Auton Robot (2010) 28: 271-281
DOI 10.1007/s10514-009-9175-2

Generating gaits for snake robots: annealed chain fitting

and keyframe wave extraction

Ross L. Hatton - Howie Choset

Received: 1 April 2009 / Accepted: 18 December 2009 / Published online: 31 December 2009

© Springer Science+Business Media, LLC 2009

Abstract Snake robots have many degrees of freedom,
which makes them both extremely versatile and complex to
control. They are often controlled with gaits, coordinated
cyclic patterns of joint motion. Using gaits simplifies the de-
sign of high-level controllers, but shifts the complexity bur-
den to designing the gaits. In this paper, we address the gait
design problem by introducing two algorithms: Annealed
chain fitting and Keyframe wave extraction. Annealed chain
fitting efficiently maps a continuous backbone curve de-
scribing the three-dimensional shape of the robot to a set
of joint angles for a snake robot. Keyframe wave extrac-
tion takes joint angles fit to a sequence of backbone curves
and identifies parameterized periodic functions that produce
those sequences. Together, they allow a gait designer to con-
ceive a motion in terms three-dimensional shapes and trans-
late them into easily manipulated wave functions, and so
unify two previously disparate gait design approaches. We
validate the algorithms by using them to produce rolling and
sidewinding gaits for crawling and climbing, with results
that match previous empirical investigations.

Keywords Snake robot - Gait - Curve discretization

1 Introduction

Snake robots are actuated kinematic chains that locomote
via coordinated bending of their bodies. Typically, snake ro-

R.L. Hatton (B)

Robotics Institute and Mechanical Engineering,
Carnegie Mellon University, Pittsburgh, USA
e-mail: rlhatton @cmu.edu

H. Choset
Robotics Institute, Carnegie Mellon University, Pittsburgh, USA
e-mail: choset@cmu.edu

bots possess many active joints which gives them great ver-
satility and freedom of movement. This versatility comes at
a cost, as it is infeasible for an operator to individually con-
trol each actuator. A common solution to this difficulty is to
define parameterized gaits, or patterned joint motions, and
have the operator select among them to direct the robot. The
key question then becomes how to design useful gaits.

Two dominant approaches to gait design in the litera-
ture specify gaits either with animated “backbone curves”
describing the macroscopic three-dimensional shape of the
robot, or by explicitly setting the joint angles as functions
of joint number and time. Each of these approaches has
strengths and weaknesses. Backbone curves let the gait de-
signer think in terms of real-world geometry, but any con-
troller based on them must incorporate a nonlinear fitting
operation to generate the low-level actuator inputs. These fit-
ting algorithms have historically assumed a mechanism with
bidirectional bending capability at each joint, which limits
their applicability. Conversely, the wave approaches operate
directly on the actuator inputs, but choosing functions and
parameters to generate desired real-world effects is difficult
and non-intuitive.

In this paper, we take a hybrid approach to the gait design
problem, drawing on the strengths of the two techniques de-
scribed above while mitigating their weaknesses. First, we
introduce a new fitting algorithm, annealed chain fitting,
which does not require the bidirectional bending capabilities
of previous algorithms and is thus useful for a wider domain
of mechanism configurations. We then apply this algorithm
to series of static backbone curves, generated by discretizing
desired moving backbone curves in time. Borrowing a term
from the animation literature, we refer to these static curves
as “key frames.” Assembling the joint angles from the fitting
operations produces a trajectory of positions for each joint
during the gait. We gain further insight into the operation

@ Springer

mailto:rlhatton@cmu.edu
mailto:choset@cmu.edu

272

Auton Robot (2010) 28: 271-281

of the gait by collecting these trajectories into discrete func-
tions of joint number and time and then using our keyframe
wave extraction process to identify parameterized analyti-
cal functions that minimally capture the form of the discrete
functions. Taken together, these two procedures allow us
to start by specifying gaits as high-level three-dimensional
shapes and finish with low-level patterns of joint angles. The
parameters of these patterns can be manipulated in real time
and can thus be tightly integrated into motion controllers.

2 Background

Snake robots have been studied since at least 1971, with
Hirose’s pioneering work on the Active Cord Mechanism
(ACM) (Hirose 1993). While this and other early snake
robots were confined to planar motion, much recent ef-
fort has been directed towards mechanisms that can assume
full three-dimensional shapes. Notable developments in this
area include Yim’s Polybot (Yim et al. 2001; Zhang et al.
2003a, 2003b); Mori and Hirose’s ACM-R3 (Mori and Hi-
rose 2002), our modular snakes (“modsnakes”), shown in
Fig. 1 (Wright et al. 2007), Gonzalez-Gomez et al.’s Hyper-
cube (Gonzalez-Gomez et al. 2006, 2007), and Goldman and
Hong’s HyDRAS (Goldman and Hong 2007, 2008).

