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a b s t r a c t

This paper proposes an online inverse-forward adaptive scheme with a KSOM based hint generator for
solving the inverse kinematic problem of a redundant manipulator. In this approach, a feed-forward
network such as a radial basis function (RBF) network is used to learn the forward kinematic map of
the redundant manipulator. This network is inverted using an inverse-forward adaptive scheme until the
network inversion solution guides the manipulator end-effector to reach a given target position with
a specified accuracy. The positioning accuracy, attainable by a conventional network inversion scheme,
depends on the approximation error present in the forward model. But, an accurate forward map would
require a very large size of training data as well as network architecture. The proposed inverse-forward
adaptive scheme effectively approximates the forward map around the joint angle vector provided by a
hint generator. Thus the inverse kinematic solution obtained using the network inversion approach can
take the end-effector to the target position within any arbitrary accuracy.
In order to satisfy the joint angle constraints, it is necessary to provide the network inversion algorithm

with an initial hint for the joint angle vector. Since a redundant manipulator can reach a given target end-
effector position through several joint angle vectors, it is desirable that the hint generator is capable of
providingmultiple hints. This problem has been addressed by using a Kohonen self organizingmap based
sub-clustering (KSOM-SC) network architecture. The redundancy resolution process involves selecting a
suitable joint angle configuration based on different task related criteria.
The simulations and experiments are carried out on a 7 DOF PowerCubeTM manipulator. It is shown

that one can obtain a positioning accuracy of 1 mm without violating joint angle constraints even when
the forward approximation error is as large as 4 cm. An obstacle avoidance problem has also been solved
to demonstrate the redundancy resolution process with the proposed scheme.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The inverse kinematic problem of a manipulator is a difficult
problem in robotics which has attracted a lot of attention not
only in the robotics community but also in the soft-computing
research community. Themain issue in solving these problems lies
in the fact that they are highly nonlinear and there exist multiple
solutions. In the case of a redundant manipulator, the number
of inverse kinematic solutions may become infinite and closed
form solutions are impossible to find in general. The methods
available for solving these problems may be broadly grouped into
two major classes—classical techniques based on the differential
kinematic relationship between the end-effector velocities and the
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corresponding joint angle velocities, and learning based techniques
based on biologically inspired approaches like neural networks,
fuzzy logic, machine learning etc.
The classical techniques require previous knowledge of thema-

nipulator geometry represented by the Jacobian matrix. Pseudo-
inverse, Jacobian transpose, damped least square methods and
their variants [1,2] fall into this category. On the other hand, learn-
ing based approaches can be used to learn the kinematic relation-
ship of the manipulators during action–perception cycles without
requiring explicit knowledge of their geometry [3].
Among all the learning schemes, neural networks have been

extensively used for solving the inverse kinematic problem.
This includes Multiple Layer Perceptrons (MLP) [4], CMAC net-
works [5], Radial Basis Functions (RBFs) [6,7], Locally Weighted
Projection Regression (LWPR) [8,9], Reinforcement Learning (RL)
[3], Hopfield Networks [10] and Kohonen’s Self-Organizing maps
(KSOM) [11,12]. The neural network based methods may be dis-
tinguished into three different classes: direct inversion modeling
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[4,11,13–15], distal learning [16] and differential kinematics mod-
els [17–19]. We focus on a distal learning approach where the
inverse kinematic solution is obtained from a network which is
trained a priori to learn the forward kinematic relationship of the
manipulator. Very few papers are available in the literature that
solve the inverse kinematic problem using the distal approach.
Readers may refer to two such papers [3,20] that use network in-
version to solve the inverse kinematic problem. Since the inverse
kinematic problem is ill-posed, authors in [3] train another net-
work to match a constraint measure and invert it to exploit the
self-motion capability of the manipulator. The redundancy is used
to avoid joint angle limits using this self-motion network. On the
other hand, authors in [20] invert severalmodular neural networks
trained over input–output partitioned space to generate multiple
solutions for a given end-effector position and then one particular
solution is selected by using a task related criterion. In general, it
can be said that the limitations of network-inversion schemes ren-
der them unattractive for solving the inverse kinematic problems
of redundant manipulators.
In this paper we re-address the various limitations of a network

inversion approach and provide alternate and simpler solutions
to overcome these limitations. A radial basis function network
is used to approximate the forward kinematic map between
the manipulator joint angle vector and its end-effector position.
The trained network is used to update the joint angle vector
through network inversion so as to reduce the error between the
current end-effector position and the desired target point in the
workspace. This approach has following three limitations:

(i) The inverse kinematic solution obtained by the network
inversion scheme depends on the approximation error
present in the forward map. Hence one needs a large size of
training data as well as a large network to reduce the forward
approximation error.

(ii) In order to satisfy the joint angle constraints of the manipula-
tor, the network inversion algorithm must be initialized with
a suitable hint [13,3,21]. Martin et al. [3] use average permis-
sible joint angle value within the physical bounds as the ini-
tial hint for inversion. On the other hand, Mao et al. [13] use
the center of the range of joint angle travel as the initial hint
and Assal et al. [21] use a fuzzy neural network to provide the
initial hint from its relative position and relative velocity com-
pared to their respective limits.

