard modeling assump-

tion for proteins that bond angles and bond lengths are fixed [156], the only degrees

of freedom (dof) in our model are the backbone’s φ and ψ torsional angles which are

modeled as revolute joints with values [0, 2π) (Figure 3).
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Fig. 3. Three amino acids forming a protein chain. The two major flexible bond angles
for each amino acid are φ and ψ.

3. Energy Calculation

We have used both a coarse energy function similar to [105] and an all atom energy

model [101]. For the coarse model, we use a step function approximation of the van

der Waals component and model all side chains as equal radii spheres with zero dof.
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If two spheres are too close (e.g., their centers are < 2.4Å during sampling and <

1.0Å during connection), a very high potential is returned. Otherwise, the potential

is:

Utot =
∑

restraints

Kd{[(di − d0)
2 + d2

c ]
1/2 − dc}+ Ehp (3.4)

where Kd is 100 kJ/mol and d0 = dc = 2Å as in [105]. The first term represents

constraints favoring known secondary structure through main-chain hydrogen bonds

and disulphide bonds, and the second term is the hydrophobic effect. The hydrophobic

effect (Ehp) is computed as follows: if two hydrophobic residues are within 6Å of each

other, then the potential is decreased by 20 kJ/mol. A detailed description of our

potential can be found in [7].

D. Energy Landscape of RNA Folding

Recently it has been found that some RNA functions such as gene expression regu-

lation [89, 28, 12] and catalysis [64, 95] are related with the folding process [175, 12,

64, 95, 89, 28]. For example, the speed at which RNA II folds can increase the E.

coli ColE1 plasmids copy number [65, 89]. Also, the mRNA folding speed can change

the expression rate of phage MS2 maturation protein [63, 89, 70]. The ability to view

detail during the folding process of RNA molecules through computational modeling

of the energy landscape will help clarify the functional abilities of RNA molecules.

1. Structure

An RNA molecule is a sequence of nucleotides (bases) that link together. There

are four main types of nucleotides: adenine (A), cytosine (C), guanine (G), and

uracil (U). Bonding can occur between non-adjoining nucleotides. For example, the

complementary Watson-Crick bases and the wobble pair can form thermodynamically
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stable base pair contacts: C-G, A-U, and G-U.

As in protein structure, RNA structure is defined in terms of primary, secondary,

and tertiary structure. Primary structure defines the sequence of nucleotides that

make up a RNA molecule (Figure 4(a)). Secondary structure is a planar representa-

tion of an RNA conformation (Figure 4(b)). Although there may be different defini-

tions [34, 71], secondary structure is commonly considered to be a planar subset of

base pair contacts. Base pair contacts that form non-planar interactions are usually

considered tertiary structure. The tertiary structure represents the three-dimensional

representation of a RNA configuration (Figure 4(c)).

(a) Primary Structure

(b) Secondary Structure

(c) Tertiary Structure

Fig. 4. Three representations of an RNA configuration: (a) primary structure, (b)
secondary structure, and (c) tertiary structure.

2. Model

In the results demonstrated here, we focus on the formation of secondary structure,

a common representation for studying RNA folding [192, 193, 71]. We adopt the def-

inition in [71] that eliminates other types of contacts that are not physically favored.

We use the three most commonly considered base pairings [179, 193, 71], C-G, A-U,

and G-U, in our model.
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3. Energy Calculation

Turner rules or nearest neighbor rules [192] are one of the most commonly used energy

functions to compute the free energy of an RNA secondary structure. This method

involves determining the types of loops that exist in the molecule and looking up their

free energy in a table of experimentally determined values. The energy of the entire

structure is the summation of the free energy of each sub structure. In the results

shown here, we use the Turner rules for free energy calculation of RNA conformations

[192]. However, since our method is general, other energy functions can be applied

such as [126, 187, 27].

E. Comparison of Protein and RNA Folding Energy Landscapes

Although RNA and protein folding landscapes are generally similar, there are some

distinct differences. These differences include: the size of the conformational spaces,

the complexity of the structural models, and the impact of the energy function on

the energy landscape.

As discussed earlier in Sections C(1) and D(1), RNA and protein structures are

different. For example, proteins are constructed from twenty different types of amino

acids compared to the four different types of nucleotides of RNA. This relates to the

larger energy landscape of proteins as compared to that of RNA molecules.

The model we use for proteins and RNA reflects another difference. RNA

molecules are modeled as discrete configurations, Section D(2). Conversely, protein

configurations are sequences of continuous values or angles, Section C(2). These dif-

ferences relate to some differences in the implementations of protein and RNA folding

as specified in Chapters III and V.

Finally, the choice of energy functions affects the models of the two energy land-
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scapes. Due to the energy calculations for RNA and protein folding, Sections D(3)

and C(3), the energy landscape of RNA folding is typically bumpier than that of

proteins. This relates to RNA folding requiring study of a broad area of the en-

ergy landscape. However, protein folding often focuses sampling near a native state.

The sampling strategies to address these differences are introduced in Chapter V

Sections A and B.
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CHAPTER IV

A PRIMER ON PROBABILISTIC ROADMAP METHODS

In this chapter, we provide an overview of the Probabilistic Roadmap Method, PRM,

used to find a sequence of valid (collision-free) states that take a moving object,

referred to as a robot, from an initial state to a goal state [85]. These robot states,

or configurations, are represented by a set of parameters that describe the placement

and pose of the robot. This problem, often referred to as motion planning (MP), has

application in domains such as robotics, gaming/virtual reality [108, 109], computer-

aided design (CAD) [13, 14], virtual prototyping [14, 33], and bioinformatics [7, 15,

150].

A. Configuration Space

A robot is a movable object whose position and orientation can be described by

n parameters, or degrees of freedom (dofs), each corresponding to an object com-

ponent (e.g., object positions, object orientations, link angles, link displacements).

Hence, a robot’s placement, or configuration, can be uniquely described by a point

(x1, x2, ..., xn) in an n dimensional space (xi being the ith dof). This space, consist-

ing of all possible robot configurations (feasible or not) is called configuration space

(C-space) [111]. The subset of all feasible configurations is the free C-space (C-free),

while the union of the unfeasible configurations is the blocked C-space (C-obstacles).

Thus, the MP problem becomes that of finding a continuous trajectory for a point in

C-free connecting the start and the goal configurations. In general, it is intractable to

compute explicit C-obstacle boundaries, but we can often determine whether a con-

figuration is feasible or not quite efficiently, e.g., by performing a collision detection

(CD) test in the workspace, the robot’s natural space.
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B. The Complexity of Motion Planning

Planning is a hard problem whose complexity depends on a number of factors in-

cluding the complexity of the movable object, the complexity of the space, and the

number of obstacles that exist in the space. Therefore, formal analysis of the algo-

rithms used for planning was necessary to assess practicality and opportunities for

increasing efficiency.

In 1979, Reif presented the first theoretical assessment of the computational

complexity of a path planning problem: planning a free path from a given start

to a given goal with an articulated linkage robot within a workspace with finite

obstacles [136]. This path planning problem in a configuration space of arbitrary

dimension with a set of static obstacles, is often identified as the ‘generalized mover’s

problem.’ Reif showed this problem to be PSPACE-Hard. This was due to the fact

that complexity of the robot caused the configuration space to grow exponentially.

Enumerating this space is not a polynomial time solution.

Reif’s labeling of the generalized mover’s problem as PSPACE-Hard spurred a

flurry of complexity analysis for problems with planar movements. For example,

in 1984 Hopcroft, Joseph, and Whitesides showed that path planning for a planar

linkage (a closed chain limited to planar movement) was PSPACE-hard. Also, the

motion planning problem of coordinating the planar movement of n rectangles in a

rectangular space without obstacles was shown to be both PSPACE-hard [72] and in

PSPACE [73]. Therefore, it is in PSPACE-complete. Another problem, planar arm,

is the planar planning for an arm of arbitrary number of links connected by serial

joints. Planning a path between any two given configurations without hitting any of

the polygonal obstacles has been shown to be PSPACE-hard [82].

In 1983 and 1984, Schwartz, Sharir, and Ariel-Sheffi published a series of articles
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on motion planning [145, 146]. In the first paper [145] by Schwartz and Sharir, the

authors describe the first exact method for planning free paths of a polygonal stick

allowed to translate and rotate in a two-dimensional workspace. The second paper

[146] expanded the first paper by presenting a general method for path planning.

This paper contributed the first upper bound, twice exponential in m where m is the

dimensionality of the C-space, on the time complexity of planning in a semi-algebraic

free space of any fixed dimension.

In 1988 John Canny’s seminal thesis on motion planning investigated the com-

plete planners, ones guaranteed to find a solution or indicate that no solution exists.

He showed there is strong evidence that complete planning requires time exponential

in the number of dof of the movable object [25]. This matches the complexity of the

most efficient algorithm known to date (singly exponential in m) [25].

C. Probabilistic Roadmap Methods (PRMs)

Sampling-based motion planners explore C-space and produce a data structure con-

taining feasible configurations and some information about the connectivity of C-free.

One of the most notable planners, prms [85, 127, 128], builds a roadmap (graph) of the

free C-space. The first phase in this process, node generation, is where collision-free

configurations are sampled and added as nodes to the roadmap. In the second phase,

node connection, neighboring nodes are selected by a distance metric as potential can-

didates for connection. Then, simple local planners, e.g., straight line interpolation,

attempt connections between the selected nodes. Successful connections are recorded

as roadmap edges. Algorithm 1 outlines the steps.

Although the initial prms were successful in solving many problems previously

thought unsolvable, they were challenged by problems where the solution path must
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Algorithm 1 Probabilistic Roadmap Method

Preprocessing: Roadmap Construction

Input. An environment and a movable object

0. Node Generation– sample valid configurations

1. Connection – connect configurations

Output. A roadmap approximating the space of possible motions

Postprocessing: Query Processing

Input. A roadmap approximating the space of possible motions, start (s) and goal

(g) position

0. Connect s and g to roadmap

1. Find path in roadmap between s and g

Output. A path in roadmap from s to g

pass through a narrow passage in the C-space. In order to address this deficit, many

PRM variants have been introduced. For example, OBPRM [4] generates samples

near C-obstacle surfaces by first generating a random sample and searching along a

random direction until the sample’s collision state changes. Another variant, Gaussian

PRM [20], generates pairs of samples that are a distance d apart, where d has a

Gaussian distribution, until one sample is collision-free and the other is not, and

retains the free sample as a roadmap node. Many other heuristics have been proposed

[11, 85, 127, 128, 20, 182, 99, 18, 100, 75, 124, 19].
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CHAPTER V

A PRIMER ON PRMS TO MODEL MOLECULAR ENERGY LANDSCAPES

Probabilistic roadmap methods (PRMs) [85] originally developed for robotic motion

planning and introduced in Chapter IV, can also be used to model molecular motion.

For molecules, a graph corresponding to an approximate map of the energy land-

scape is constructed that encodes many (typically thousands of) folding pathways,

see Figure 1. As described in more detail in Sections A and B, our PRM-based method

follows the general PRM paradigm: first conformations (graph vertices or map nodes)

are sampled from the molecule’s energy landscape (Figure 1(b)), and then transitions

between ‘nearby’ conformations are encoded as graph or map edges (Figure 1(c)). As

in nature, our strategy favors low energy conformations and transitions. In particular,

during the sampling phase, lower energy samples have a higher retention probability,

and during the node connection phase, each connection is assigned a weight to reflect

its energetic feasibility. The energetic feasibility of a transition is determined by the

energies of all the intermediate conformations along the transition. Thus, shortest

paths in the map correspond to the most energetically feasible paths in the map, and

these maps encode thousands of feasible pathways.

PRM-based approaches have been applied to several molecular domains. Singh,

Latombe, and Brutlag first applied prms to protein/ligand binding [150]. In subse-

quent work, our group applied another PRM variant to this problem [15]. Our group

was the first to apply prms to model protein folding pathways [7, 6, 154, 153, 151,

171, 170, 173] and RNA folding kinetics [159, 160, 161, 157]. Subsequent to our work,

a number of groups have used prms to study proteins. The work of Apaydin et al.

[10, 9] is similarly motivated but differs from ours in several aspects. First, they model

the protein at a much coarser level, considering all secondary structure elements in
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the native state to be already formed and rigid. Second, while our focus is on study-

ing the transition process, their focus has been to compare the PRM approach with

other computational methods such as Monte Carlo simulation. More recently, Cortes

and Simeon used a PRM-based approach to model long loops in proteins [39, 40],

and Chiang et al. [35] applied prms to calculate quantities related to protein folding

kinetics such as Pfold and Φ-value analysis.

A. Protein Landscape Modeling

Our group has successfully applied our PRM framework for molecular motions to

study protein folding and motion [7, 6, 154, 151, 153, 171, 170, 173, 162]. Here

we first describe the specifics of our protein application (e.g., node generation and

connection).

1. Node Generation

The map produced by our technique is an approximation of the protein’s energy land-

scape. The quality of the approximation depends on the sampling strategy. Generally,

we are most interested in regions ‘near’ the native state and so seek to concentrate

sampling there. In our original work [7, 6, 154, 151], we obtained a denser distri-

bution of samples near the native state through an iterative sampling process where

we apply small Gaussian perturbations to existing conformations, beginning with the

native state. This approach works fairly well, but still requires many samples (e.g.,

10,000) for relatively small proteins (e.g., 60–100 residues). In [173], we used rigidity

analysis [78, 79, 80, 77, 103] to determine which portions of the protein to perturb.

This approach increased the protein size we can handle.

Rigidity analysis has been shown to label the residues in a protein chain as flexible
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or rigid [78, 79, 80, 77, 103]. In previous work [173], we defined a method to use this

information to guide the placement of samples when generating conformations. After

each residue is labeled as rigid or flexible using node generation, we use the label to

guide future sampling. For example, angles that are a part of residues labeled as rigid

are perturbed with a probability defined as Prigid and angles of residues labeled as

flexible are perturbed with a probability defined as Pflex. Each angle can be changed

by a certain degree, referred to as θstd.

Samples are retained based on their energy. In our protein work, a sample q,

with potential energy Eq, is accepted with probability:

Prob(accept q) =































1 if Eq < Emin

Emax−Eq

Emax−Emin
if Emin ≤ Eq ≤ Emax

0 if Eq > Emax

(5.1)

where Emin is the potential energy of the open chain and Emax is 2Emin.