The theoretical contribution in this work draws on two
previous approaches to snake robot gait design: backbone
approaches, which specify the gait as a moving curve, and
wave approaches, which directly oscillate the joint angles.
Hirose’s early work on snake robots identified the serpenoid
curve (Hirose 1993) as the fundamental shape function de-
scribing the backbones of biological snakes while execut-
ing common gaits, and used this curve as the basis for ro-

Fig. 1 Our modular snake (“modsnake”) robots have sixteen joints,
arranged to allow full workspace flexibility. In past work, we have
demonstrated a variety of successful motion strategies for these robots,
including traversal of both smooth and rough terrain, swimming, and
pole climbing (shown here)

@ Springer

botic gaits. Chirikjian and Burdick (1991, Chirikjian 1992)
drew on this notion of a backbone curve and developed
modal functions for describing arbitrary backbone curves
and algorithms for fitting discrete serial mechanisms to these
curves. This work paved the way for analysis of complex
gait motions, such as Burdick, Radford, and Chirikjian’s
study of sidewinding (Burdick et al. 1993). More recently,
Yamada and Hirose have proposed an alternate backbone
curve formulation (Yamada and Hirose 2006) and Goldman
and Hong (2007, 2008) have used a variation on backbone
fitting to examine the kinematics of their robot climbing a
pole. The present work is an expansion of our preliminary
work on annealed chain fitting, the results of which were
reported in Hatton and Choset (2009).

A second branch of gait development, also inspired by
Hirose’s work, has taken a lower-level, wave-based ap-
proach. The joint angles in a serpenoid-curve gait are speci-
fied by a sinusoidal traveling wave function, and, by exten-
sion, other gaits can be produced by modifying the form of
this wave (Sfakiotakis and Tsakiris 2007). We have found
much success in applying a three-dimensional form of this
approach involving “lateral” and “lifting” waves to generate
crawling, climbing, and swimming gaits (Lipkin et al. 2007;
Tesch et al. 2009); similar results have been demonstrated
by several other researchers, including Yu et al. (2008) and
Gonzalez-Gomez et al. (2006, 2007), the latter of whom
used central pattern generators (CPGs) to generate the waves
in a distributed fashion. The use of CPG-generated waves
is becoming increasingly widespread in locomotion control
and is thoroughly reviewed by Ijspeert (2008).

3 Gait design for modsnake robots

Our modsnake robots are constructed as kinematic chains of
single-degree-of-freedom modules. Each module consists of
a joint and a link, and the joint axis of each module is ro-
tated around the central axis of the snake by 90° with re-
spect to the previous joint, as illustrated in Fig. 2 (Wright
et al. 2007). This geometry allows full three-dimensional
motion while maintaining smaller individual links and pro-
viding greater robustness than equivalent designs combining
pairs of modules into active universal joints. We use the con-
vention that the nth link is distal to the nth joint, and that the
angle of the nth joint thus determines the position of link n
with respect to link n — 1.

We control these robots by designing gaits which propa-
gate waves along their bodies (Lipkin et al. 2007). The first
stage in this wave-based approach is to divide the modules
into odd and even sets by joint number, such that all the joint
axes in each set are parallel when the snake robot is stretched
out. We then take parameterized, periodic functions in time
and joint number for each set and manipulate the parameters

Auton Robot (2010) 28: 271-281

273

Joint
n n+1

/

Proximal Distal

!

n—1 n n+l
Link

Fig. 2 Modsnake geometry. The nth link is distal to the nth joint, and
together they make up the nth module. Each joint is rotated around the
central axis of the snake by 90° with respect to the previous joint; in
this illustration, joint n generates rotation in the plane, while joint n + 1
generates rotation out of the plane

to design useful gaits. For example, a basic form of this ap-
proach is to define «(n, t), the angle of the nth joint at time
t, as

Bodd + Aodd Sin(Boqd) odd
a(n,t)=) (1)
Beven + Aeven Sin(Geven +) even

Qodd,even = (Qodd,evenn + Wodd,even?), 2)

where 8, A, 0, and § are respectively offset, amplitude, fre-
quency, and phase shift. The parameter €2 describes the spa-
tial frequency of the macroscopic shape of the robot and the
temporal component w determines the frequency of the actu-
ator cycles. This single wave model encompasses a wide va-
riety of gaits, from slithering and sidewinding to the rolling
helix used to climb the pole in Fig. 1, and is similar to the
parameterized CPG functions used in Gonzalez-Gomez et
al. (2006, 2007).