(iii) In the case of a redundant manipulator, more than one joint
angle vector is associated with each end-effector position.
Thus, the hint generator should be capable of generating
multiple hints. The network inversion around each hint
will provide an appropriate inverse kinematic solution. This
attribute is not present among the existing hint generators.

The first problem is solved by using an inverse-forward
adaptation scheme where the forward network is re-trained using
a new input–output data pair whenever the joint angle vector
obtained from the last network inversion cycle does not drive
the actual manipulator to the desired end-effector position. The
new input–output data pair consists of the current joint angle
vector obtained from the last network inversion cycle and the
end-effector position attained by the manipulator when driven
with this joint angle vector. Since it is difficult to learn a global
solution during forward training as discussed earlier, re-training
the network using input–output data generated around a local
hint using an error corrector loop effectively facilitates local search
around the current solution vector and hence, reduces the burden
on the forward training. It is shown in the simulation section that
the proposed adaptation scheme eliminates the error between the
network output and the actual end-effector position effectively
even when a large approximation error is present in the forward
training. This finding is also verified through experiments on an
actual 7 DOF manipulator. The application of network inversion in
solving the inverse kinematic problem has been limited owing to
its inability to attain very high positioning accuracy. The proposed
scheme is significant in this aspect as the results produced in the
paper are the best available in this category of solutions and hence
promise to increase its applicability.
In order to address the last two problems, a KSOM-based

sub-clustering (KSOM-SC) network architecture [22] is used as a
hint generator. In this architecture, the Cartesian workspace and
the joint angle space of the manipulator are discretized using
a 3-dimensional Kohonen’s Self-Organizing lattice [23] in such
a way that each cluster in the workspace is associated with
multiple clusters in the joint angle space. The KSOM-SC network
architecture was introduced in [22] where it was shown to provide
high accuracy in a pick-and-place kind of task. The theories related
to KSOM-SC network were further developed in [24] where it was
applied to solve the redundancy resolution problemwhile tracking
a trajectory. It was shown to preserve all the desirable qualities of
inverse kinematic solutions like, the conservative property, the joint
angle boundedness and high positioning accuracy. These theoretical
observations were corroborated with actual experiments on a 7
DOF PowerCube robot.
In this paper, the initial joint angle value needed for the

inversion algorithm is obtained from the KSOM-SC architecture.
Since the KSOM-SC architecture provides multiple joint angle
vectors for a given end-effector position, it is possible to select
one out of many available configurations by using different
criteria. Unlike conventional techniques, changing the redundancy
resolution criterion does not require re-training of the network and
hence this redundancy resolution scheme is far simpler than those
existing in the current literature. Readers are referred to [24] for an
in-depth study of this architecture.
Finally, the proposed schemes are implemented on a 7 DOF

PowerCubeTM manipulator. The details of an obstacle avoidance
experiment is presented to demonstrate the redundancy resolu-
tion capabilities of the proposed scheme. Note that only a 3-D po-
sitioning task is considered without taking into account the orien-
tation of the end-effector.
The paper is organized as follows. The RBF based network

inversion scheme is presented in the next section. A review of
KSOM-SC architecture is presented in Section 3. The obstacle
avoidance scheme using KSOM and RBF inversion is discussed in
Section 4. The simulation and experimental results are provided in
Section 5 followed by Conclusion in Section 6.

2. Network inversionbased inversekinematic solution through
inverse-forward adaptive scheme

In a conventional network inversion scheme, a feed-forward
network is first trained to approximate the forward kinematicmap
of a manipulator and then this network is inverted to find the
joint angle vector that takes the robot end-effector towards the
target position. The network inversion algorithmupdates the input
(joint angle) vector so as to reduce the error between the network
output and the desired end-effector position. The accuracy of the
solution obtained fromnetwork inversion depends on the accuracy
of the forward map. Because of the high nonlinearity present
in the forward kinematic map, a large number of examples is
needed for training the feed-forward network so as to obtain a low
approximation error. One instance of forward training is shown
in Fig. 1. This figure shows the average positioning error for a
RBF network with 700 hidden nodes during the training process.
It is seen that the average positioning accuracy obtained after
training over 7 × 105 data points is only 4 cm. The training is
carried out with a gradient descent algorithm with a learning rate
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Fig. 1. Forward training of RBFN. Since the forward kinematic equations are highly
nonlinear, a large number of data points is needed for good approximation.

Fig. 2. Reaching a target point with only network inversion. It is seen that while
the network output reaches the target point, the actual robot end-effector position
does not reach it. It is due the approximation error present in the forward learning.
In order to obtain good positioning accuracy, the RBF networkmust be trained with
a huge amount of data points.

of 0.1. The figure shows the best result obtained after trying out
several values for the learning rate parameter. Even though some
faster algorithms like Levenberg–Marquardt may also be used,
the amount of data necessary for obtaining good accuracy still
remains high. Without any loss of generality, it can be said that
it is difficult to obtain very high accuracy in learning the forward
kinematic map using feed-forward networks. The necessity of a
highly accurate forward model can be understood by studying
Fig. 2. In this figure it is seen that even though the network output
reaches the target position, the actual robot end-effector does
not reach the target point. The positioning error for the actual
manipulator is the same as the approximation error present in the
forward model. The positioning error obtained is not tolerable in
most industrial applications. Apart from dealing with the above
mentioned problem, one also needs to initialize the inversion
algorithm with a suitable joint-angle value so as to satisfy joint
angle constraints. This initial joint angle value determines the pose
of the manipulator during robot movement. Since a redundant
manipulator can reach a target position with more than one joint
angle configuration, it is necessary to resolve redundancy as well
during selecting the initial joint angle value. From this discussion,
we conclude that the conventional network inversion algorithms
are not adequate for dealing with redundant manipulators with
high degrees of freedom. In order to address these limitations,
a forward-inverse adaptive scheme is suggested as explained
below.
Fig. 3. Scheme for learning inverse kinematics using RBF network. During testing
phase, the initial guess of the suitable joint angle vector is provided by a KSOM-SC
network architecture. An initially trained forward model is used by the inversion
algorithm to compute the next joint angle vector.