2. Node Connection

For each node in the map, we attempt to connect it with its k nearest neighbors with

a straight-line in the protein’s energy landscape. The weight for the edge (q1, q2) is a

function of the intermediate conformations along the edge {q1 = c0, c1, . . . , cn−1, cn =

q2}, where the number of intermediate conformations depends on the resolution, which

is a parameter of the method. For each pair of consecutive conformations ci and ci+1,

the probability Pi of transitioning from ci to ci+1 depends on the difference in their

potential energies ∆Ei = E(ci+1)− E(ci):

Pi =















e
−∆Ei

kT if ∆Ei > 0

1 if ∆Ei ≤ 0
(5.2)
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As defined in Chapter III Section B, this keeps the detailed balance between two

adjacent states, and enables the weight of an edge to be computed by summing the

negative logarithms of the probabilities for consecutive pairs of conformations in the

sequence. (Negative logs are used since each 0 ≤ Pi ≤ 1.) A similar weight function,

with different probabilities, was used in [150].

B. RNA Landscape Modeling

In our previous work [158, 159, 157, 160, 161], we developed several successful map

construction techniques for RNA. In particular, the Probabilistic Boltzmann Sampling

(PBS) method builds the smallest maps (up to 10 orders of magnitude smaller than

completely enumerated maps) and enables us to study much larger RNA, up to 200

nucleotides.

1. Node Generation

Our sampling method, Probabilistic Boltzmann Sampling (PBS), uses Wuchty’s method

[186] to enumerate suboptimal (low energy) conformations within a given energy

threshold. We take these suboptimal conformations as “seeds” and include addi-

tional random conformations. Then, we use a probabilistic filter to retain a subset

of the conformations based on their Boltzmann distribution factors. For a given

conformation q with free energy Eq, the probability of keeping it is:

Prob(accept q) =















e
−(Eq−E0)

kT if (Eq −E0) > 0

1 if (Eq −E0) ≤ 0
(5.3)

where E0 is a reference energy threshold that we can use to control the number of

samples kept.
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2. Node Connection

Similar to protein folding (Section A), we calculate a weight wij for edge (qi, qj) that

reflects the Boltzmann transition probability between qi and qj . First, we determine

the energy barrier (the maximum energetic cost) Eb between qi and qj . Then, we

calculate the Boltzmann transition probability kij (or transition rate) of moving from

qi to qj using Metropolis rules [48]:

kij =















e
−∆E

kT if ∆E > 0

1 if ∆E ≤ 0
(5.4)

where ∆E = max(Eb, Ej) − Ei, k is the Boltzmann constant, and T is the temper-

ature. Note that the same energy barrier Eb is also used to estimate the transition

probability kji, so the calculation satisfies the detailed balance (Chapter III Sec-

tion B). Also as in protein folding, the edge weight wij is the negative logarithm of

the transition probability.

C. Publicly Available Resources

In order to make our results and methods publicly available, we have established

an online protein folding server at http://parasol.tamu.edu/foldingserver. At this

server, we have published detailed results from our own studies [172, 162]. Also, we

have accepted protein submissions from other scientists, and we have performed the

analysis for them.

Since the protein folding server has been available, we have received 119 sub-

missions from the public. The submitter has the option to keep results public or

private. We currently have published may results for the public including the pub-

licly available results for: Ap4a Hydrolase, MMP19, SATB1, TAT, Arkadia 120, and
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FIS mutant K36A.

D. Model Evaluation

An important part of landscape modeling is verifying the resulting model. One solu-

tion might be to completely model the landscape. However, due to the size of protein

and RNA conformational spaces, it is often impossible to use a complete model. Many

times an approximate model is used, and it is important to verify that the model cap-

tures the principal features of the complete landscape. In this section, we define some

methods to evaluate roadmap quality for molecular motion.

In evaluating roadmap quality it is important to assess the contributions of the

two steps of roadmap construction: node generation and connection. First, assessing

the conformations generated in node generation can be done be done by defining the

roadmap coverage. In robotics, this idea has been defined as the number of nodes,

V , that must be generated in order to answer queries from the roadmap with a high

probability [74]. This idea also translates to molecular motion, however the answers

to queries are restricted by energetically feasible paths rather than collision-free paths.

Second, the roadmap connectivity is measured by evaluating the connections within

a roadmap. In robotics, a roadmap is said to adequately represent the conformation

space if its connections capture the possible transitions allowed in collision-free space

[74]. This idea also translates to molecular motion where the transitions that are

captured should be energetically feasible. For example, the transitions that are most

likely are those that have the lowest energy barriers, e.g., lowest edge weights.

One solution might be to maximize coverage and connectivity to ensure roadmap

quality. However, the size of V is often related to the amount of work done by the

planner [74]. Also, increased connectivity increases the complexity of the roadmap
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and can increase the amount of time solving queries. The goal is often to find the

minimal number of samples and edges that still capture the important features of the

landscape.

As mentioned above, the quality of the roadmap can be assessed by its ability

to solve queries on the roadmap. An interesting query is finding a feasible path

between a given initial conformation (e.g., any denatured conformation) and the

native structure. If the start conformation is not already in the roadmap, then we

can simply connect it to the roadmap, and then use Dijkstra’s algorithm [38] to find

the smallest weight path between the start and goal conformations.

The roadmap does not just capture a single pathway. However, it encodes many

folding pathways, which together represent the folding landscape. One way to study

this ensemble of pathways is to consider the set of shortest paths from all conforma-

tions to the native state. This can be done by computing the single-source shortest-

path (SSSP) tree [38] from the native structure. Using Dijkstra’s algorithm, this takes

O(V 2) time.

Extracting the set of shortest paths can result in hundreds of pathways even for

roadmaps with thousands of nodes. In order to better analyze the pathways, they

can be clustered based on a similarity measure, e.g., the order in which secondary

structures are formed. For each individual pathway, the formation of contacts that

are part of secondary structure elements can be tallied. Then, the order in which

secondary structures are formed can be determined. Finally, pathways can be grouped

based on their secondary structure formation order and compared with orders from

experimental data, if available.
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CHAPTER VI

INTELLIGENT TOOLS FOR MODELING

In this chapter we explore a set of intelligent tools for aiding the construction of a en-

ergy landscape model, or roadmap. The first of these tools, Markov Decision Process

policy learning, aids the first step of roadmap construction, node generation. With

this tool, the past success of policies chosen during node generation will lead to the

choice of future policies. The second intelligent tool, dimensionality reduction, takes

a set of high-dimensional data and finds a low-dimensional representation for that

data. We demonstrate how this is useful in the second step of roadmap construc-

tion, node connection. Through the use of dimensionality reduction, we show that

roadmap size, reflected in the number of edges, is reduced significantly.

A. Markov Decision Processes in Node Generation

Markov decision processes (MDP) occur when an autonomous agent can sense out-

comes from its actions in the environment. From the action and outcome relationship,

policies can be learned to choose optional actions to achieve the agent’s goals. Markov

decision processes occur in many domains and have been applied to problems includ-

ing mobile robot control [142, 143, 169], game playing [115, 57], and robot motion

planning [76].

In this section, we explore the use of policy learning of MDPs in order to produce

roadmaps for protein folding. First, we define the basic MDP. Next, we explore how

policies for roadmap-based MDPs have been previously learned. Finally, we explore

the application of MDP policy learning for the task of roadmap-based protein folding.
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1. Markov Decision Processes

In a MDP, the learning agent perceives a set of states, S, that describe its current

environment. It also has a set of actions, A, that it can select from. At each time

step t, it can select an action at that is taken. The outcome of that action makes

some impact on the environment δ(st, at) that results in a new set of perceptions,

st+1. The result of that outcome is measured in a reward function, r(st, at), that

gives the agent some knowledge of the utility of its action at. Learning progresses

by the agent’s pursuit of maximal rewards. Solutions to MDPs are commonly solved

through dynamic programming and reinforcement learning [141].

2. MDPs and Probabilistic Roadmaps

Many steps in Probabilistic Roadmap Methods are defined by Markov Decision pro-

cesses. For example, following a path in a roadmap, such as transitioning between

conformations (Chapter III Section B), or Monte Carlo pathways (Chapter VII Sec-

tion A) can be defined by a sequence of actions, which edge to traverse, and state

outcomes, the next path step. Also, roadmap sampling can be a Markov Decision

process. At each step in sampling, there can be multiple actions to take, e.g., multiple

distinct sampling methods or different parameters to use. The state outcomes in sam-

pling are defined as the utility of a sample to the quality of the roadmap. Learning

the best actions to take in order to maximize sample quality can impact the quality

of roadmaps and the speed at which roadmaps are constructed.

MDP policy learning has been previously used to impact PRM sampling. In

robotics applications, there are many proposed sampling methods [85, 4, 20, 100,

124, 19] whose efficiency and effectiveness has been seen to be highly correlated with

the planning space and the problem construction [59]. A method called Hybrid PRM
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uses MDP policy learning with a library of possible sampling methods, the actions.

It has been shown to automatically learn which sampling methods will best cover an

unclassified problem [76].

In Hybrid PRM sampler adaption is provided by selecting a sampling method

that is expected to be the most effective at the current time in the planning process

[76]. Rewards to the selected method are assessed based on the utility of the sam-

ple. Variations of this method that changed the learning process [188] and employed

regional information [97] by biasing where samples were placed at certain times have

also been explored. The theory behind this method is that as the space becomes over-

sampled by simple samplers, more complex samplers will be able to take over. Con-

siderations for initial sampler weights, sampler reward/cost assignment, how weights

are adjusted during learning, and learning rates are made. Retraining is necessary as

new planners become available.

3. Application: Parameter Tuning for Node Generation

In order to find high-quality motions, we must first define a set of conformations

that represent the likely conformational states of the molecule. During this roadmap

construction step of node generation, we use one successful conformation, the par-

ent, to produce another subsequent conformation, the child. Parameters are used to

define which sections are perturbed and the quantity of perturbation of the parent

conformation.

a. Methods

The general algorithm for using MDP policy learning for node generation is shown

in Algorithm 2. When applying policy learning to node generation, we have a set

of actions A that defines sets of parameters that can be used. For example, a pa-
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Algorithm 2 MDP Policy Learning in Node Generation

Input. A set actions A defined by the parameters that can be selected

a set of states S that defines current perception,

a starting conformation c0

1: for timestep, t, from 1 to n do

2: Select action at from rankings Ra of set A

3: Generate ct where ct ← β(at, ct−1)

4: Generate reward rt based on new perceptions, st+1

where st+1 ← δ(st, at)

5: Apply reward rt to Pa where a is at

6: end for

Output. A set rankings of Ra that defines the utility of each A

rameter might be the angle of perturbation would help define a new conformation

from an existing conformation. Once a set of actions is selected, a new conformation

can be created from an existing conformation. After this, the perceived utility of a

conformation can be measured, and the action set can be rewarded appropriately.

After learning occurs, the actions that lead to favorable outcomes have maximized

rankings, and will continue to be selected with higher probability. Also, a rate for

random exploration, Prandom, always allows the system to select actions completely

at random.

b. Experimental Setup

When using rigidity-based sampling for node generation, three parameters impact a

resulting conformation. These parameters were defined in Chapter V Section A:

• Pflex – the probability of perturbing a flexible region
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• Prigid – the probability of perturbing a rigid region

• θstd – the angle (or quantity) of perturbation

The combination of parameters defines an action, at, as used in Algorithm 2. The

reward rt of the action at can be defined based on the current utility of a sample.

This can vary depending on the current goal, e.g., localized or global sampling.

When building a model of the energy landscape, we have two primary goals.

First, we expect good coverage of the energy landscape as defined in Chapter V

Section D. That is, we would like a set of conformations that represent the allowable

motions of the molecule. One way we insure this is by iteratively performing node

generation by perturbing one parent conformation to generate a child conformation

(as defined in Chapter V Section A). Iterations focus the landscape exploration to

a region within n contacts of the parent where n is usually defined by some percent

of the total number of contacts in the native structure, pTNC . Second, we would like

high-quality conformations. A high-quality conformation is one that will be feasibly

undertaken, e.g., low energy. With these in mind we defined a set of reward policies

that would be assigned to each action to update its current utility. These policies are

as follows (Emax is defined in Chapter V Section A):

• If an action produces an outcome of a conformation with energy less than Emax

and in a space of the landscape currently being explored, it is assigned a reward

of Rmax.

• If an action produces an outcome of a conformation with energy less than Emax

and in a space of the landscape not yet explored, it is assigned a reward of Rmin.

• If an action produces an outcome of a conformation with energy greater than

Emax, it is assigned a reward of Rpenalty.
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These policies meet these goals of coverage and quality. However, depending on the

goal of sampling, they could be tuned for other outcomes such as directed sampling.

Figure 5 demonstrates the effects of the three parameters, Pflex, Prigid, and θstd

on the quality of the generated nodes (shown as the number of collisions) for Protein

G, PDB ID 1GB1. The parameters were selected from the the value set (0, 0.2, 0.4,

0.6, 0.8, 1) for Pflex and Prigid and (0.0027, 0.0083, 0.00138, 0.0277, 0.055, 0.1111)

radians for θstd. In this figure, the colors represent the percent of high-energy con-

formations (collisions) generated by the three-value parameter combination. What is

immediately clear, is that there is not one single parameter value that seems to work

well. For example, all the individual Pflex values produce from 80% to 10% collisions.

This demonstrates that one single parameter does not individually control the quality

of the generated nodes. On the other hand, the combination of the three parame-

ters has a strong effect on the quality of the resulting nodes. A set of Pflex = 0.8,

Prigid = 0.2, and thetastd = 0.0083 makes collision-free nodes over 80% of the time.

While a plot like Figure 5 might make it easy to select parameters for a single

protein and simple reward function (collision-free rewards), it would become more

difficult as the reward function or number of parameters change. Also, on line learning

with MDP policy learning will put currently well performing actions to practice during

the node generation process.

c. Results

In order to evaluate the effect of MDP policy learning on parameter selection during

the node generation process, we selected proteins of varied structure and length as

listed in Table II. Three proteins were about 60 amino acids in length: Protein G

(PDB ID 1GB1), Cardiotoxin III (PDB ID 2CRS), and Protein A (PDB ID 1BDD).

These three proteins have varied structure from mixed α and β, all α, and all β. A
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Fig. 5. Effect of the parameters Prigid, Pflex, and θstd on the number of nodes in colli-
sion generated for Protein G (PDB ID 1GB1).

final large protein, Alpha-1 antitrypsin (PDB ID 1QLP) of 372 residues with mixed

α and β structure was also selected.