This wave-based approach is a powerful tool, as it greatly
reduces the complexity of designing gaits. Rather than indi-
vidually choosing a trajectory for each joint angle, the gait
designer can work with a smaller set of parameters that ap-
ply across all the joints. It is not a complete solution, though,
as it still leaves open the question of how to select regions
of this parameter space that correspond to useful gait types.

To date, our efforts to find good choices of wave para-
meters, while fruitful, have been largely empirical. For in-
stance, through experimentation we have determined that a
phase shift of § = % can be used to generate a sidewinding
motion, while a phase shift of § = 7 corresponds to rolling
motions (Lipkin et al. 2007). Unfortunately, this empirical
approach is limited in that it is difficult for a gait designer
to think in terms of bending wave parameters; it would be
much easier to think in terms of backbone curves (Burdick et
al. 1993), i.e., the three-dimensional shapes assumed by the
robot. Without considerable experience, it is hard to trans-
late the latter into the former, especially if the snake is con-
voluted enough that the “odd” and “even” joints no longer
correspond to “horizontal” and “vertical” bending. It is even
harder to identify when a conceived gait cannot be realized
via the wave model in (1), and then to generate a new wave
function with which to express it.

4 Annealed chain fitting

As translating from a three-dimensional backbone curve to
a set of joint angles is difficult for a gait designer, the first
stage of our approach automates this operation. While in
principle it would be possible to solve directly for the set
of joint angles which best fit the robot to the backbone
curve, such an operation would be computationally pro-
hibitive. Instead, we take an iterative approach, and progres-
sively “sculpt” the robot onto the backbone in a series of
smaller, more stable optimizations. If the robot had spheri-
cal or universal joints, as in Andersson (2008), this sculpt-
ing process would be trivially accomplished by sequentially
setting each joint angle to place the distal end of the corre-
sponding link directly on the curve. With an alternating-axis
geometry, however, the alignment of a given joint axis with
the curvature of the backbone (and thus the ability of that
module to fit to the curve) depends on the joint angles of
the preceding modules. Because our fitting algorithm must
consequently allow for the adjustment of previously fit joint
angles as each new module is considered, we refer to this
process as annealed chain fitting.

4.1 Backbone curves

In our fitting algorithm, we specify the desired three-
dimensional shape of the robot with continuous backbone
curves. As did Burdick et al. (1993, Chirikjian and Burdick
1991), we take the backbone curve to be a spatial curve
which has both an associated coordinate system along its
length, such as a Frenet frame, and a roll distribution, which
dictates the orientation of each portion of the robot’s body
with respect to this coordinate system.

The structure of our snake robots allows us to simplify
the general backbone definition. The arrangement of rotary
joints on the robot is forsion free (Nilsson 1998), in the sense
that the robot can bend but not twist with respect to itself.
This is a property of snake robots with universal joints or
alternating-axis geometry, and is not shared with robots that
have spherical joints or axes of rotation aligned with the
“spine” of the mechanism. For this torsion-free configura-
tion, we need only to consider the roll distribution of the first
module, as it in turn dictates the roll distribution over the rest
of the robot. Specifically, we encode this roll as the twist an-
gle ¢ of the first module around the tangent line at the base
of the curve, as illustrated in Fig. 3. Note that because the
modules we are fitting to the curve have finite length, we
use the tangent chord, rather than the instantaneous tangent
vector at the base of the backbone.

4.2 Fitting algorithm

The annealed chain fitting algorithm starts by fixing the first
module to the base of the backbone curve, with orientation

@ Springer

274

Auton Robot (2010) 28: 271-281

Twist angle
Normal vector to
backbone tangent

Normal vector to
module

N

Fig. 3 The twist angle ¢ is the angle between a chosen normal vector
on the backbone’s tangent line and a chosen normal vector on the first
module. Note that because the modules we are fitting to the curve have
finite length, we use a chord of one module length, rather than the
instantaneous tangent vector at the base of the backbone

Fixed Active Free

—— —>
AN L

i+1\ (N7 -
——
Step

Fig. 4 Annealed chain fitting, with a window size of three and a step
size of one. In each iteration, the active window steps along the snake
robot. As the step size illustrated here is one module, one free module
becomes active and one active module becomes fixed between itera-
tions i and i + 1

specified by the twist angle ¢. The joint angles to fit the rest
of the modules to the curve are then found by the following
iterative procedure. At each iteration in the algorithm, we
separate the joints of the snake robot into three categories:
fixed joints, which have been previously fit to the curve and
will not be changed; active joints, which are being fit to the
curve; and free joints, which will be fit to the curve in fu-
ture steps. As shown in Fig. 4, the joints are assigned to
these categories via a moving active window. The size of
this window determines the number of active joints, and the
step size controls how many active joints become fixed (and
how many free joints are made active) between each itera-
tion.