The schematic of the proposed method for solving the inverse
kinematic problem of a redundant manipulator is shown in Fig. 3.
The problem is to find a suitable joint angle vector θ which can
drive the manipulator to reach a desired end-effector position xd
without violating the joint angle limits. The method consists of
following steps:

(i) The forward kinematic map between the manipulator joint
angle vector and its end-effector position is approximated
using a RBF network. The input to the RBFN is the joint angle
vector θ and the output of the network is the end-effector
position x. The actual manipulator end-effector position is
represented by xt . The network is trained using the back-
propagation algorithm tominimize the following output error
function for a given input vector θ = θt .

E1 =
1
2
(x− xt)2. (1)

The forward training block is shown in the dashed box in Fig. 3.
The input–output pair (θt , xt) is generated using the forward
kinematicmodel of themanipulator. It is not necessary to have
a very low approximation error during forward training, as it
would rather require a large number of training data sets.

(ii) A KSOM-based sub-clustering (KSOM-SC) network is used to
provide an initial guess (θ0) to the inversion algorithm as
shown in Fig. 3. Assal et al. [21] use a fuzzy neural network
to provide this initial guess and, Martin et al. [3] start from the
current robot configuration. Since this architecture provides
multiple joint angle vectors for each end-effector position,
one can use a specific criterion to choose one among the
available solutions. This initial value determines the pose
of the manipulator during its motion. In other words, this
architecture facilitates redundancy resolution at the position
level without any cumbersome optimization process. An
overview of this architecture is provided in Section 3 and the
readers are referred to [22,24] for a detailed treatment on the
topic.

(iii) For a given target position xd, update the input vector of the
RBF network so as to reduce the error function given by

E2 =
1
2
(xd − x)2. (2)

Using the gradient-descent rule, the update law for the
joint angle vector may be written as

θnew = θold +1θ (3)
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Fig. 4. Reaching a target point using network inversion. In this case, forward
training is carried out with a new data pair whenever the positioning error for the
actual end-effector is more than the desired value. This scheme reduces the load on
forward training.

where

1θ = −η
∂E2
∂θ
= η(xd − x)

∂x
∂θ

(4)

and ∂x
∂θ
is the input Jacobian matrix of the RBF network. η is

the learning rate for the network inversion.
(iv) The new end-effector position attained by the actual manip-

ulator when driven by the joint angle vector θ = θnew is rep-
resented by xt as shown in Fig. 3. If ‖x − xd‖ > ε, the RBFN
is trained again with the new input–output pair (θ, xt). ε > 0
is an user defined constant which defines the final positioning
accuracy to be attained by the manipulator.

The steps (i) to (iv) are repeated until ‖xd − x‖ < ε. It is to
be noted that the training phase only involves forward training
which is carried out off-line. In the testing phase, the network
is presented with a desired position xd and then the trained
network undergoes ‘‘inverse-forward’’ update cycles until the
actual manipulator end-effector reaches the desired position. The
‘‘inverse-forward’’ update cycle is carried out during the online
operation. Each inverse-forward update cycle involves two steps:

(i) An inversemodule that updates the input vector so as to reduce
the error between the network output x and the target position
xd.

(ii) A forward update module that modifies the weights of the
network so as to reduce the error between its output and
the actual end-effector position. This forward update can be
considered as a fine tuning process to improve the accuracy of
the forward map.

Unlike conventional approaches which aim to learn the global
solution through forward training, the proposed inverse-forward
model aims to learn a local solution around the current robot
configuration. The improvement achieved using this scheme is
shown in Fig. 4. The initial error between the network output and
the actual manipulator end-effector is due to the approximation
error present in the forward training. However as the ‘‘inverse-
forward’’ update proceeds, the network output as well as the
actual end-effector converge towards the target position with
the specified accuracy. The joint angle values for this motion are
shown in Fig. 5. It is seen that the joint angles satisfy the physical
constraints specified by their normalized value±1.
In the simulation section, it will be shown that this scheme

achieves high positioning accuracy irrespective of the forward
approximation error. The consequences of local learning will also
be analyzed in detail in this section.
3. Hint generation using KSOM-based sub-clustering (KSOM-
SC) network