Conformations were sampled for each protein in groups of 1000 valid roadmap

nodes. For each sampled conformation at time t, MDP policy learning selected an

action, at from the set of parameters: Pflex, Prigid, θF lexstd
, θRigidstd

. Note that the

usual parameter θstd was separated into the two parameters of θF lexstd
and θRigidstd

to

allow the learning method to tune these angles for each type of structure, flexible and

rigid. Local landscape regions used to guide exploration and learning rewards were

defined with the parameter pTNC = 10%. The standard parameter control runs used

our common parameters of Pflex, Prigid, θstd.

Parameters were set for both MDP policy learning and controls. In MDP policy

learning Pflex and Prigid were selected from the value set (0.2, 0.4, 0.6, 0.8), and

θF lexstd
and θRigidstd

were selected from (0.0027, 0.0083, 0.00138, 0.0277, 0.055, 0.1111)
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radians. MDP policy learning runs were set up with the following values: Rmax = 1.0,

Rmin = 0.25, Rpenalty = −0.2, and Prandom = 0.2. Standard parameter runs set

Pflex = 0.8 and Prigid = 0.2, and θstd to the set of (0.0027, 0.0083, 0.00138, 0.0277,

0.055, 0.1111). Since the protein 1QLP is is about six times the size of the other

proteins, the values for θstd, θF lexstd
, and θRigidstd

were (0.0006, 0.002, 0.003, 0.006,

0.013, 0.027). The expectation was that the original larger values would result in

larger conformational change and increase the chance of collision. This new angle set

retained some of the original values, but it also gave more options for smaller angle

changes.

Table II. Proteins studied with MDP policy learning. Proteins are of varied secondary
structure (SS) and size (Length). MDP policy learning retains the exper-
imentally verified secondary structure formation order (SSFO) of protein
1GB1, and causes little effect on the SSFO of proteins 1BDD and 2CRS. (*)
indicates that SSFO was not compared due to protein size.

PDB SSFO
ID SS Length Standard Parameters MDP Policy Learning

1GB1 1α + 4β 56 α1, β4, β3, β1 (99.5) α1, β4, β3, β1, β2 (99.8)
2CRS 3β 60 β2; β1; β6; β5; β4; β3 (99.6) β2, β1, β6, β5, β4, β3 (99.8)
1BDD 3α 60 α2, α3, α1 (99.9) α2, α1, α3 (99.8)
1QLP 12α + 14β 372 (*) (*)

In order to explore the effect of structural differences on the ability of MDP policy

learning to generate useful conformation, roadmaps from 1000 to 4000 conformations

were constructed for proteins 1GB1, 2CRS, and 1BDD. For each of these roadmap

sizes, the percent of conformations that were in collision were collected and plotted

in Figure 6 for roadmaps constructed with standard parameters and MDP policy

learning. All roadmaps constructed with standard parameters had a collision rate

of around 75%. This means that 75% of the conformations were in collision (had

very high energy) in order for standard parameters to generate 1000 well-distributed,

collision-free conformations. On the other hand, the MDP policy learning roadmaps
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for 1GB1 and 1BDD only generated 55% of its conformations in collision. 2CRS, the

all β structure, had a slightly higher collision rate of around 65%. All MDP policy

learning maps had a lower rate of collision than standard parameters.
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Fig. 6. The rate of collision during node generation using a fixed parameter set com-
pared to during MDP policy learning. Note that all the maps generated using
MDP policy learning from size 1000 to 4000 samples have a lower collision rate
than fixed parameters.

Roadmaps were constructed for proteins 1GB1, 2CRS, and 1BDD until secondary

structure met convergence as described in Chapter V Section D. The secondary struc-

ture formation order (SSFO) for runs with standard parameters are shown compared

to runs with MDP policy learning in Table II. Note that for proteins 1GB1 and

2CRS, the SSFO is the same in both maps. Also, the SSFO for protein G matches

that seen in experiment [107]. The SSFO for 1BDD is similar for both maps with α2

forming before both α3 and α1.

In order to explore the effect of protein size on the effectiveness of MDP policy
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learning, comparisons were made between proteins 1GB1 and 1QLP. In Figure 7, the

frequency of parameter combinations is shown for the two proteins. In Figure 7(a) the

most frequent parameter combination was Pflex = 0.8, Prigid = 0.6, θflexstd
= 0.002,

and θrigidstd
= 0.002. However, the color variance shown in Figure 7(a) indicates

that many parameter combinations were frequently selected. This reflects what was

seen in Figure 5 where many parameter combinations were successful in making con-

formations for 1GB1. In Figure 7(b) the most frequent parameter combination was

Pflex = 0.2, Prigid = 0.2, θflexstd
= 0.0006, and θrigidstd

= 0.0006. Note that these were

the smallest allowable values for 1QLP. The MDP policy learning was able to quickly

assess that the other parameters produced significantly high numbers of collision

nodes, so the smallest values were quickly rewarded. Other parameter combinations

were not frequently selected in contrast to the results for 1GB1. For both 1GB1

and 1QLP, the values of θflexstd
and θrigidstd

were similar, so only θflexstd
is shown in

Figure 7.
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Fig. 7. The frequency of various parameter combinations for proteins (a) 1GB1 and
(b) 1QLP. Due to similarities in the selected values for θflexstd

and θrigidstd
, only

θflexstd
is shown plotted.

These results show that automatic parameter tuning during the node genera-
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tion process helps identify high-quality and useful conformational sets. MDP policy

learning had the largest effect when proteins are of different sizes. But, structural dif-

ferences also impacted the effects of learning. This new method shows great promise

for studying proteins of significant length and structural complexity.

B. Dimensionality Reduction for Node Connection

For years, mathematical dimensionality reduction techniques have been applied to a

variety of problems that exist in a complex space. Often, the data from these problems

is too large and complex to analyze by hand, so these reduction techniques approx-

imate the complex space with a smaller representation that includes the features of

interest. High-dimensional data from a variety of domains has been successfully re-

duced. These domains include areas such as: human subject studies [184], stellar

spectra [55], and facial images[177].

In this section we explore the application of dimensionality reduction to the

second step of the roadmap generation process, node connection. We demonstrate

that the use of dimensionality reduction can reduce the size of the landscape model

required to capture biologically relevant motions.

1. Dimensionality Reduction

A variety of dimensionality reduction methods have been developed that analyze a

set of points (input) and produce a low-dimensional representation for each input

point (output). The methods vary in the speed of calculation and the complexity

of the data the models are able to represent. As in many data mining techniques,

there are two main classes of methods: those that are able to capture data that is lin-

early representable and those that are able to capture non-linear data. Two popular
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types of methods for doing linear reduction are the classical techniques of Principal

Component Analysis (PCA) [81] and Linear-Multidimensional Scaling (MDS) [21].

These methods are very popular because they are easy to implement, compute solu-

tions efficiently, and can guarantee a globally optimal linear subspace reduction of the

high-dimensional data. However, if the data being studied is non-linear, then more

recent non-linear reduction techniques have been used to obtain better reductions

[104].

We explore two methods for dimensionality reduction: PCA (linear) and Isomap

[166] (non-linear). While these two methods both provide a reduction of some given

model, (see Algorithm 3), they differ greatly on how this model is obtained and

internally represented. We use in our descriptions: n as the size of the original dataset

(in our case RNA or protein conformations), D as the size of the dimensionality of

the original dataset, R as number of dimensions in the reduced space required to

represent the original dataset. In Chapter VII Section B, we show a comparison of

these two methods when they are used for analyzing the landscape model.

Algorithm 3 Dimensionality Reduction for Molecules

Input. A set of n conformations, represented in D dimensions

Output. A set of size n in R dimensions where R << D

PCA. Principal Component Analysis (PCA) is one of the most well known meth-

ods for dimensionality reduction. Its popularity stems from the ease of calculation

and the longevity of the method [81]. The goal of PCA is to compute the D Principal

Components (PCs) of the original data set. Even though there are D resulting PCs,

often the variance in the data can be fully represented by a smaller set of the PCs,

e.g., of size R.

The general algorithm for PCA is briefly outlined in Algorithm 4. The critical
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Algorithm 4 Principal Component Analysis for Molecules

Input. n×D matrix, X

Output. Set of R principle components, PC

1: Center the data in X by subtracting the data mean from each point

2: Construct the covariance matrix C = XXD

3: Compute the top D eigenvalues and eigenvectors of C via singular value decom-

position (SVD) of C.

4: Set PC as the ordered D eigenvectors of C.

5: return The first R of PC where the variance of the representation of the original

dataset is minimized and R < D.

step of the PCA method is the calculation of the the D PCs for an initial data set

of dimensionality D. Each resulting PC is a vector that is aligned with a direction

of maximal variance in the initial data set. They are ordered, e.g., the first PC

represents the direction of maximal variance, the second with the second maximal,

etc. Again, despite the fact that there are D resulting PCs, often the variance in the

data can be fully represented by a smaller set of the PCs, e.g., of size R.

Isomap. A popular non-linear dimensionality reduction technique is Isomap

[166]. It retains the features of efficiency and global optimality while being able to

represent non-linearity in the data. Isomap has been shown to work well on large and

complex data sets [166] and has been applied to proteins [45].

The general algorithm for Isomap is briefly outlined in Algorithm 5. The al-

gorithm works by obtaining a geometric representation of input data, e.g., distances

from one conformation to another. By using these geodesic distances, Isomap can pre-

serve the topology of a complex and non-linear manifold even with a low-dimensional

representation, e.g., of size R.
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Algorithm 5 Isomap for Molecules

Input. A set of n conformations.

Output. R-dimensional embedding.

1: Construct a neighborhood graph G.

For each conformation ni, connect it to neighbor nj with edge length d(i, j) if nj

is a k nearest neighbor of ni. If nj is not a k nearest neighbor of ni, connect with

an edge weight of d(i, j) =∞.

2: Compute the shortest paths in a matrix DG.

For every pair of points, i, j, compute the shortest path distances between those

points. E.g., min[d(i, j), (d(i, k) + d(k, j))] for every k from 1 to n.

3: Construct an R-dimensional embedding

Apply classical multi-dimensional scaling to the matrix of graph distances DG.

This will construct an embedding of the data in an R-dimensional Euclidean space

while preserving intrinsic geometry.

2. Dimensionality Reduction for Molecular Modeling

Dimensionality reduction has been applied to the biological problems of analyzing

protein folding trajectories [45, 58, 68, 69, 106, 125, 133] protein flexibility [167], and

RNA structures [50, 93]. There have been many approaches taken to explore the re-

duction of high-dimensional molecular data including linear dimensionality reduction

[81], non-linear dimensionality reduction [104], and Normal Mode Analysis [183].

One of the most common techniques for dimensionality reduction, principle com-

ponent analysis (PCA), was used to study the high-amplitude fluctuations in a molec-

ular dynamics simulation of a small 46 residue protein [58]. From there, it has been

applied to examine dynamics problems such as identifying protein conformational

sub-states [88, 30, 140], extending the timescale of molecular dynamics simulations
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[3, 96], and performing conformational sampling [47, 46, 168]. PCA has also been

applied to compare interpretations of the reduced space against experimental data,

e.g., as was done with extensive mutation data [125].

Due to the fact that protein motion was shown to be generally non-linear [58],

non-linear dimensionality reduction techniques have been applied to proteins. Non-

linear techniques were used to analyze hundreds of thousands of conformations gen-

erated from a statistical mechanical method in order to define the most relevant

reaction coordinates for the system [45]. Later, techniques to speed up the analysis

were introduced in [133].

The combination of PCA and NMA can also provide useful insight when the two

measures agree or disagree [88]. Using information gained from the two methods,

proteins such as bovine pancreatic trypsin inhibitor [69] and T4 lysozyme [68] have

been studied.

3. Application: Node Connection

The reduced space represents a low-dimensional mapping where similar configurations

are grouped together. Landscape analysis of reductions, as shown in Chapter VII

Section B, clearly demonstrates that conformations of similar energetics and structure

are grouped together, even at low dimensional representations. One way to take

advantage of this grouping is to use the reduction to identify likely motion transitions.

In the past, we have identified likely transitions from a conformation by using a

distance metric to define nearby conformations. Then, we make connections between

them as described in Chapter V.
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a. Methods

We identify likely motion transitions by defining a new distance metric based on the

reduction of a set of conformations C, called the reduction distance. After performing

a reduction, we obtain a vector, ri, of length R for each conformation, ci. Here,

the number of dimensions R is computed from the elbow criterion (see Chapter VII

Section B). We then calculate the distance between two conformations ca and cb by

calculating their distance in the reduced space as

dR(ca, cb) =

√

(ra
1 − r

b
1)

2 · · ·+ (ra
d − r

b
d)

2

2n
(6.1)

In previous work, we defined neighbors through a metric based on the amount

of rigid structure in two conformations called rigidity distance [173]. This metric

provided results that were able to capture experimental findings with two major

benefits: fewer required edges and low edge weights.

b. Experimental Setup

In order to compare the two ways of identifying neighbors for local motion transitions,

we applied the two metrics to connect a single set of conformations: the previously

developed rigidity distance and our new metric reduction distance. We took the

proteins from our protein folding server that includes both our previously published

results and user submissions. This set consisted of 35 proteins from 46 to 153 residues

of varied secondary structure (Table III). All proteins listed are referenced by their

PDB ID except MMP19. This protein was a submission to our publicly available

online folding server (see Chapter V Section C). The conformation sets varied in size

from 4,000 to 10,000 conformations (as defined by the amount needed to maintain a

stable secondary structure formation order).



54

Isomap was run on the set of conformations as defined in Section 1. As discussed

in Section 1, the nearest neighbor parameter used by Isomap was set to k = 8. The

number of dimensions used to represent the data was automatically defined by the

elbow criterion (see Chapter VII Section B). The metrics were asked to attempt local

connections to each conformation’s 20 nearest neighbors.

c. Results

Table III displays the differences caused by the two different distance metrics for each

protein studied. “Edge Number Quotient” is the number of edges in the reduction

connected map over the number of edges in the rigidity connected map. “Edge Weight

Quotient” is the average edge weight in the reduction connected map over the average

edge weight in the rigidity connected map. It is clear that using the reduction distance

causes on average a 60% decrease in the number of edges and almost a 10% decrease

in the average edge weight.

Since the edge weight reflects the energetic feasibility of making a local transition

from one conformation to another, it is good to examine the changes in edge weight

caused by this new connection method. Table III also shows the average edge weights

from the maps connected by the rigidity distance against the maps connected by the

reduction distance. Overall, the average edge weights from the reduction distance

maps were almost 10% smaller than the original maps. While not all reduction

connection maps had smaller average edge weight, 30 of 35 maps had averages that

were similar to or less than the original average edge weight.
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Table III. Comparison of reduction distance connection to previous work for 35 pro-
teins. In all cases, reduction distance connection reduces the number of
edges needed, and in many proteins, it decreased the average edge weight.
[* User submission without a PDB ID.]