Kohonen’s Self Organizing Maps (KSOM) [23] have been used
by several researchers for capturing the topology of the input
(Cartesian) and the output (joint angle) spaces of a manipulator
system [11,25,26]. Inmost of these cases, the clusters created in the
input and the output spaces are related through a one-to-one map
between them. Since a redundant manipulator can reach a target
position in the workspace using several joint angle vectors, the
authors in [22] proposed a model where each input cluster in the
Cartesian space is associatedwithmore thanone cluster in the joint
angle space. This is called a KSOM based sub-clustering network
(KSOM-SC) architecture. Since it is difficult to learn one-to-many
mapping using a neural network, this architecture is useful in
dealing with redundant inverse kinematic solutions.
The KSOM-SC network architecture is shown in Fig. 6. In

this architecture, each lattice neuron γ is associated with a 3-
dimensional weight vector wγ and several 7-dimensional joint
angle vectors as shown in Fig. 6. Let us assume that each lattice
neuron γ is associated with Nγ numbers of angle vectors given
by θjγ , j = 1, 2 . . . ,Nγ . The number Nγ varies with each γ and is
decided on-line based on the actual data distribution. This enables
the KSOM-SC network architecture to capture the topology of both
input and output spaces properly as shown in Fig. 7. This figure
shows the distribution of KSOM nodes in the Cartesian input space
and joint angle space after clustering. As one can see, the nodes lie
in the same regions as the data generated from the system. Hence,
this approach effectively clusters the input and the output spaces
without leading to the formation of outliers. An outlier is a node
that does not represent a training data set.
As we know the number of inverse kinematic solutions

available are not the same for all points in the workspace. This
aspect is also captured by the KSOM-SC network. The distribution
of the number of joint angle sub-clusters for different points in
the manipulator workspace is shown in Fig. 8. It is seen that
the number of solutions decreases towards the boundary of the
workspace as expected. A detailed treatment on this architecture
is provided in [24] where it is shown through simulations as well
as experiments that, the joint angle vectors remain bounded for all
points in the workspace.
In this paper, the KSOM-SC network architecture is used as a

hint generator for the inverse-forward scheme as shown in Fig. 3.
Using this architecture it is possible to generate multiple hints for
a given target position. One can select a suitable initial joint angle
vector from the available hints using different task-specific criteria.
Let the index of the winner neuron in the task space for a given
desired position be µ. As discussed above, this winner neuron is
associated with Nµ sub-clusters in the configuration space. Some
of the criteria that can be used for selecting the winning angle sub-
cluster are given below:

- Lazy arm movement: The angle sub-cluster which is closest to
the current robot configuration θc is selected as thewinner. The
winning sub-cluster for this criteria is given by

β = argmin
j
‖θjµ − θc‖. (5)

- Minimum angle norm: The angle sub-cluster whose norm is the
minimum is selected as thewinner. Thewinning sub-cluster for
this criterion is given by

β = argmin
j
‖θjµ‖. (6)

In Section 4, the KSOM-SC architecture is used to avoid an
obstacle while reaching a target position using the inverse-forward
scheme.
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(a) First 3 joint angles. (b) Last 3 joint angles.

Fig. 5. The manipulator joint angle trajectory while reaching the target position in the workspace. The joint angle values are normalized between ±1. It is seen that joint
angle values do not exceed their physical limits represented by+1 or−1 value.
4. Obstacle avoidance scheme

The collision with an obstacle in the workspace can be avoided
by the manipulator if some information about the obstacle can
be embedded into the motion planning algorithm. This can
be done by using either geometrical models [27,13] for the
obstacle and the manipulator or by obtaining information from
sensors like vision [28–30] or sonar [3]. Once this information
is available, obstacles can be avoided during online operation by
using severalmethods. Among these, artificial potential field based
methods [31–34,28] are quite popular where robot motions are
under the influence of an attractive potential field pulling the
manipulator towards the target and a repulsive potential field
pushing the robot away from the obstacles. Some other authors
like Zhang et al. [35] avoid obstacles by satisfying certain constraint
functions during manipulator motion. Mao et al. [13] use a penalty
function approach to avoid obstacles where an augmented cost
function including the inequality constraint isminimized along the
motion trajectory. Martin et al. [3] use a Reinforcement Learning
based collision avoidance scheme that makes use of sonar rings of
range sensors to find the distance of obstacles around the robot.
On the other hand, Han et al. [26] use multiple KSOMs to learn
obstacle-free poses during the training process thereby simplifying
the path planning algorithm.
In this section, we demonstrate a simplified obstacle avoidance

scheme using the inverse-forward scheme explained in Section 2
and the ball-covering object modeling method used earlier by Mao
et al. [13]. Since the KSOM-SC architecture provides multiple joint
angle solutions for a given target point, a suitable initial value
of joint angle vector can be obtained by using a criterion that
avoids the obstacle. The criterion used for resolving redundancy
is based on the ball-covering modeling method. In this method,
spheres of different radii are used to cover different shapes of
links and objects as shown in Fig. 9. The centers and radii of
these spheres are fixed a priori. In this figure, di represents the
Euclidean distance between the center of the obstacle Co and the
center of each link Ci, i = 1, 2, 3, 4. Ri is the radius of the sphere
covering the link i and Ro is the radius of the sphere covering the
obstacle.While the location of the obstacle is fixed during the robot
motion, the location of link centers (Ci, i = 1, 2, 3, 4) is a function
of the manipulator joint angle vector θ. If we define a scalar
function as

g(θ) =
4∑
i=1

(Ri + Ro − di); {Ri, Ro, di} > 0 (7)

then the obstacle avoidance criterion is given by

g(θ) < 0. (8)
Fig. 6. Sub-clustering in joint-angle space. Each lattice neuron γ is associated with
one weight vector wγ and several joint angle vectors θλγ , λ = 1, 2, . . . ,Nγ . Here
Nγ = 3.

Among the solutions provided by the KSOM-SC architecture, all
those solutionswhich donot satisfy this constraint are rejected and
among the selected configurations the one which is nearest to the
current robot configuration is selected as the initial value of joint
angle vector for the network inversion scheme.
The method proposed in this section is simpler as compared

to the currently available methods because once the clustering
has been carried out, the obstacle avoidance algorithm involves
selecting the suitable joint angle vector using criterion (8). This
proposed method does not involve a complicated training process
that optimizes certain cost functions.

5. Simulation and experimental results

5.1. Manipulator model

The forward kinematic model of a 7 DOF PowerCubeTM [36]
manipulator is used for simulation studies. The forward kinematic
model of themanipulator is derived using its D-H parameters [37].
The end-effector position is given by following equations:

x = (−(((c1c2c3 − s1s3)c4 − c1s2s4)c5 + (−c1c2s3 − s1c3)s5)s6
+ (−(c1c2c3 − s1s3)s4 − c1s2c4)c6)d7
+ (−(c1c2c3 − s1s3)s4 − c1s2c4)d5 − c1s2d3

y = (−(((s1c2c3 + c1s3)c4 − s1s2s4)c5 + (−s1c2s3 + c1c3)s5)s6
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(a) Clustering in Cartesian workspace. (b) Clustering in Joint angle space: First 3 joint angle.

(c) Clustering in Joint angle space: Last 3 joint angle.

Fig. 7. Discretization of Cartesian workspace and configuration space using KSOM-SC network architecture.
Fig. 8. Distribution of joint angle sub-clusters in the 3-dimensional manipulator
workspace. The number of solutions available for a given target point varies across
the workspace. There are very few points where the number of available solutions
is too high. The number of solutions decreases towards the boundary of the
workspace. In this figure, a plus sign (‘+’) represents a point where the number
of sub-clusters Nγ < 18, squares represent the points with Nγ is between 19 to
30 and circles represent the points with Nγ > 30. A typical robot configuration is
shown with a solid line.

+ (−(s1c2c3 + c1s3)s4 − s1s2c4)c6)d7
+ (−(s1c2c3 + c1s3)s4 − s1s2c4)d5 − s1s2d3

z = (−((s2c3c4 + c2s4)c5 − s2s3s5)s6 + (−s2c3s4 + c2c4)c6)d7
+ (−s2c3s4 + c2c4)d5 + c2d3 + d1 (9)

where various parameters are: d1 = 0.390 m, d3 = 0.370 m, d5 =
0.310 m, d7 = 0.2656 m, ci = cos θi, si = sin θi, i = 1, 2, . . . , 6.
Since the end-effector position [x y z]T does not depend on the
seventh joint angle, a zero value is assigned to this angle during
on-line operation.
Fig. 9. Obstacle avoidance criterion is obtained by using a ball-covering object
modeling scheme. The links and objects are covered with balls of known radii.

5.2. Radial Basis Function network

A 6-700-3 architecture is selected for the RBF network. Training
data pairs (θt , xt) are obtained by generating randomangle vectors
θt within their physical limits and obtaining the corresponding
end-effector positions xt using manipulator forward kinematic
equations (8). Only those data points are used for training forwhich
the end-effector position lies within the workspace limits. The
physical limits for joint angle vectors and Cartesian end-effector
positions are specified in Table 1.
It is seen in Fig. 2 that when a RBF network with 700 hidden

neurons is trained over 7 × 105 data pairs, an approximation
error of 4 cm is achieved. This accuracy is not good for accurate
positioning tasks needed in industrial applications like welding
or fitting. This shows the difficulty involved in obtaining high
positioning accuracy by forward approximation alone. Since the
training processing is a time-consuming process, it would be good
to reduce the number of patterns needed for training as much as
possible.
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Table 1
Ranges of input and output spaces.

Ranges of joint angle Range of Cartesian workspace

−160◦ ≤ θ1 ≤ 160◦ −0.3 m ≤ x ≤ 0.3 m
−95◦ ≤ θ2 ≤ 95◦ 0.3 m ≤ y ≤ 0.8 m
−160◦ ≤ θ3 ≤ 160◦ 0.0 m ≤ z ≤ 0.5 m
−50◦ ≤ θ4 ≤ 120◦
−90◦ ≤ θ5 ≤ 90◦
−120◦ ≤ θ6 ≤ 120◦
−360◦ ≤ θ7 ≤ 360◦

5.3. Kohonen Self-Organizing map architecture for sub-clustering

A 7× 7× 7 lattice structure is selected for the KSOM network.
Nearly 50,000 input–output data pairs (θt , xt) are used for learning
the clusters in the Cartesian task space and the joint angle space.
Each cluster in the Cartesianworkspace is associatedwithmultiple
clusters in the joint angle space.
The efficacy of the proposed scheme is demonstrated by

carrying out the following tasks:

5.4. Reaching isolated points in the workspace

A target position xd is selected randomly from the manipulator
workspace and is presented to the KSOM network as shown in
Fig. 3. The winning lattice neuron is obtained using minimum
distance criterion as follows:

µ = argmin
γ
‖wγ − xd‖ (10)

where γ is the lattice index of each neuron. As explained in
Section 3, this winning neuron is associated with Nµ joint angle
clusters θjµ, j = 1, 2, . . . ,Nµ. The initial value for the joint angle
vector is obtained by using the lazy-arm criterion given by Eq. (5).
Now this joint angle vector is updated using the inverse-forward
scheme as explained in Section 2. The update equation for joint
angle vector is given by (3) and (4). The multi-step movement
for attaining an accuracy of 1 mm is shown in Fig. 4. Initially,
the position obtained from the RBF network does not match with
the actual manipulator end-effector position. This error is due to
the approximation error present in the forward training. If the
network is not trained again during the inversion process, the
error persists and the actual manipulator never attains the desired
position even when the RBF network output reaches the desired
position as shown in Fig. 2. The manipulator joint angle values are
shown in Fig. 5. It is seen that the joint angle values do not violate
the physical limits during the robot’s motion. In order to ascertain
our observations, 1000 points are selected randomly from the
workspace and the inverse-forward learning scheme is used for
the angle vector update. The number of steps needed to attain an
accuracy of 1 mm is shown in Fig. 10.
The effect of forward training on inverse kinematic solution

is shown in Table 2. The forward network is trained with a
different number of training examples as shown in the first
column. The average positioning error obtained during training
is shown in the second column. The third column shows the
average number of steps needed to obtain 1 mm accuracy during
the testing phase where the network is presented with 1000
random points. Those points for which 1 mm accuracy is not
attainedwithin 400 steps are separately counted and are expressed
in a percentage of total number of test points in the fourth
column. The average positioning error for these non-converging
points is shown in the last column. This table shows that the
number of steps needed to attain 1 mm accuracy is almost
independent of the number of examples used for training the
forward network. It is also seen that it is possible to attain
1 mm accuracy for 95% of random points in the manipulator
Fig. 10. Multi-step movement: Number of steps needed to attain 1 mm accuracy
for 1000 test points using inversion algorithm.

workspace and it increases to 99.7% when the amount of forward
training is increased from 104 to 7 × 105 examples. Moreover
the positioning error of these non-converging points decreases
steadily with an increasing amount of forward training. This is
expected because, the approximation error in forward training
decreases with increasing forward training. Hence it is possible to
obtain good positioning accuracy for any point in the manipulator
workspace. This shows that the forward training is certainly
needed for better performance of the proposed scheme. However
it is not necessary to obtain very high positioning accuracy during
forward training. In this aspect, the proposed scheme removes the
drawback of the conventional network inversion based schemes
thereby enhancing its applicability to precision tasks.
Even though only one criterion called ‘‘lazy armmotion’’ is used

to obtain results shown in Table 2, similar observations can be
made for other initial values obtained from the KSOM-SC network.
A set of valid joint angle configurations obtained from a KSOM-
SC network, for a given target end-effector position is shown in
Fig. 11. Any one of these configurations could be selected as an
initial condition for the inverse-forward scheme.

5.4.1. Discussion
In Table 2, it is seen that thenetworkdoes not converge for some

points in the workspace and it might seem as a drawback of the
local learningmethod. In the following discussion, wewould argue
that such a limitation does not arise in this case.
If the forward map is trained properly then it is possible to

find inverse kinematic solutions for all points within a reasonable
amount of time. Due to improper forward training, some points
take a greater number of steps to converge than others. If sufficient
time (number of steps) is allowed, it is possible to get the desired
accuracy for all points within the workspace of the manipulator.
It should be noted that in Table 2, any point which fails to

converge within 400 steps is considered to be a non-converging
point. If we allow the inverse-forward scheme to take more steps
then it might converge. For instance, for the last row of the table,
we found that the number of non-converging points reduces to
zero if the inverse-forward scheme is allowed to take 1000 steps.
The number of non-converging points also depends on the

number of nodes used for the KSOM-SC lattice because it provides
the initial guess for the inverse kinematic solution. If this initial
guess is close to the desired position, a smaller number of steps is
necessary for obtaining the solution. If this guess is quite far, the
number of steps that is necessary to obtain the solution is large
and the scheme may fail to converge within a reasonable amount
of time.
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Table 2
Effect of forward training on inverse kinematic solution. A: Percentage of target points for which 1 mm positioning accuracy is not achieved by the inverse-forward scheme
in 400 steps. B: Average positioning error for the non-converging points listed in column ‘A’.

Number of examples used for initial
forward training

Avg. positioning error after initial
forward training (cm)

Avg. no. of steps to attain 1 mm accuracy
using inverse-forward schemes

A B

1× 104 13.9 57 5.4 21 cm
2× 104 11.5 51 2.4 20 cm
5× 104 9.1 50 1.4 15.9 cm
1× 105 7.4 50 1.2 4.3 cm
2× 105 6.1 52 0.7 2.5 cm
5× 105 4.5 48 0.5 1.3 cm
7× 105 4.2 51 0.3 2 mm
Fig. 11. Inverse kinematic solutions corresponding to all initial conditions obtained
from KSOM-SC network. This shows that it is possible to reach the desired end-
effector position from all initial conditions with same accuracy. This picture
shows the final robot configurations obtained from inverse-forward scheme when
initialized with 20 initial conditions provided by the KSOM-SC network. Here the
network is trained with 7 × 105 data points and the inverse-forward cycles take
nearly 40 steps on an average to attain an accuracy of 1 mm.