Edge Edge
PDB Number Weight

Identifier Length Structure Nodes Quotient Quotient

1AB1 46 2α + 2β 6000 0.81 1.14
1CCM 46 1α + 3β 10000 0.48 1.26
1RDV 52 2α + 3β 4000 0.48 0.77
1EGF 53 3β 4000 0.52 0.75
1PRB 53 5α 4000 0.58 1.17
1IY5 54 1α + 3β 4000 0.75 1.13
1SMU 54 3α + 3β 4000 0.51 0.69
1FCA 55 2α + 4β 4000 0.49 0.73
1VGH 55 1α + 4β 4000 0.53 0.88
1GB1 56 1α + 4β 4000 0.51 0.97
1MHX 57 1α + 4β 6000 0.47 0.88
1MI0 57 1α + 4β 4000 0.54 0.86
1BPI 58 2α + 2β 4000 0.73 0.75
4PTI 58 2α + 2β 4000 0.52 0.78
1BDD 60 3α 6000 0.53 1.04
1TCP 60 2α + 2β 4000 0.49 0.65
2ADR 60 2α + 2β 8000 0.47 0.83
2CRS 60 6β 4000 0.67 1.02
2PTL 62 1α + 4β 4000 0.50 0.72
1COA 64 1α + 5β 4000 0.53 0.58
1SRM 64 1α + 5β 4000 0.67 1.04
2CI2 65 2α + 5β 8000 0.72 0.58
1NYF 67 5β 6000 0.47 0.63
1HOE 74 7β 4000 0.75 0.56
2AIT 74 7β 4000 0.68 1.00
1UBI 76 3α + 5β 4000 0.71 1.08
1UBQ 76 1α + 5β 4000 0.49 0.55
1O6X 81 2α + 3β 4000 0.53 0.57
1A2P 108 4α + 6β 4000 0.70 1.19
2YCC 108 5α 6000 0.72 1.34
1VYN 117 5α + 8β 4000 0.71 1.19
1RBX 124 4α + 7β 6000 0.65 0.91
193L 129 7α + 3β 6000 0.78 1.42
2AFG 140 4α + 10β 4000 0.67 0.89

MMP19* 153 3α + 7β 4000 0.72 1.21

Average 0.60 0.91
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In addition to reducing the required number of edges and the average edge weight,

using a reduction distance to connect a roadmap dramatically changed the connec-

tivity of the map. The degree for a conformation (or vertex) v in the roadmap is the

number of edges connected to v. In the reduction distance maps, the average degree

dropped to 25.37 from 43.62. More striking differences are seen in the conformations

of maximum degree. For example, with the rigidity distance, the maximum degree in

all roadmaps was in the range [302, 1,832] while in the reduction distance maps the

degree was in the range [36, 47]. From these changes, it is clear that the reduction

distance maps are more evenly connected. For example, the reduction of maximum

degree implies that massive connectivity hubs are removed, and the average degree

change implies that all conformations are more equally connected.

From the previous statistics, it is clear that local motion transitions are changing

the roadmaps. These changes seem to be for the better: smaller roadmaps, smaller

edge weights, and more disperse connectivity. Another, more biologically-inspired,

measure is the order in which secondary structure is formed along the pathways in the

roadmap. In previous work [173], we validated a set of roadmaps against experimental

results. We showed that our roadmaps, connected by rigidity distance were able

to capture the same secondary structure formation orders as found in experiment.

Table IV shows the secondary structure formation orders for 4 proteins with similar

folding structure but differing folding behavior from the reduction distance roadmaps.

It also indicates the decrease in map size required over the previously build rigidity

distance roadmaps. In all cases, the reduction connected maps were able to predict

the secondary structure formation order seen in experiment with almost 50% fewer

edges than previously required.
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Table IV. Comparison of secondary structure formation orders and ratio of edges
needed (Size Decrease) for proteins G, L, NuG1, and NuG2 with known
experimental results: 1hydrogen out-exchange experiments [107], 2pulsed
labeling/competition experiments [107], and 3Φ-value analysis [122]. Brack-
ets indicate no clear order. In all cases, our new technique predicted the
secondary structure formation order seen in experiment with significantly re-
duced numbers of edges. Only formation orders greater than 1% are shown.

Protein Experimental Order Roadmap Order (%) Size Decrease

G [α,β1,β3,β4], β21 α, β3-4, β1-2 (100.0) 51%
[α,β4], [β1,β2,β3]2

L [α,β1,β2,β4], β31 α, β1-2, β3-4 (100.0) 50%
[α,β1], [β2,β3,β4]2

NuG1 β1-2, β3-43 α, β1-2, β3-4 (98.0) 47%
α, β1-2, β3-4 (1.9)

NuG2 β1-2, β3-43 β1-2, α, β3-4 (97.8) 54%
β1-2, α, β3-4 (1.1)
β3-4, β1-2, α (1.1)
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CHAPTER VII

INTELLIGENT TOOLS FOR ANALYSIS⋆

In this chapter we explore a set of intelligent tools for analyzing the protein

folding landscape, represented by a roadmap model of the landscape. The first set of

map-analysis tools enable the study of the time-based ordering of events in the folding

process, kinetic events (Section A). These events include measures such as folding

rates, equilibrium distributions, and population kinetics. The second map-analysis

tool provides a reduced view of the folding landscape that facilitates the analysis

of the landscape (Section B). With this tool, the roadmap model of the landscape

facilitates analysis such as coverage of the space of possible conformations and the

identification of interesting states in the landscape.

A. Kinetics Analysis Methods

Maps provide an approximate model of the molecule’s energy landscape. With this

model, we can use map-based analysis tools to study important kinetic measures such

as folding rates, equilibrium distributions, population kinetics, transition states, and

reaction coordinates. We have developed two such techniques: Map-based Master

Equation solution (MME) and Map-based Monte Carlo simulation (MMC) [159, 162,

160, 161]. These tools are inspired by existing kinetics tools (namely, traditional

master equation formalism and standard Monte Carlo simulation) but can be applied

to much larger molecules because they work on approximate landscape models instead

⋆Part of the data reported in this chapter is reprinted with permission from “Ki-
netics Analysis Methods for Approximate Folding Landscapes” by L. Tapia, X. Tang,
S. Thomas, N.M. Amato, Bioinformatics, vol. 23, no. 13, pp. 539-548, Copyright
2007 by Oxford University Press.
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of the complete, detailed energy landscape.

1. Map-based Master Equation Calculation

The master equation calculation gives insight into the folding rate, the equilibrium

distribution, and transition states. However, it requires a detailed model of the pos-

sible conformations and their associated transitions. In the past, this has been done

by enumerating landscapes – feasible only for small protein models or segments.

In this work we develop a strategy for applying the master equation to the

approximation of the folding landscape provided by our roadmaps. As we will show,

our roadmaps provide a suitable framework to apply the master equation without

requiring an enumeration of the conformation space. A major benefit of this is that

the Map-based Master Equation (MME) technique enables us to apply the master

equation to much larger proteins than was possible before.

Master equation formalism has been developed for folding kinetics in a number

of earlier studies [83, 181]. The stochastic process of folding is represented as a set of

transitions among all n conformations (states). The time evolution of the population

of each state, Pi(t), can be described by the following master equation:

dPi(t)/dt =
n

∑

i6=j

(kjiPj(t)− kijPi(t)) (7.1)

where kij denotes the transition rate from state i to state j. Thus, the change in

population Pi(t) is the difference between transitions to state i and transitions from

state i.

If we use an n-dimensional column vector p(t) = (P1(t), P2(t), . . . , Pn(t))′ to

denote the population of n conformational states, then we can construct an n × n
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matrix M to represent the transitions, where















Mij = kji i 6= j

Mii = −
∑

i6=j kij

(7.2)

The master equation can be represented in matrix form:

dp(t)/dt = Mp(t). (7.3)

The solution to the master equation is:

Pi(t) =
∑

k

∑

j

Nike
λktN−1

kj Pj(0) (7.4)

where N is the matrix of eigenvectors Ni for the matrix M in equation 7.2 and Λ is the

diagonal matrix of its eigenvalues λi. Pj(0) is the initial population of conformation

j.

From equation 7.4, we see that the eigenvalue spectrum is composed of n modes.

If sorted by magnitude in ascending order, the eigenvalues include λ0 = 0 and several

small magnitude eigenvalues. Since all the eigenvalues are negative, the population

kinetics will stabilize over time. The population distribution p(t) will converge to the

equilibrium Boltzmann distribution, and no mode other than the mode with the zero

eigenvalue will contribute to the equilibrium. Thus the eigenmode with eigenvalue

λ0 = 0 corresponds to the stable distribution, and its eigenvector corresponds to the

Boltzmann distribution of all conformations in equilibrium.

Similarly, we see that the large magnitude eigenvalues correspond to the fast

folding modes, that is, those modes which fold in a burst. Their contribution to the

population will die away quickly. Similarly, the smaller the magnitude of the eigen-

value is, the more influence its corresponding eigenvector has on the global folding

process. Thus, the global folding rates are determined by the slow modes.
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For some folders (2-state folders), their folding rate is dominated by only one

non-zero slowest mode. If we sort the eigen spectrum by ascending magnitude, there

will be one other eigenvalue λ1 in addition to eigenvalue λ0 that is significantly smaller

in magnitude than all other eigenvalues. This λ1 corresponds to the folding mode that

determines the global folding rate. We will refer to it as the master folding mode. Its

corresponding eigenvector denotes its contribution to the population of each state.

Hence, the large magnitude components of the eigenvector correspond to the states

whose populations are most impacted by the master folding mode. These states are

the transition states [131, 129].

We apply the master equation formalism to our roadmaps by assigning each

node in our roadmap to a row (and column) in the matrix M . The transition rates

are computed directly from the edge weight: Kij = K0e
−Wij . K0 is the constant

coefficient adjusted according to experimental results. We will use MME to compute

the relative folding rates for several proteins with known kinetics.

2. Map-based Monte Carlo Simulation

Population kinetics provides information about the time evolution of different confor-

mational populations. In our earlier work, we simply extracted the most energetically

feasible paths in the roadmap to study the folding process. However, this does not

mirror the stochastic folding process and cannot be used to determine the type of

kinetic information that we are interested in here. In this section, we show how we

can adapt Monte Carlo simulation and apply it directly to our roadmaps. Because

the roadmap approximates the energy landscape, we can use the pathways computed

by the Map-based Monte Carlo (MMC) simulation to compute population kinetics.

Applying Monte Carlo simulation to our approximated landscape allows for the

study of large protein structures with only a small computational cost. Previously,
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the size of the protein’s conformational space limited the application of Monte Carlo

techniques to small proteins (e.g. all-atom 56 residue protein [148]). However, our

roadmap provides a pre-computed framework for this walk and greatly simplifies the

computation required by Monte Carlo analysis.

In order to apply the Monte Carlo technique to our roadmap, we must ensure

that the likelihood of transitioning from one neighbor to another is probabilistically

biased by their Boltzmann transition probabilities. During roadmap construction,

we compute edge weights that reflect the energetic feasibility to transition from one

neighbor to another. We turn these edge weights into transition probabilities to

perform the Monte Carlo simulation. One way to do this is to cluster the edge weights

into disjoint buckets that reflect a grouping of edge weight qualities. After all edge

weights are assigned a bucket, edge weights within a bucket are assigned a probability

Qij reflecting their quality within the bucket. In doing so, the probability of each

edge weight is assigned in a biased Gaussian fashion that favors clear discrimination

of low edge weights, yet still can differentiate between edges of all weights. Then the

probability to transition between two states, Pij can be calculated as:

Pij =



















Qij

1+
∑n−1

j=0
Qij

if j 6= i

1

1+
∑n−1

j=0
Qij

if j = i
(7.5)

where n is the number of outgoing edges from node i. This ensures the sum of all

probabilities (including the self-transition probability) out of node i is one. Note

that the transition probability is dependent on the number of outgoing edges from a

node. Since during roadmap construction we only attempt connections between the

k closest neighbors according to some distance metric, the out-degree for all nodes

is roughly similar. Thus, this transition probability calculation is fair to all nodes in

the roadmap and maintains detailed balance.
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a. Helix Formation

The protein folding process can be monitored in the lab through the formation of

local portions of the three-dimensional structure of the protein. These local segments,

commonly helices and strands, are the secondary structure of the protein. In the lab,

the average formation of secondary structure can be measured through the technique

of far-UV CD spectroscopy. At far-UV wavelengths (190-250 nm) the chromophore

is the peptide bond and the resulting signal from CD spectroscopy appears when the

peptide bond is located in a regular folded environment. It is common to monitor

the formation of a specific type of secondary structure during the folding process

by performing CD spectroscopy at a certain wavelength. One of the most common

measurements is done at the wavelength of 220nm where the formation of helices can

be monitored.

There are many ways to measure helix formation in silico. In statistical mechani-

cal simulations, the protein backbone is modeled by a sequence of dihedral angles, one

angle between each pair of residues [44]. Helix formation has been measured from

these simulations by summing the individual angle change between conformations.

Unlike the single angle per residue model, our model consists of two angles that can

be independently similar or dissimilar. Given this independence and a more com-

plex protein model, we explored alternative ways of defining the formation of helices.

Also unlike the statistical mechanical model, our pathways and configurations are

extracted stochastically through the MMC technique.

In the results presented, we used a measurement of helix formation that calculates

the native contact formation in helices, H(t), as a function of time step, t, from the
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MMC simulation:

H(t) =

∑

ij

Hij(t)

H(native)
where i, j ∈ helix (7.6)

The contribution of a single contact, Hij(t), is equal to 1 if the residue pair (i, j)

forms a native contact in the configuration at time step t. In order to compare

results across proteins, the values of H(t) are normalized by the number of contacts

at helices measured at the protein’s native state, H(native). Thus, 1 represents the

full formation of the helix structures in a configuration and 0 represents no helix

structure formed.

b. Tryptophan Structure Formation

The protein folding process can also be studied in the lab by monitoring the fluores-

cence of certain amino acids. The fluorescence yield of these amino acids is determined

by their local environment given the configuration of the protein. While all aromatic

amino acids are known to fluoresce under certain conditions, the tryptophan residue

is often favored for experiments because of its high fluorescence yield.