5.5. Tracking continuous trajectory

The proposed scheme has also been used to track the following
trajectory:

x = 0.2 sinφ
y = 0.5+ 0.2 cos(φ)

z =
1
3
(x+ 0.3) (11)

where φ is varied from 0 to 2π radians with a step size of 0.01.
A total of 628 data points is generated over the trajectory as per
the above equation in a sequential manner and the inverse-forward
update scheme is used to compute the required joint angle vectors.
The initial configuration for tracking this trajectory is obtained
from the KSOM-SC network. This initial configuration is crucial as
it determines the pose of the manipulator throughout the robot’s
movement. The tracking result in Cartesian space is shown in
Fig. 13(a). The joint angles are found to be continuous as shown in
Fig. 13(b) and the angles lie within their physical limits. The robot’s
configuration during the motion is shown in Fig. 14. The number
of steps needed to obtain 1 mm accuracy at each point is shown
in Fig. 15. These results demonstrate that the method proposed in
this paper preserves the conservative property [38] of the inverse
kinematic solution. In other words, a continuous trajectory in
task space gives rise to a continuous trajectory in the joint angle
space.

5.5.1. Discussion
In this section, we answer the following question:
Does local optimization that takes place in the inverse-forward
scheme lead to unlearning of already learned locations?

The learning rate for the inversion algorithm (4) is selected
in the range of 0.01–0.02 and the learning rate for the back-
propagation algorithm used for the forward training is selected to
be 0.1. During a local search, the learning and the un-learning of
the forward map take place at a very small scale which does not
affect the global learning of the forward map. In order to ascertain
this fact, the above elliptical trajectory is tracked multiple times
using the inverse-forward scheme. The outcome is shown in Fig. 12.
Fig. 12(a) shows the average number of steps taken for reaching
each point on the elliptical trajectory during each run with an
accuracy of 1 mm. Each run corresponds to one complete traversal
of the elliptical trajectory. It is seen that the average number of
steps varies between 5.4 and 5.9 over different runs. In other
words, the average number of steps remains almost the same for all
runs. This shows that the local search does not lead to unlearning of the
forward map. To confirm this observation, we performed another
simulationwhere the inverse-forward scheme is used to reach each
point in only one step and the entire process is repeated over 30
different runs. The result is shown in Fig. 12(b). Once again we see
that the average tracking error varies approximately from 8 mm
to 9 mm. In other words, the average error remains almost the
same over different runs when the trajectory is tracked multiple
times.

5.6. Avoiding obstacle

The manipulator base is taken as the origin of the Cartesian
reference frame. An obstacle of dimensions 20 cm × 10 cm ×
20 cm is placed in the manipulator workspace with its center lying
at (0 cm, 35 cm, 10 cm). The manipulator has to reach a target
position specified by the coordinates xd = (10 cm, 50 cm, 0 cm)
without colliding with the obstacle. The initial manipulator
configuration, the locations of the obstacle and the target are
shown in Fig. 16(a). This figure also shows all configurations
made available by the KSOM-SC architecture for the given
target point. It can be seen that many configurations would
collide with the obstacle. All those configurations which do
not satisfy the obstacle avoidance criterion given by Eq. (8)
are rejected. Among the remaining configurations which avoid
the obstacle, the one that is nearest to the current robot’s
configuration is selected as the initial guess. This ensures that
the manipulator will not collide with the obstacle while moving
from its current configuration to the configuration provided by
the initial guess. Now the inverse-forward scheme is used to
update the joint angle vector θ from its initial value θ0. The
completemotion of joint links to reach the target point is shown in
Fig. 16.

5.6.1. Discussion
Note that choosing the lazy arm criterion to find the initial

robot’s configuration may not lead to collision-free trajectory
in all cases. However, the intention here is to demonstrate



630 S. Kumar et al. / Robotics and Autonomous Systems 58 (2010) 622–633
 5.

 5.

 5.

 5.

 5.

 5.

 0  5  10  15  20  25  30A
ve

ra
ge

 n
o.

 o
f s

te
ps

 fo
r 

at
ta

in
in

g 
1 

m
m

 a
cc

ur
ac

y

Run

4

 5.45

5

 5.55

6

 5.65

7

 5.75

8

 5.85

9

 0.0078

 0.0079

 0.008

 0.0081

 0.0082

 0.0083

 0.0084

 0.0085

 0.0086

 0.0087

 0.0088

 0  5  10  15  20  25  30

A
ve

ra
ge

 d
is

ta
nc

e 
er

ro
r 

(m
)

Run

(a) Multi step solution. (b) Single step solution.

Fig. 12. Tracking trajectory multiple times. The learning and unlearning takes place only at a local level.
(a) Tracking in Cartesian space. (b) Joint angle trajectories necessary for tracking.

Fig. 13. Tracking a circular trajectory. The average accuracy attained is 1 mm. Joint angles are found to lie within the physical limits. Angles are normalized and the physical
limits are given by±1.
Fig. 14. Robot’s configuration during trajectory tracking. Choosing the initial
configuration is crucial as it determines the pose of the manipulator throughout
the robot’s motion.

the applicability of our approach to a practical problem. If the
input–output space is effectively clustered using a KSOM-SC
network, then it would be possible to obtain an initial guess which
is fairly close to the desired position. Note that, we are talking
about an accuracy of 1 mm to be obtained through our scheme. It
is possible to get a positioning accuracy of about 1 cm by using the
KSOM-SC architecture as shown in [22,24]. Hence in moving from
1 cm to 1mmaccuracy, it can be safely assumed that one can obtain
Fig. 15. The number of steps taken by inverse-forward cycle to obtain 1 mm
accuracy at each point on the trajectory.

a collision-free motion in a workspace whose overall dimension is
inmeters. However, the readers should note that thismay not hold
in a case when the distance to be traversed is large.

5.7. Details of the actual experiment

This experimentwas performed at the ISRC, University ofUlster,
Magee Campus in the United Kingdom. The objective of this
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(a) Available configurations. (b) Resolving redundancy to avoid obstacle.

Fig. 16. Avoiding the obstacle while reaching a target point. The first figure shows the available configurations for a given target point obtained from KSOM-SC architecture.
In the second figure, the redundancy is resolved by choosing the configurationwhich is not only closest to the initial configuration but also avoids the obstacle. This is labeled
as the ‘initial guess’. Then inverse-forward scheme is employed to attain 1mm accuracy. Different views are provided in figures (a) and (b) to ensure visibility of the obstacle,
the target point as well as the robot’s end-effector trajectory.
experiment was to reach various points around an obstacle with-
out colliding with it. A small cuboidal box of dimensions 21 cm ×
16 cm×6 cmwas taken as the primary obstacle to be avoided. This
box was placed over a wooden pedestal of dimensions 70 cm ×
50 cm × 80 cm. The primary obstacle was modeled as a sphere
of radius 14 cm and the pedestal was modeled as a sphere of ra-
dius 65 cm. In order to avoid configurations that would reach the
point from the bottom, thereby colliding with the pedestal, the
pedestal was also treated as an obstacle. The lazy arm criterion
and obstacle avoidance criterion (7) and (8) were used for re-
solving redundancy while providing the initial hint to the inverse-
forward algorithm. The forward kinematic model was used to find
the current end-effector position. The entire training was carried
out in the Cartesian workspace. The modeling of obstacles and
final configurations for various points obtained from simulation
are shown in Fig. 17. In this figure, the red sphere represents
the pedestal and the cyan sphere represents the primary obsta-
cle. The blue squares represent the target points to be reached
and the pink lines show the final robot’s configurations obtained
through inverse-forward scheme. Some of the configurations of
the manipulator obtained during the actual experiment are shown
in Fig. 18. One has to select the radius of spheres judiciously in
order to obtain the right solutions. For instance if the radius is
chosen too large, then one may lose all solutions provide by the
KSOM-SC hint generator. If the radius is selected too small, then
the solution might hit the obstacle. Since accurate models were
used for the manipulator as well as the obstacles, the experi-
mental observations were found to concur with the simulation
results.
The PowerCube manipulator takes approximately 80 millisec-

onds to complete one positioning command. Hence, themulti-step
inverse-forward scheme is implemented using the forward kine-
matic model and the final joint angle configuration is provided to
the robot manipulator.

6. Conclusion

An online inverse-forward adaptive schemewith a KSOMbased
hint generator is used to solve the inverse kinematic problem
of a redundant manipulator. In this approach, a RBF network
is trained to approximate the forward kinematic relationship
and this network is inverted to obtain a joint angle vector
for the desired target point. It is a well known fact that the
Fig. 17. The base overwhich obstacle is place is alsomodeled as an obstacle and the
manipulator tries to avoid both of these two spheres while reaching various points
around the obstacle.

positioning accuracy obtained by network inversion is limited by
the approximation error present in the forward model. Usually
a large amount of training data is needed for obtaining a small
positioning error during forward training. The difficulty present
in forward training can be gauged from the fact that a RBF
network with 700 hidden nodes when trained with 7 × 105 data
patterns, give rise to a positioning accuracy of only 4 cm. This
accuracy is not adequate for most industrial applications. It is
shown that by using an inverse-forward adaptive scheme, it is
possible to obtain high positioning accuracy by network inversion
even when the forward model has a large approximation error.
This scheme searches for a local solution around the current
joint angle configuration that minimizes the output error. The
inverse-forward update is carried out online and it is possible
to attain 1 mm accuracy for all points in the manipulator
workspace.
Another drawback of the network inversion based algorithm is

that it provides a feasible joint angle vector (that satisfies physical
limits) only when, it is initialized with a suitable joint angle vector.
Moreover, since a redundant manipulator can have multiple joint
angle vectors for the same end-effector position, one needs to
resolve redundancy as well. This initial condition determines the
pose of the manipulator during the robot’s motion. These two
problems are solved by obtaining a initial guess from a KSOM-SC
network architecture. This network provides multiple hints for a
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Fig. 18. Obstacle avoidance experiment. The manipulator reaches various points on a closed trajectory without colliding with the obstacle.
given target end-effector position and each hint leads to a valid
inverse kinematic solution. Redundancy resolution is carried out
by selecting one out of several available configurations by using
a task-specific criterion. An obstacle avoidance problem is solved
to demonstrate the redundancy resolution process. The theoretical
findings made in this paper are corroborated through experiments
on an actual 7 DOF PowerCubeTM manipulator.
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