Even though tryptophan rarely occurs in proteins, it is common to mutate a

protein to make fluorescence studies possible. Tryptophan can be introduced into the

structure where fluorescence yield is optimized through site-directed mutagenesis. For

example, they are often placed in the core of the protein and away from polar amino

acids that detract from their yield.

In order to monitor the local environment of the tryptophan residues, we explore

the effect of native contacts. As tryptophans are involved in native contacts, their lo-

cal environment becomes more similar to the environment in the native state. At that

native structure, we expect their fluorescence to be maximized. A similar approach
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was used in [44]. However, unlike their method, our pathways and configurations are

extracted stochastically through MMC.

In the results presented, we use a measurement of tryptophan structure formation

that calculates the native contact formation tryptophan residues, Trp(t), as a function

of time step, t, from the MMC simulation.

Trp(t) =

∑

ij

Trpij(t)

Trp(native)
where i, j ∈ tryptophan (7.7)

The contribution of a single contact, Trpij(t), is equal to 1 if the residue pair (i,

j) forms a native contact in the configuration at time step t and either i or j is a

tryptophan. This is a simple measure and could be modified for more complex local

environments impacting fluorescence yield. In order to compare results across pro-

teins, the values of Trp(t) are normalized by the number of contacts in the native

state involving tryptophans, Trp(native). Thus, a value of 1 represents the full for-

mation of the structure involving the tryptophan residues, and a value of 0 represents

no tryptophan structure formed.

3. Application: Protein Folding

In this section, we present results demonstrating how we can extract kinetics infor-

mation from our roadmaps. We show that our Map-based Master Equation (MME)

can accurately compute the relative folding rates of protein G and two of its variants.

Then we use our Map-based Monte Carlo (MMC) simulation to investigate the fold-

ing population kinetics of the native state for several small proteins studied in our

previous work [173]. When available, the helix formation and tryptophan contact for-

mation calculated during the folding process of these proteins is also shown. It would

be computationally prohibitive to apply the traditional Monte Carlo simulation or
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Master equation calculation to these proteins and detailed protein model, hence we

cannot compare to them.

a. Results: Protein G and Mutants

One interesting protein to study is protein G (Figure 8(c–inset)). Protein G is a small

two-state folder composed of a central α-helix and two β-hairpins. [122] created two

mutants of protein G to alter its folding behavior to switch the hairpin formation order

while maintaining the same secondary and tertiary structure, NuG1 (Figure 8(d–

inset)) and NuG2 (Figure 8(e–inset)). They also show that these two mutants fold

100 times faster than protein G.

We used our new MME to compute the relative folding rates of these two proteins

on roadmaps that reached stable secondary structure formation order. In the results

shown here, the potential values were normalized to fall between 0 and 1 for the

fastest computation of the master equation solution.

Figure 8(a) shows the magnitudes of the 5 smallest eigenvalues. Recall that the

smallest non-zero eigenvalues represent the rate-limiting barrier in the folding process.

Therefore, they have the largest impact on the global folding rate. As seen in the

magnitude of the second eigenvalue in Figure 8(a), protein G folds much slower than

the two mutants, NuG1 and NuG1. Also, NuG1 and NuG2 fold at very similar rates.

This matches what has been been seen in lab experiments. While in previous work

[173] we were able to accurately identify the hairpin formation order of protein G and

mutants NuG1 and NuG2, we were unable to study the change in folding rate.
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Fig. 8. (a) Eigenvalue comparison between protein G and mutants NuG1 and NuG2
computed by MME. NuG1 and NuG2 are experimentally known to fold 100
times faster than protein G [122]. (b) Running time of MME for protein G and
mutants NuG1 and NuG2 as a function of roadmap size. MME scales linearly
with the landscape model/map size. (c–e) Population kinetics from MMC for
protein G and mutants NuG1 and NuG2. As with MME, the MMC results also
indicate that the mutants fold faster than wild-type. Ribbon diagrams show
mutated hairpin in wireframe.
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We also studied the folding rate differences using population kinetics by MMC.

Figure 8(c–e) shows the population kinetics for the unfolded states and folded states

for protein G, NuG1, and NuG2. As seen in Figure 8(d,e), the population of the

native state of NuG1 and NuG2 rise very quickly. For example, the population of

the native state is just under 60% by timestep 100. However, at the same timestep,

the native state of protein G is only 20% populated (Figure 8(c)). This contrast in

the population of the native state between protein G and mutants NuG1 and NuG2

correlates with the faster folding rate of the mutants compared to the wild-type.

Figure 8(b) shows the performance of MME for roadmaps ranging in size from

2000 to 15000 nodes. The running time of MME scales linearly with roadmap size

(i.e., the size of the landscape model). Thus, MME has an advantage over the tradi-

tional master equation solution. While traditional master equation solution is usually

applied to a fully enumerated landscape, MME is only computationally limited by

the size of the approximated landscape model. Here we have shown that this approx-

imated model can be a subset of the entire configuration space. This enables us to

study larger proteins with more detailed models than can be handled by traditional

techniques.

b. Results: Structural Folding Kinetics

Here we study the folding process by computing the population kinetics of the native

state with our new MMC simulation for several different proteins. Recall that a

single roadmap encodes thousands of folding pathways. Previously, we extracted

folding pathways by finding the most energetically feasible pathways in the roadmap.

While this provided useful information about high level folding events such as the

temporal ordering of secondary structure which we could validate against experiment,

we could not use the deterministically extracted pathways to infer kinetic information.
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By instead extracting pathways stochastically using MMC, we can now compute

population kinetics for different states. For example, we can compare the population

kinetics of the unfolded state and the folded state.

We computed the population kinetics of several two-state folders studied in our

previous work [173] (see Table V). In that work, we were able to produce roadmaps

whose secondary structure formation order matched native state out-exchange ex-

periments and pulsed-labeling experiments when available [107]. We use the same

roadmaps here, but are able to supplement our previous results by using MMC to

compute the population kinetics of the folded state and the unfolded state. Table V

also displays the MMC analysis time. In all cases, the analysis took less than 1 hour

on a 2.4 GHz desktop PC with 512 MB RAM.

Figure 9 displays the results for several proteins studied. MMC was run for 500

iterations and 50,000 time steps. Our experience shows that this provided population

kinetics with small variance. These proteins are similar in size (ranging from 53 to

86 residues) and varying secondary structure makeup. We study all α proteins, all β

proteins, and mixed α and β proteins.
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Table V. Proteins studied and MMC analysis time. (*tail, residues 1-8, of structure removed)
Protein Name PDB ID Length SS Nodes Edges MMC Time (m) MME Time (s)

Dv Rubredoxin (RdDv) 1rdv 52 2α+3β 4000 206440 20.83 n/a
Murine Epidermal GF (mEGF) 1egf 53 3β 4000 199600 19.94 n/a
Cp Rubredoxin (RdCp) 1smu 54 3α+3β 6000 200072 22.19 n/a
Protein G, domain B1 (Protein G) 1gb1 56 1α+4β 4000 198588 20.71 21.19
NuG1, mutant 1 of protein G 1mhx* 57 1α+4β 4000 215648 22.53 29.05
NuG2, mutant 2 of protein G 1mi0* 57 1α+4β 4000 219874 23.46 24.82
Protein A, domain B (Protein A) 1bdd 60 3α 6000 276342 23.12 n/a
Acyl-coenzyme A Binding Protein (ACBP) 2abd 86 5α 18000 953900 35.94 n/a
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(a) Protein A (b) ACBP

(c) mEGF

(d) RdCp (e) RdDv

Fig. 9. Population kinetics from MMC simulations for proteins in Table V of varying
structure: (a,b) α, (c) β, (d,e), mixed.
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Notice that the population kinetics of the native state for the all α proteins (Fig-

ure 9(a,b)) shows a gradual growth at a constant rate. The all β proteins (Figure 9(c))

and mixed proteins (Figure 9(d,e)), however, display a steep climb in their population

kinetics and then plateau. We believe this is due to nucleation effects (e.g., that each

native contact does not have the same probability of forming) present in structures

containing β-sheets. For example, a contact near the turn of a β-hairpin (i.e., with

lower effective contact order) has a greater probability to form early while more non-

local native contacts such as those at the end of the hairpin have a lower probability

to form early. Their formation probability increases as the protein folds/nucleates.

This is commonly referred to as a “zipping” process [54]. Conversely, most contacts

in an α-helix are local (i.e., have a low effective contact order) thus their formation

probabilities are all similar and constant throughout the folding process.

In order to contrast the population kinetics of the folded state, we also studied

the population kinetics of the unfolded ensemble (Figure 9). For this study, we defined

the unfolded ensemble as those states with few native contacts (relative to the number

of contacts in the native state). There is a clear relationship between the kinetics of

the unfolded state to that of the folded state. For example, in protein A (Figure 9(a))

the population of the native state increases slowly as the population of the unfolded

state ensemble decreases slowly. On the other hand, folding processes that reach

folded equilibrium quickly also see a quick decrease in the population of the unfolded

state ensemble.
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(a) Protein A (helix) (b) ACBP (helix) (c) ACBP (tryptophan)

(d) Protein G (helix) (e) RdCp (helix) (f) RdDv (helix)

(g) Protein G (tryptophan) (h) RdCp (tryptophan) (i) RdDv (tryptophan)

Fig. 10. Reaction coordinates calculated from MMC simulations for proteins in Ta-
ble V of varying structure: (a–c) α and (d–i) mixed. Tryptophan contact
formation is not displayed for protein A because it does not contain any tryp-
tophan residues. Note that mEGF (all β) is not displayed because it lacks
α-helices and does not contain any tryptophan residues in the folding core.
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A nice feature of the MMC technique is that it allows us to study stochastic events

during the protein folding process. For the proteins studied above through population

kinetics, we also examined the structural metrics of helix formation and formation of

structure around tryptophan residues (see Figure 10). From the combined information

in these three plots, we can deduce characteristics of the folding process. In the rest of

this section, we compare the individual kinetic results produced by MMC to previous

lab and simulation studies for each protein.

Protein A. The B domain of protein A, containing 3 α-helices, has been the

focus of many experimental studies. It does not contain a tryptophan naturally,

but has been mutated so that tryptophan fluorescence can be studied [49]. It has

also been studied by lattice-based Monte Carlo technique [91]. However, this lattice

model only used a coarse representation of the backbone carbon-αs to model the

structure. In lab and simulation studies, protein A has demonstrated formation of

helix structure followed by the packing of the helices in the final folded structure

[107]. Our population kinetics (Figure 9(a)) and helix formation (Figure 10(a)) plots

show similar trends. While the folding process begins early on (as indicated by

continual growth in helix formation beginning at time step 1), it takes at least 100

time steps for any conformation to reach the native state. This suggests that helices

are formed before any conformation reaches a shape close to the native state, as seen

in experiment.

ACBP. A similar process is observed in the other all α protein, Acyl-coenzyme A

Binding Protein (ACBP). This protein has five helices and two tryptophans in the core

of the protein. The folding of ACBP has been studied in the lab through tryptophan

fluorescence, and it has been shown that it is a fast, two-state folder [94]. From

our MMC kinetics, we see that ACBP exhibits similar properties as the other all α

protein, protein A: continual formation of helix contacts (Figure 10(b)) and reaching
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the native state after the formation of many helix contacts (Figure 9(b)). However,

since ACBP has two tryptophans in the core of the protein, we see a quick increase

in the formation of these contacts (Figure 10(c)) around the same time we see the

native state beginning to be populated, around time step 100. This could correspond

to the packing of the structure and the formation of long-range interactions in the

core of the protein.

mEGF. Since the protein murine epidermal growth factor (mEGF) has no helical

structure, we do not plot its helix formation. While it does have two tryptophans,

they are on the tail of the protein and do not make substantial contacts with the rest

of the protein.

Protein G. The B1 domain of protein G has been the focus of many lab studies

from CD spectra analysis and tryptophan fluorescence [122] to hydrogen exchange

and pulse labeling experiments [107]. Much of the focus on the folding process of

protein G has been on the folding order of its two sets of strands. However, it is

known that the helix forms before the final stages of the folding process [107]. It is

never the last secondary structure element to form. In our MMC results, we see a

similar ordering. Figure 10(d) shows that the helix forms quickly and is 80% formed

by time step 100. By this time step, less than 20% of the protein has reached a native

like conformation (Figure 8(c)). The tryptophan contact formation (Figure 10(g))

continues through the folding process with continual packing around the protein core

(where the tryptophan is located).

RdCp and RdDv. Cp Rubredoxin (RdCp) and Dv Rubredoxin (RdDv) are two

Rubredoxins from mesophilic organisms. While their population kinetics are similar

(Figure 9(d,e)), some small details can be elucidated from the reaction coordinates

studied. For RdDv, that has been studied by high-temperature MD simulations [102],

we see two jumps in the population kinetics (about 50% then 90% native-like). This
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could be due to the early packing of protein around the hydrophobic core, as seen in

the continually increasing tryptophan structure formation (Figure 10(i)). The single

tryptophan is in the core of the protein. After the core is formed, the helix finishes

making a final set of contacts (Figure 10(f)). This corresponds with the second jump

in the population kinetics to 90% native-like (Figure 9(e)). The behavior of opening

the helix loop and then unfolding the core was also seen in MD simulation [102]. RdCp

was shown through tryptophan fluorescence and far-UV CD experiments to have a

simple two-state kinetic and no known intermediate [29]. We also see this in our

simulations. The helix formation (Figure 10(e)) and tryptophan contact formation

(Figure 10(h)) show cooperative and continual growth until the native state is fully

populated.

B. Dimensionality Reduction

Dimensionality reduction techniques take a high-dimensional data set and produce a

low-dimensional representation of the original data. The application of dimensionality

reduction was first introduced in Chapter VI Section B in order to improve techniques

that construct a roadmap. In this section, we consider the application of dimension-

ality reduction used for the analysis of the resulting landscape model, or roadmap.

First, we explore the quality of the reduction produced. Next, we introduce the use

of the reduction in order to explore the coverage of the roadmap of space of allowable

configurations. Finally, we demonstrate the use of the dimensionality reduction in

finding interesting conformational states. Despite the fact that these conformations

are non-native, they are highly populated in the folding process.
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1. Application: Capturing RNA and Protein Landscapes

In this section we explore the application of linear and non-linear dimensionality

reduction techniques to both RNA and protein conformation sets. We also investigate

the parameters that affect the reduction quality.

Selecting Linear vs. Non-Linear Reduction. Here we compare the effi-

ciency of linear (performed by PCA) and non-linear (performed by Isomap) dimen-

sionality reduction. For PCA, we take all the roadmap conformations as input. With

proteins, each conformation is the series of backbone φ and ψ torsional angles. (Since

we use a secondary structure representation for RNA, we did not evaluate PCA on our

RNA conformations.) Then, we run PCA through MATLABR© and plot the variance

of the residuals. For Isomap, we again take all the roadmap conformations as input.

We construct a neighborhood graph (see Algorithm 5) using a distance measure. For

the RNA shown, we use base-pair distance [71], and for the proteins shown, we use

all backbone atom root mean square distance (RMSD). The Isomap implementation

is from [166].

Figure 11(a) shows the variance of the residuals for both PCA and Isomap as a

function of the number of reduced dimensions. Residual variance decreases rapidly

and then tapers off as the number of dimensions increases for both methods. To

completely represent the data, both would require greater than 6 dimensions. Note

that the non-linear representation given by Isomap is better able to capture the

complexity of the data (as shown by lower and continuously decreasing residuals).

This non-linearity in protein folding landscapes was also seen in previous studies

[58, 45].
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Fig. 11. (a) Variance of the residuals from the dimensionality reduction for Protein
G (PDB ID: 1GB1) from PCA and Isomap. (b) Variance of the residuals
from Isomap reductions for a 21 nucleotide RNA with varying values of k. (c)
The elbow (star) is shown for an example reduction of the protein Ubiqui-
tin. The elbow indicates the point at which the growth in the quality of the
representation is maximized.
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Parameter Setting. For the geometric representation required by the Isomap

method, we need to define the k nearest neighbors for each conformation. In the

protein results results shown below, RMSD is used to define the distance, and for the

RNA results shown below, the base-pair distance is used. However, the parameter k

may also affect the reduction quality. Figure 11(b) shows the variance of the residuals

for Isomap reductions of a 21 nucleotide RNA where k is varied between 8 and 5. Note,

there is little difference in reduction quality. Similar results were seen for reductions

of protein conformations [45]. Due to this, a value of k = 8 was used for all reductions.

Selecting an Appropriate Number of Dimensions. Once a reduction is

performed, another question arises: How many dimensions appropriately capture the

space at the lowest complexity? This is obviously determined by the application the

reduction is being used for. In the context of the applications explored here, we are

interested in using simple representations that allow us to capture motions of RNA

and proteins.

We explore two measures for selecting the number of dimensions. The first, the

residual variances, is standard and often used when the highest-quality reduction is

required. A reduction would exactly capture the complexity of the space (as repre-

sented by the residual variances reaching 0). However, in complex spaces, extremely

low-dimensional representations are not always possible or necessary.

The second measure we investigate, the elbow criterion, is a measure commonly

used in data clustering techniques to evaluate how well a particular clustering rep-

resents the data and to determine an appropriate number of clusters [67, 110]. The

elbow criterion monitors the percentage of the variance explained by different cluster-

ings and selects the one where this value no longer significantly changes, i.e., adding

additional clusters (or in our case additional dimensions) does not add sufficient infor-

mation. Given the variance of the data, σ2, the percentage of the variance explained is
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2 for each residual. This measure captures the point at which the growth

in the quality of the representation is maximized. Figure 11(c) demonstrates an el-

bow calculated from a reduction of the protein Ubiquitin (PDB ID: 1UBI). For this

reduction, we would select 4 dimensions to represent the data.

Discovering Landscape Characteristics. One of the most exciting things

about reduced landscapes is the insight they give us as an approximation to the full

energy landscape. In this section, we take a full enumeration of the conformations of

a 21 nucleotide RNA (5,353 conformations). Note that the residuals clearly indicate

that increasing dimensionality more accurately represents this conformation space

(see Figure 11(b)). However, even two dimensions reduces the residuals significantly.

Figure 12 shows the first two dimensions of the reduction plotted against the

potential of the conformations. Despite the low dimensional representation and the

fact that potential was not used for the reduction, we see striking landscape charac-

teristics. Conformations of similar potential are clearly grouped together (red=high

potential, blue=low potential). This reduction also demonstrates the typical rugged-

ness of RNA landscapes.

Fig. 12. The first two dimensions of reduction for a 21 nucleotide RNA plotted against
potential energy.
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2. Application: Conformation Analysis

Here, we demonstrate how the reduced space can be used to evaluate the quality

and importance of different sample sets. A perfect test-case is the 21 nucleotide

RNA hairpin. Due to the small size of this RNA, we are able to fully enumerate

the conformation space. In addition to full enumeration, referred to as Base Pair

Enumeration (BPE), we generate samples in two other ways: Stack Pair Enumeration

(SPE) and Probabilistic Boltzmann Sampling (PBS) (see Chapter V Section B). SPE

generates conformations such that all contacts are part of a stack (a set of consecutive

contacts); these are a subset of the BPE conformations. The 21 nucleotide RNA

has 250 SPE conformations. PBS probabilistically selects conformations, favoring

those with smaller energies. We can adjust the severity of this bias by altering the

reference energy threshold, E0. This threshold consequently determines the size of

the subset. For this evaluation, we selected two reference energy thresholds: 4 and

0. The first threshold (labeled “higher”) generates more conformations (213) than

the second threshold (labeled “lower”) with only 58. Previously, we have seen that

our BPE, SPE, and PBS roadmaps produce similar simulated kinetics results despite

their drastically different roadmap sizes [161].

Figure 13 shows how the different conformation subsets cover a reduction of a

full enumeration (BPE). The two dimensions displayed are the same two dimensions

in Figure 12. In Figure 13(a), the gray dots represent a BPE conformation and the

star indicates the native state. Even though there are only 250 SPE conformations (of

the 5,353 possible), it is clear from Figure 13(b) that they cover much of the reduced

space. This implies that even though there are only about 5% of the samples, they

still capture the general characteristics and distribution of the full set.
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Fig. 13. (a) First two dimensions of a reduction of full enumeration of all possible
conformations (5,353). The native state is indicated with a star. (b-d) Com-
parison of different subsets of conformations (black circles) overlaid on the
reduction (gray dots). Subsets include: (b) 250 SPE conformations, (c) 213
PBS conformations (higher energy threshold), and (d) 58 PBS conformations
(lower energy threshold).
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Figure 13(c) shows a similar plot for the 213 PBS conformations using the higher

reference energy threshold. Even though there are significantly fewer samples, much

of the space is still captured. It is interesting to note that the PBS distribution with

the higher threshold and the SPE distribution are not exactly the same. Stack-based

conformations have lower energies than conformations with isolated contacts, but they

are not guaranteed to have low energies. This becomes apparent when comparing the

SPE distribution to the PBS distribution which is probabilistically biased towards

lower energy regions. The PBS distribution is missing a fraction of the SPE subset

(in the lower right quadrant of the reduction) that have higher energy.

We plot the 58 PBS conformations generated with the lower reference energy

threshold in Figure 13(d). Despite only having 58 conformations, it still covers a

large portion of the primary reduction dimensions. As expected with a low energy

threshold, they cover a large portion of space near the native state. A comparison

with the higher threshold samples (Figure 13(c)) indicates that many of the high

energy conformations are eliminated by this lower threshold yet there are still some

left to represent the higher energy regions.

Figure 14 demonstrates this sampling evaluation approach on the 200-nucleotide

ColE1 RNAII. The folding behavior has been studied previously by master equation

solution on a simplified landscape with a reduced sequence (130 of 200 nucleotides)

[160] and by PBS sampling and a Monte Carlo approach. In this comparison, we use

a suboptimal enumeration containing 11,765 conformations to compare PBS samples

to a new sampling approach provided by the Vienna RNA package, stochastic back-

tracking. Stochastic backtracking produces Boltzmann-distributed structure ensem-

bles. Stochastic backtracking (Figure 14(a)) demonstrates more complete coverage of

the enumeration than the PBS samples (Figure 14(b)).
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Fig. 14. The first two dimensions of the reduction of a suboptimal enumeration of
ColE1 (200nt). (a) the subset from stochastic backtracking (2769 conforma-
tions) (note sampling is denser around N, the known native structure), (b)
the subset selected by PBS sampling (5199 conformations).

3. Application: Identifying Important Conformations

The reduced spaces provide a low-dimensional manifold that simplifies the identifi-

cation of important conformations in the folding process. Previous methods using

reductions have identified non-native, low-energy states in the landscape [32]. Here,

we use the roadmap structure to explore highly-populated states in the roadmap.

We explore two proteins with known folding behavior: hen-egg white Lysozyme (129

residues) and Alpha-1 antitrypsin (372 residues).

Methods. We use Map-based Monte Carlo simulation (MMC) [162] to stochas-

tically extract pathways from our landscape model. MMC is an analysis tool that

provides kinetic measurements such as population kinetics and relative folding rates

on approximate landscape models. It is similar to traditional Monte Carlo simulation

[41, 90] except that it is a walk on our approximate landscape model (i.e., the map)

instead of on the complete energy landscape. Thus, unlike traditional Monte Carlo

simulation, it can be applied to larger structures because it is applied to a simplified

landscape model.
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In order to determine the important states, we count for each conformation how

many times it was populated during the Monte Carlo run. Of course, the native

state (and surrounding conformations) are often highly populated. In this study, we

restrict our search to non-native conformations.

Experimental Setup. Lysozyme is a two domain protein that has been widely

studied in experiment. In Chapter VI Section B, we demonstrated that dimensionality

reduction could produce a roadmap for a 129 residue hen-egg white Lysozyme, PDB

ID 193L. Lysozyme consists of two domains: a mostly α and a mostly β domain.

From circular dicroism (CD) experiments, it has been seen that the α domain forms

before the β domain [135].

Alpha-1 antitrypsin (α1-AT, PDB ID 1QLP) is a 372 residue protein whose fold-

ing behavior has been studied by hydrogen exchange, CD and fluorescence spec-

troscopy [176]. It has been found that the unfolding of α1-AT involves a cooperative

transition to a molten globule form at low levels of denaturant.

The application of MMC to our landscapes follows the techniques presented and

tested in [162]. We ensure that the likelihood of transitioning between conformations

is probabilistically biased by their Boltzmann transition probabilities. This transi-

tion probability is based on the edge weight (representing the energetic feasibility

of transition) as defined in Chapter V Section A. In the results presented here, we

use 500 MMC pathways, each containing 10,000 path-steps. In previous work [162],

these parameters presented stable results for several small proteins that correlated

well with experiment.

To build a roadmap for a large protein as α1-AT, we employed the reduction-

based method described above. This allows for more efficient roadmap construction,

e.g., for a set of 2000 conformations connection occurs in just over 3 hours (after

reduction) as compared to 48 hours with a rigidity distance. The reduction itself
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can impact the total time. However, simple techniques to substantially speed up

reductions have been introduced [133].

To determine the non-native states, we took the set of highly populated states

from a MMC run. From this set, we select the conformation with the most missing

contacts for further study. For α1-AT and Lysozyme, the selected conformations

represented structures with 155 and 147 broken contacts, respectively.

Results. Tables VI and VII show the formation of secondary structure elements

from the representative non-native state for Lysozyme and α1-AT, respectively. Recall

that Lysozyme is divided into two domains: an α domain and a β domain and the

α domain has been shown experimentally to form earlier [135]. It is clear that in

this highly-populated, non-native structure that the elements in β domain are not

well formed (only about 11% present) compared to the α domain (with about 48%

present), correlating well with experiment.

For α1-AT, we see a different behavior. Here the contacts are broken more evenly

from all structures. For example, about 10% of the native contacts are missing from

the α helicies and about 25% are missing in the β strands. This matches what is

seen in experimental results for α1-AT [176] where α1-AT has been found to unfold

cooperatively even at low concentrations of denaturant, thus losing its native contacts

throughout the structure.
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Table VI. Lysozyme secondary structure formation. In this highly populated, non–
native conformation 147 native contacts are missing. The beta domain is
already half formed while the beta domain is not well formed. This matches
what has been seen in experiment [135].

SS Residues Domain # Contacts Present % Contacts Present

α1 5–14 α 25 80.65
α2 25–36 α 21 39.62
β1 43–45 β 1 10.00
β2 51–53 β 0 0.00
β3 58–59 β 1 5.88
α3 80–84 β 5 31.25
α4 89–99 α 21 67.74
α5 104–107 α 5 45.45
α6 109–114 α 4 16.67
α7 120–123 α 2 14.29

Average presence of α domain 47.56
Average presence of β domain 10.93

Table VII. α1-AT secondary structure formation. In this highly populated, non-na-
tive conformation 155 non-native contacts are lost evenly from secondary
structure components. This matches what has been seen in experiment
[176].

SS Residues # Contacts Present % Contacts Present

α1 5–22 42 84.00
β1 28–30 4 26.67
α2 32–43 31 83.78
α3 48–57 32 80.00
α4 67–81 35 94.59
β2 90–99 30 61.22
α5 106–114 28 90.32
β3 119–123 17 100.00
α6 128–142 45 95.74
β4 160–168 13 24.07
α7 178–180 8 100.00
β5 182–187 28 90.32
β6 193–210 64 79.01
β7 215–222 41 93.18
β8 226–233 48 97.96
α8 238–244 16 100.00
α9 247–255 16 100.00
β9 260–267 37 77.08
β10 269–276 25 86.21
α10 277–280 15 93.75
α11 282–284 6 66.67
α12 288–290 14 100.00
β11 309–318 37 64.91
β12 341–343 8 72.73
β13 348–354 44 95.65
β14 360–366 30 75.00

α helix average 89.71
β sheet average 74.60
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CHAPTER VIII

APPLICATION OF KINETICS ANALYSIS METHODS TO RNA FOLDING⋆

In this chapter we demonstrate the application of our map-based analysis tools,

MME and MMC, to the analysis of roadmaps produced for RNA folding. We use

the same map-based analysis tools as applied to proteins in Chapter VII Section A.

However, in this chapter these techniques are specialized for the study of RNA folding

kinetics. The results of MME and MMC on RNA have been published in [161, 163].

The size of an RNA energy landscape is much smaller than the size of a protein

landscape, mentioned in Chapter III. Due to this fact, traditional Monte Carlo sim-

ulation and master equation calculation can be calculated on many RNA structures.

Due to the differences in edge weights caused by these differently sized configuration

spaces, MMC is applied using the techniques described in Section A below.

The techniques of MMC and MME are able to successfully analyze the landscape

of several RNA. First, we highlight the changes in the RNA model from those in the

protein model. Next, we computationally validate the MME and MMC techniques

on a set of small RNA. These results demonstrate that the approximate map-based

techniques still are able to capture results that are comparable to complete tech-

niques. Finally, we demonstrate validation of the MME and MMC techniques against

experimentally derived results on large RNA, up to 200 nucleotides.

⋆Part of the data reported in this chapter is reprinted with permission from
“Simulating RNA Folding Kinetics on Approximated Energy Landscapes” by X. Tang,
S. Thomas, L. Tapia, D.P. Giedroc, and N.M. Amato, 2008, Journal of Molecular
Biology, vol. 381, no. 4, pp. 1055–1067, Copyright 2008 by Elsevier Ltd.
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Fig. 15. The population kinetics of the native state of 1k2g (a-e): (a) Kinfold Monte
Carlo simulation, (b) our MMC simulation on a fully enumerated map (12,137
conformations), (c) our MMC simulation on a PBS map (42 conformations),
and (d) master equation solution on the PBS map (42 conformations). All
analysis techniques produce similar population kinetics curves and similar
equilibrium distributions. (e) Comparison of the eigenvalues of 1k2g by the
master equation on a fully enumerated map (12,137 conformations) and new
PBS map (42 conformations). Both eigenvalues are similar between the dif-
ferent maps. (f) Comparison of the 10 smallest non-zero eigenvalues (i.e., the
folding rates) for WT and MM7 of ColE1 RNAII as computed by the mas-
ter equation. The overall folding rate of WT is faster than MM7 matching
experimental data. Figure originally published in [161].
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A. Method Details

In the results demonstrated here, we focus on the formation of secondary structure.

As defined in Chapter III Section D, secondary structure is a planar representation of

an RNA conformation, which is commonly used to study RNA folding [192, 193, 71].

We adopt the definition in [71] that eliminates other types of contacts that are not

physically favored. As previously defined, We use a common energy function called

the Turner or nearest neighbor rules [192].

We apply MMC to RNA folding as described in Chapter VII Section A. Because

the edge weight wij encodes the transition probability kij between two endpoints i

and j, we can calculate kij as k0e
−wij where k0 is a constant adjusted according to

experimental results. Results presented here are generated using a fast variant of the

standard Monte Carlo method [123].

B. Computational Validation

1k2g (CAGACUUCGGUCGCAGAGAUGG) is a 22 nucleotide RNA with a hairpin

native state [87]. Figure 15(a–e) compares the population kinetics of the native state

using (a) standard Monte Carlo simulation (implemented by Kinfold [56]), (b) Map-

based Monte Carlo simulation on a fully enumerated map (12,137 conformations), (c)

Map-based Monte Carlo simulation on a map with our PBS sampling method (42 con-

formations), and (d) the master equation on a PBS map (42 conformations). While

the fully enumerated map (b) is the most accurate model, it is not feasible to enu-

merate RNA with more than 40 nucleotides and numerical limitations in computing

the eigenvalues and eigenvectors limit the master equation to small maps (e.g., up to

10,000 conformations). The population kinetics curves all have similar features: the

population first increases quickly, then gradually decreases, and eventually stabilizes
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at the equilibrium (final) distribution, which are all roughly 80%. Hence, these anal-

ysis methods all yield similar results and indicate that the PBS map (c,d) effectively

approximates the energy landscape with less than 0.4% of all possible conformations.

C. Experimental Validation

ColE1 and Mutant MM7. ColE1 RNAII regulates the replication of E. coli ColE1

plasmids through its folding kinetics [65, 89]. The slower it folds, the higher the

plasmid replication rate. A specific mutant, MM7, differs from the wild-type (WT)

by a single nucleotide out of the 200 nucleotide sequence. This mutation causes it to

fold slower while maintaining the same thermodynamics of the native state. Thus,

the overall plasmid replication rate increases in the presence of MM7 over the WT.

We studied this difference computationally by computing the folding rates of both

WT and MM7 using MME and comparing their eigenvalues (the smallest non-zero

eigenvalue corresponds to the folding rate). As seen in Figure 15(f), all eigenvalues

of WT are larger than MM7 indicating that WT folds faster. Thus, our method

correctly estimated the functional level of the new mutant.

MS2 Phage RNA Mutants. MS2 phage RNA (135 nucleotides) regulates

the expression rate of phage MS2 maturation protein [63, 89] at the translational

level. It works as a regulator only when a specific subsequence (the SD sequence)

is open (i.e., does not form base-pair contacts). Since this SD sequence is closed in

the native state, the RNA can only regulate the expression rate before the folding

process finishes. Thus, its function is based on its folding kinetics and not the final

native structure. Three mutants have been studied that have similar thermodynamic

properties as the wild-type (WT) but have different kinetics and therefore different

gene expression rates. Experimental results indicate that mutant CC3435AA has the
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highest gene expression rate, WT and mutant U32C are similar, and mutant SA has

the lowest rate [63, 89].

We estimate the gene expression rate by integrating the opening probability

of the SD sequence over the entire folding process. Note that the RNA regulates

gene expression only when the SD opening probability is “high enough”. We used

thresholds ranging from 0.2 to 0.6 to estimate the gene expression rate. Thresholds

higher than 0.6 will yield zero opening probability for WT and most mutants and thus

cannot be correlated to experimental results. Similarly, we do not consider thresholds

lower than 0.2, because otherwise mutant SA would be active even in the equilibrium

condition which does not correspond to experimental results. Table VIII shows our

simulation results. For most thresholds, mutant CC3435AA has the highest rate and

mutant SA has the lowest rate, the same relative functional rate as seen in experiment.

In addition, WT and mutant U32C have similar levels (particularly between 0.4-0.6),

again correlating with experimental results. These results also suggest that the SD

sequence may only be active for gene regulation when more than 40% of its nucleotides

are open.

Table VIII. Comparison of expression rates between WT and three mutants of MS2.
It shows that we can predict similar relative functional rates as seen in
experiment.

Experimental Expression Rate Our Estimation
Mutant (order of magnitude) t = 0.2 t = 0.3 t = 0.4 t = 0.5 t = 0.6

SA 0.1 0.1 0.04 0.03 0.03 0.08
WT 1 1.0 1.0 1.0 1.0 1.0

U32C 1 2.1 1.8 1.4 0.8 1.2
CC3435AA 5 7.2 8.4 3.8 3.5 9.8
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CHAPTER IX

APPLICATION OF INTELLIGENT METHODS TO ROBOTICS

This chapter explores an intelligent method for roadmap generation applied to robotic

motion planning, an unsupervised adaptive strategy (UAS). There are many available

sampling methods [85, 4, 20, 100, 124, 19] whose efficiency and effectiveness has been

shown to be highly correlated with the planning space and the problem construction

[59]. This method helps answer the “where” and “when” questions of applying dif-

ferent sampling strategies by combining both the topology adaptation and sampler

adaptation over the planning process. Also, it simplifies the process of adaption,

requires minimal user intervention, can be applied to any MP problem.

This new intelligent method is a combination of two previously introduced adap-

tive methods, the feature-sensitive motion planning framework [117] and the Hybrid

PRM planner [76]. We use unsupervised learning to minimize user intervention typi-

cally required for manual training and parameter tuning, one of the main drawbacks

of the previous approaches. UAS first uses the feature-sensitive framework to identify

regions, except it replaces the tedious manual creation and labeling of training exam-

ples with unsupervised clustering. It then applies the adaptive strategy from Hybrid

PRM in each of these semi-homogeneous regions. UAS assigns and adjusts sampler

rewards based on the structural improvement the sampler makes to the roadmap

[118]. Our experimental results demonstrate that the combination of methods better

automates, with minimal human intervention, the questions of where and when to

apply which planning solutions. In these complex spaces, we compare the contribu-

tion of each of these adaptation methods individually with the combined planner. We

show that in a variety of environments, the regions automatically identified by UAS

represent the planning space well both in number and placement. Our results show
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that UAS has low overhead and that it out-performs two existing adaptive methods

in all complex cases studied.

A. Related Work

In Chapter II many of the related methods for adaptive planning were introduced.

Below, definitions are given to evaluate the quality of a planner’s performance and a

sample’s contribution to the quality of the resulting roadmap.

Adaptive MP strategies require metrics to evaluate the performance of planning

approaches. While many common metrics have been used for evaluation (e.g., solution

of a query, time, CD counts), it is often still difficult to get a clear measure of planner

performance. Methods that require a discretization of the planning space have been

proposed [59]. In the problems studied here, we applied a group of metrics that have

been explored on non-discrete spaces in order to classify the contribution of samples

produced by planners [118]. We use these metrics, defined below, for our planner

evaluation. If two configurations, q1 and q2, can be connected by a sequence of valid

motions, they are considered visible to each other. For example, the straight-line

local planner will decide that q is visible to q′ if the straight segment from q to q′ is

composed of only valid configurations. In [118], a visibility ratio is assigned to each

configuration to approximate the visibility of a single configuration to its neighbors.

This ratio is defined in terms of the number of successful connections over the number

of connection attempts involving that configuration.

In [118], a method is introduced that provides a classification for every node as

it is inserted into the roadmap (see Figure 16). A node is classified as:

1. cc-create (Figure 16(b)) if it cannot be connected to any existing roadmap com-

ponent,
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2. cc-merge (Figure 16(c)) if it connects to more than one connected component

in the roadmap,

3. and cc-expand (Figure 16(d)) if it connects to exactly one component in the

roadmap and satisfies a visibility expansion criterion as defined in [188],

4. cc-oversample (Figure 16(e)) otherwise.

(a)

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

(b)

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

������
������
������

������
������
������

(c)

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

(d)

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

������
������
������

������
������
������

(e)

Fig. 16. Examples of node classifications shown in (a) a 2D C-space. Classification of
new sample (hollow dot) as (b) cc-create, (c) cc-merge, (d) cc-expand, and (e)
cc-oversample. Grayscale shows visibility regions of existing samples (black
dots).

B. Methods

One of the major drawbacks of the feature-sensitive framework and Hybrid PRM

is the reliance on manual intervention and sensitivity to parameter tuning. In our

method outlined in Algorithm 6, we combine the two approaches and eliminate much

of this user burden. First, we replace the requirement of manual training data cre-

ation and labeling with unsupervised learning for region identification. Then, we

exchange the manual mapping of region types to samplers with the adaptive strategy

provided in Hybrid PRM. This allows our method to continue to perform well as new

sampling strategies are developed without requiring any additional input from the

user. Also, the homogeneity of the region allows Hybrid PRM to quickly assess the

space and select optimal samplers. This property reduces sensitivity to parameters
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such as learning rate and number of samplers. Finally, we use roadmap structure

improvement metrics to automatically assign rewards/costs to the various samplers

instead of tuning those parameters by hand, thus further eliminating parameter sen-

sitivity. In the following subsections, we describe each step of the algorithm in more

detail.

Algorithm 6 Unsupervised Adaptation Method (UAS).

Input. An environment E, a query Q, a set of samplers S, and an increment size m.

Output. A roadmap R.

1: Identify (homogeneous) regions for planning in E.

2: Set Pr(s) = 1/|S| for each sampler s ∈ S.

3: while Q not solved with R do

4: for all regions identified in E do

5: for i = 1 .. m do

6: Select sampler s according to probabilities Pr.

7: Generate a sample with s and add it to R.

8: Update Pr(s) according to the structural improvement of R.

9: end for

10: end for

11: end while

12: return R.

1. Unsupervised Region Identification

To identify semi-homogeneous regions in the environment, we first construct a small

roadmap using each of the different samplers. Next, we partition the nodes in the

roadmap into c clusters using k-means clustering [84], for a given number of clusters c.
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There are many features that have been previously explored for region identification

[117]. In the results shown here, clustering is based on a set of features that are

independent of robot type: visibility, X-position, Y-position, and Z-position. Then,

we define each region as the bounding box of each node set. Due to the use of

positional values as features, clusters may result in overlapping regions.

The choice of number of clusters c is often difficult to select under the k-means

framework. In our motion planning application, the use of positional values (X, Y,

Z) as features only complicates this selection because additional clusters will always

provide an improvement. For example, consider the set of samples in Figure 17 for

a Maze environment. Partitioning the samples into 3 clusters (a) intuitively splits

the environment into a single constrained region in the middle and two free regions

on each end (samples are colored according to cluster membership). Increasing the

number of clusters to 4 (b) begins to partition the already homogeneous regions. For

example, the one circled region in (a) becomes the two circled regions in (b).

In order to overcome this limitation and automate the process, we examine the

percentage of the variance explained, (
∑k

i=1 σ
2
i )/σ

2 where σ2 is the variance of the data

set, for each c. Recall that the data set is defined by the features used for clustering

(Section 1). We select the c that maximizes the second derivative of this function.

This is commonly known as the elbow criterion [67, 110] (also used in Chapter VII

Section B). Intuitively, this criterion selects c such that adding additional clusters

does not add sufficient information. In Figure 18, the average variance is plotted

against the number of clusters for two environments, the L-tunnel and Maze. The

“elbow” is indicated with a red star in each plot, and its calculation is shown in the

inset. As noted above, the Maze is best represented by 3 clusters (see Figure 17(a))

instead of 4 (Figure 17(b)) which splits a region of homogeneous visibility.
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(a) 3 clusters (b) 4 clusters

Fig. 17. Clustering based on a small roadmap in the Maze.
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(a) L-tunnel (elbow at 4 clusters)
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Fig. 18. Change in variance as the number of clusters increases.
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To have a variety of sampling techniques in our available library of samplers,

we have chosen samplers known to work well with varied amounts of obstacles. The

samplers selected are: uniform random sampling [85], Gaussian sampling [20], and

OBPRM [4]. For Gaussian sampling, we use two values of the Gaussian distance d:

the robot’s minimum diameter, rd, and 2rd.

We use the following metrics to evaluate planner performance: ability to solve

a user-defined witness query, changes in types of nodes generated (e.g., cc-create,

cc-merge, cc-expand, and cc-oversample), and collision detection calls as a measure

of time.

2. Unsupervised Sampler Reward Assignment

Another area typically requiring user intervention is tuning the learning rate and

the rewards/costs for each sampler. In addition, as new samplers are added to the

set, these values may have to be adjusted. Similar to Hybrid PRM [76], we use an

exponential function to update sampler rewards. However, we define the individual

sample rewards differently. We reward samplers on the range [0,1] as follows: cc-create

and cc-merge nodes have a reward of 1 (since they always improve the roadmap) and

all other nodes (e.g., cc-expand and cc-oversample) have a reward of e−αvt
2
, where vt

is the visibility ratio of the node generated at time step t and α > 0. This gives nodes

with low visibility a large reward and nodes with high visibility a small reward. We

found that α = 4 works well in practice because it weights the rewards on either end

of the visibility spectrum (i.e., nearly 1 for the lowest visibilities and nearly 0 for the

highest). We assign equal weight to past performance and random selection when

setting sampler probabilities.
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C. Experiments

In this section, we explore the performance of two existing adaptive planning strate-

gies, the Feature Sensitive Motion Planning Framework [117] and Hybrid PRM [76],

and compare them to our unsupervised adaptive strategy, UAS. We study both rigid

body problems and articulated linkages in environments of varying heterogeneity.

1. Experimental Setup

We implemented all planners using the C++ motion planning library developed by

the Parasol Lab at Texas A&M University. RAPID [61] is used for collision detection

computations. Connections are attempted between k “nearby” nodes according to

some distance metric; here we use k = 20, C-space Euclidean distance, and a simple

straight-line local planner. The Feature Sensitive Motion Planning Framework is

implemented as described in [117]. For a given region, we select a sampler based on

the region’s average visibility. Our experiments map the regions as follows: in low

visibility regions OBPRM is chosen, in medium visibility regions we use Gaussian

sampling, and in high visibility regions uniform random sampling is used. Hybrid

PRM is implemented as discussed in [76]. Sampler probabilities are initialized to the

uniform distribution.

2. Cluster Study

We explore several different rigid body and articulated linkage environments of vary-

ing topology, see Figure 19. In these environments, the witness queries have been

designed to force the robot to traverse the entire problem space. This ensures that

they capture the problem complexity.
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(a) Maze (b) L-Tunnel

(c) Hook (d) Cluttered

(e) Regions (f) Walls

Fig. 19. Rigid body (a-d) and articulated linkage (e,f) environments studied. The
robot must travel from one end to the opposite end.
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• Maze: This environment consists of two open areas connected by a maze of

narrow tunnels. The tunnels vary from smaller than the robot (impassable) to

just slightly wider than the robot. The robot is in the shape of a spinning top,

and it is often very difficult for a planner to find feasible motions in the maze.

• L-Tunnel: The L-shaped robot must rotate and translate in between three

large obstacles to traverse an L-shaped maze.

• Hook: The Hook environment has two walls with slits between them. The

robot, a hook, must rotate and translate between the two slits to move from

one side of the environment to the other.

• Cluttered: The Cluttered environment has 27 randomly placed cube obstacles.

The robot, a box, must traverse from one side of the environment to the other.

This environment was designed to be homogeneous.

• Regions: The Regions environment has four distinct regions: a long narrow

tunnel followed by a cluttered region with free regions on either side. The robot,

a 4 link articulated linkage, must elongate itself to pass through the tunnel and

then change to a more compact form to navigate the cluttered region.

• Walls: The Walls environment has several chambers with small holes connect-

ing them. Each chamber is either cluttered or free. The robot must traverse

each chamber to solve the query.

As demonstrated in [117], the training set (initial roadmap) must be cheap, fast,

and represent the main features of the space. To define a good initial roadmap size,

we chose to construct our small roadmap with fixed proportions of uniform random,

Gauss, and OBPRM nodes. Other sampling techniques could be used, but this set
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mirrored the planners used for full map-building. We also used a low connection

parameter (k = 5) to reduce cost. For example, roadmaps of 100 to 1000 nodes

required from 48,664 to 400,848 CD calls. For the experiments here and those done

in previous studies [117], low values of k capture the topology of the space. A larger

value of k is used when maps are generated in the regions (Section 1).

After the roadmaps were constructed, we studied the effect of the number of

nodes on cluster quality. Recall that while all features, positional and visibility, are

used in clustering, the positions are used to define region boundaries and visibility

is used to define region homogeneity. For example, in the Maze environment, we

found that with 200 nodes, 3 clear clusters were formed (Figure 17(a)). When the

training set size was reduced to 100, three clear clusters were still able to be formed.

However, the min/max visibility ranges that each cluster represented became more

encompassing (changing one cluster from 0.40, 1.0 to 0.25, 1.0). On the other hand,

increasing the number of nodes to 400 changed the cluster to represent visibilities

from 0.38 to 1.0.

The visibility changes made two clear facts. First, an increased number of train-

ing samples increases the chance of finding clear, homogeneous regions. This was

reflected in the difference in min/max ranges for different data set sizes. Second,

while more samples are useful, they are not necessary to obtain good regions. This

was made clear by the average visibility values, variance of visibility, and size and

placement of the regions across all data set sizes. These results are shown in Table IX,

where clusters are grouped by the relative positions of their members. Due to these

facts, we chose a low, set number of samples (200) for clustering in the environments

shown. However, as new problems are explored, the effects of sample size on cluster

identification can be evaluated as shown.
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For each environment, the number of clusters was identified using the elbow

criterion described above. Given a single training roadmap, the clustering was run

with 1 to 10 clusters. After this, the “elbow” of the cluster variance was used to

identify the number of clusters.

Table IX. Cluster statistics on the Maze environment using different data set sizes.
Clusters are grouped by relative position.

Cluster Data Set Size Visibility
# Size (%) Avg. Std. Dev. Min Max

0 100 27 0.241 0.191 0.000 0.600
200 18 0.192 0.169 0.000 0.500
300 20 0.314 0.210 0.000 0.667
400 21 0.338 0.202 0.000 0.667

1 100 42 0.813 0.242 0.250 1.000
200 43 0.907 0.158 0.375 1.000
300 48 0.885 0.189 0.375 1.000
400 47 0.886 0.189 0.400 1.000

2 100 31 0.857 0.177 0.500 1.000
200 40 0.813 0.211 0.400 1.000
300 32 0.915 0.141 0.500 1.000
400 31 0.943 0.111 0.667 1.000

3. Performance Study

We compare the performance of a Basic Feature Sensitive Motion Planning Frame-

work, Hybrid PRM, and the new UAS in each environment. We allowed each planner

to attempt to solve the query with at most 5000 nodes for all environments except

L-Tunnel in which we allowed 8000 nodes. Table X provides the overall results, aver-

aged over 5 runs. For Basic Feature Sensitive MP and UAS, which require clustering

computation in addition to map building, we break down the statistics into a clus-

tering phase and a mapping phase. In most of the environments studied, the three

planners were able to solve the queries 100% of the time. The the environments where

solution wasn’t possible included: the L-Tunnel environment, where Feature Sensitive

failed to solve the query 80% of the time, and the Region environment, where Hybrid

PRM never solved the query.
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Table X. Performance comparison of Basic Feature Sensitive MP Hybrid PRM and
UAS on different environments to solve the query. Results are averaged over
5 runs. *Results for spatial adaptation in the L-Tunnel solved the query 20%
of the time and are only averaged over successful runs.

Maze Environment
Method Nodes Required CD Calls
Basic Feature Sens. MP clustering 200 41850

mapping 1022 445571
totals 1222 487421

Hybrid PRM 3189 2572757
UAS clustering 200 41850

mapping 854 708127
totals 1054 749977

L-Tunnel Environment
Method Nodes Required CD Calls
Basic Feature Sens. MP clustering 200 26167

mapping 3253* 1989134*
totals 3453* 2015301*

Hybrid PRM 3557 2091587
UAS clustering 200 26167

mapping 3395 2027709
totals 3595 2053876

Hook Environment
Method Nodes Required CD Calls
Basic Feature Sens. MP clustering 200 7067

mapping 1142 208837
totals 1342 215904

Hybrid PRM 1789 268319
UAS clustering 200 7067

mapping 1125 135116
totals 1325 142183

Cluttered Environment
Method Nodes Required CD Calls
Basic Feature Sens. MP clustering 200 12465

mapping 1761 192636
totals 1961 205101

Hybrid PRM 2079 395380
UAS clustering 200 12465

mapping 2233 474975
totals 2433 487440

Region Environment
Method Nodes Required CD Calls
Basic Feature Sens. MP clustering 200 65842

mapping 761 485537
totals 962 551379

Hybrid PRM Not Solved Not Solved
UAS clustering 200 65842

mapping 485 394613
totals 685 460455

Walls Environment
Method Nodes Required CD Calls
Basic Feature Sens. MP clustering 200 23276

mapping 2875 566582
totals 3075 589858

Hybrid PRM 3281 1264543
UAS clustering 200 23276

mapping 2293 663891
totals 2493 687165
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In general, we find that having region identification improves overall performance

by allowing a sampler to focus on a particular region. The combined adaptation pro-

vided by UAS out-performs both the Basic Feature Sensitive MP and Hybrid PRM.

Consider the Maze environment: clustering partitions the environment into 3 distinct

regions, two with high visibility where the robot is unobstructed and one with low

visibility where the robot must traverse a narrow passage (see Figure 17(a)). By re-

stricting a sampler’s focus, we increase its probability of sampling the narrow passage.

Hybrid PRM alone requires over twice as many nodes than methods employing Basic

Feature Sensitive MP. A similar trend occurs in the Hook environment as well.

Figure 20 demonstrates why this focus improves planner performance. It shows

the types of nodes created in an example run of the Maze environment for (a) Basic

Feature Sensitive MP alone and (b) UAS adaptation. The query in these two runs is

solved with 2102 and 1040 nodes, respectively. The addition of region identification

dramatically reduces the number of unproductive cc-oversample nodes and increases

the number of productive nodes (e.g.,. cc-create, cc-merge, and cc-expand). Thus,

the planner in (b) is able to solve the query using half as many nodes as the one in

(a).

We also find that unsupervised sampler selection as provided by UAS relieves the

burden of having to identify which sampler to use in a given region without paying

much of a performance penalty, if any at all. In most instances, unsupervised planner

adaptation performs better than the manually mapped planners to region features

as done in the Basic Feature Sensitive MP. UAS has the advantage of being more

extensible to new sampling strategies because it does not need the intervention of an

“expert” to determine which regions new samplers should be applied in.
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(b) UAS

Fig. 20. Comparison of node types created in an example run in the Maze environment.
UAS dramatically reduces the number of unproductive cc-oversample nodes
and increases the number of productive nodes (e.g.,. cc-create, cc-merge, and
cc-expand).
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Additionally, we find that adding unsupervised sampler adaptation to unsuper-

vised region identification can overcome a sub-optimal sampler choice dictated by the

fixed sampler/feature mapping. For example, in the L-Tunnel environment, only spa-

tial adaptation failed to solve the query. Clustering successfully identified the central

obstacle containing the two narrow passages and thus focused sampling inside them

(see Figure 21). However, OBPRM was chosen because the cluster had low visibility.

OBPRM had the unfortunate tendency to generate many nodes deep inside the nar-

row passages and few nodes near the openings. Thus, the planner was unable to find a

path from inside a passage outside to a free area. Unsupervised sampling adaptation

inside the region was able to overcome this by switching the sampler selection from

OBPRM to Gaussian sampling.

Fig. 21. Regions identified by clustering in the L-Tunnel. The central low visibility
region (yellow) successfully identifies the two narrow passages. However, it
does not include the opening on the right passage creating challenges for
spatial adaption alone.

Even in more complex planning spaces, such as Regions (4 link robot) or Walls

(2 link robot), UAS is able to outperform Basic Feature Sensitive MP and Hybrid

PRM. For example, in the region environment, Hybrid PRM was unable to solve

the query. However, the topology adaptation provided by Basic Feature Sensitive
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MP and UAS allowed them to solve the problem 100% of the time. In the Region

environment, UAS solved the query with fewer nodes and fewer CD calls. In the Maze

environment, UAS was able to solve the query with fewer nodes and fewer CD calls

than Hybrid PRM. Even though Basic Feature Sensitive MP was manually trained

to use certain planners in regions with certain features, it solved the query with only

a few less CD calls and more nodes than UAS.

Another interesting test case was the Cluttered environment where twenty seven

cube obstacles are randomly placed in a small space. Because of the homogeneous

nature of this space, it would be expected that a single sampling method might be

suited to perform well. We compared the performance of the three methods in this

homogeneous problem. The first distinct result was that the elbow criterion dictated

that there were 3 clusters. As defined previously, this is the minimum number of clus-

ters that are able to be identified with this method. Also, the resulting clusters were

divided mostly by positional values. This was expected due to the homogeneity of the

space. The second distinct result was that Basic Feature Sensitive MP outperformed

Hybrid PRM who outperformed UAS. This also was not surprising. Basic Feature

Sensitive MP was allowed to use a single method that was known to perform well in

low-visibility spaces, Hybrid PRM had to learn the single method to apply, and UAS

had to learn this method in each of the three regions. However, this overhead (about

500 nodes and 100000 CD calls) is very little considering the amount of automation

provided by UAS.
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CHAPTER X

CONCLUSION AND FUTURE WORK

In this dissertation, we provide a set of intelligent methods applied to probabilistic

roadmap methods that facilitate both the modeling and analysis of motions, and

enable the study of complex and high-dimensional problems in both molecular [172,

162, 174, 164, 163, 160, 161] and robotic [117, 119, 165] domains.

We demonstrate these techniques in two molecular motion domains: an approx-

imate map of a protein’s potential energy landscape [6, 172] and an RNA’s folding

landscape [161, 160]. Through the development of two new map-based analysis tech-

niques, MME and MMC, have provide quantitative kinetic measurements such as

relative folding rates and population kinetics [162]. Through the use of dimension-

ality reduction, we demonstrate that high-quality roadmaps can be constructed at

a reduced size, and important landscape features such as coverage can be better

explored [164].

Intelligent roadmap-based techniques are applied to the domain of robotic mo-

tion [117, 119]. For example, the use of new techniques such as the unsupervised

adaptive strategy [165] automatically answers the questions of where and when to

apply particular planning methods. This new strategy takes advantage of unsuper-

vised learning methods at all stages of the planning process and produces solutions

in complex spaces with little cost and less manual intervention compared to other

adaptive methods.

These graph-based techniques are general, and in the future we plan on contin-

uing to explore their ability to study complex motions. For example, we would like

to study path grouping based on many criteria in order to study proteins that are

believed to have more than one folding route, i.e., parallel folding pathways. One such
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protein, Hen Egg-White Lysozyme, is an example of such a protein. Dobson et al.

[135, 134] have provided extensive evidence by different experimental methods that

lysozyme folds via two parallel routes: a fast, dominant route through which the α

helices form first and overall folding is fast and a slower, less dominant route through

which the β-sheet forms first. Also, we would like to explore the application of our

methods in order to characterize the folding landscape through the identification and

classification of energy barriers for downhill (e.g., [62]), two-state (e.g., [180]) and

three-state folders (e.g., [31]). We can compare our findings across a series of reaction

coordinates in order to determine if the process is a gradual loss of structure or if

there are clear barriers. Finally, we would like to continue to apply our methods to

all applicable domains including robotics, protein, and RNA folding.
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