Once the active modules have been selected for an iter-
ation, their joint angles are optimized to fit their links as
closely as possible to the backbone curve. In this paper, we
find this best fit by minimizing the cost function

Dj(caciive) = Y _ d7 +K(at)), 3)

active

i.e. the sum of squared distances of the distal ends of the
modules from the backbone, with a penalty function

i (@) = max (0, (abs(cr) — 0.8)%) 4)

to push the solution away from extreme angles that “bunch
up” along the curve. This objective function essentially cre-

@ Springer

(b)

Fig. 5 Fitting a snake robot to a helix. (a) The three active (distal)
modules are pulled towards the backbone by the thin attraction lines
connecting them to the curve. The fixed modules have already been fit
to the curve and are not adjusted in subsequent iterations. (b) As the
fitting progresses along the snake robot, the alternating axes of bending
produce a characteristic zigzag pattern centered on the backbone curve

ates “sliding springs” which pull the modules towards the
curve, as in Fig. 5. This sliding action means that the point
on the backbone that attracts each module varies over the
optimization, so we do not attempt to analytically solve for
the best fit and instead use a numeric solver, e.g. the Nelder-
Mead simplex algorithm (Nelder and Mead 1965) to find the
optimal joint angles.

Careful consideration of the active window and step sizes
is required. For an N-module robot, with active window and
step sizes a and s respectively, the annealed chain fitting
algorithm requires searching & —% a-dimensional spaces.
A large value of a increases the degrees of freedom in the
active region, and hence its ability to fit to the backbone.

Auton Robot (2010) 28: 271-281

275

However, this benefit comes at the cost of exponentially in-
creasing the size of each search space while only linearly
decreasing the number of searches. Similarly, large values
of s reduce the number of searches but also result in several
modules being added in each iteration, which can trap the
system in undesirable local minima of the objective func-
tion, such as bridging over the coils of a helix. Also, too
large a ratio of 7 reduces the number of iterations in which
a given module is allowed to move and thus reduces the “an-
nealing” properties of the algorithm. Given these considera-
tions, along with observed diminishing returns in fit quality
for a > 3, we used values of a =3 and s = 1 for the exam-
ples in this paper.

4.3 Boundary conditions

Appropriately placing the first link of the snake robot can
significantly affect the quality of the fit. For instance, a rea-
sonable first guess is to place the first link along a tangent
line or chord to the curve. However, the plot of the fitting
process in Fig. 5 illustrates that the optimal joint angles do
not in general place the links tangent to the backbone curve,
but instead produce a zigzag pattern centered on the curve.
It follows, then, that imposing a tangency constraint on the
first module distorts this zigzag pattern, and sub-optimally
fits the first several modules to the curve, as seen in Fig. 6(a).

One means of improving the fitting quality of the first
modules would be to make a second pass of the fitting al-
gorithm, fixing the last module to the backbone curve and
propagating towards the first module, using the results of the
initial pass as starting guesses. Unfortunately, this process
has the potential to significantly shift the location of the first
module; in the next section, we will be fitting the snake ro-
bot to sequences of backbone curves, and will need tighter
control over the placement of the first link.

To improve the initial boundary condition while main-
taining some control over the first link’s placement, we in-
stead add an extra optimization stage between the first and
second iterations. In this stage, the placement of the “tan-
gent” line at the base of the curve is allowed to float. The
placement of this line is then optimized along with the first
set of joint angles to minimize the average distance of the
endpoints of all the links from the curve, using the tangent
position and joint angles from the initial stage as starting
guesses. As shown in Fig. 6(b), this additional stage brings
the first link into the pattern of the rest of the modules. Once
the new boundary condition is calculated, the annealed fit-
ting operation proceeds along the body of the robot.

4.4 Summary of annealed chain fitting

In summary, the annealed chain fitting process is as follows.
First, the head link is placed along the base of the curve with

(a) Simple tangency boundary condition.

(b) Relaxed boundary condition.

Fig. 6 Optimal fit for the first four modules, given (a) the first mod-
ule placed tangent to the curve, and (b) a relaxed boundary condition
where the first module is allowed to float

a specified twist angle ¢. Second, the first ¢ modules are fit
to the curve, with the head link fixed. Third, the placement
of the head link is relaxed. Finally, the overlapping sets of a
modules are fit to the curve.

5 Keyframe wave extraction

We can use annealed chain fitting’s mapping from three-
dimensional shape to joint angles as a means for design-
ing gait controllers. By taking a gait as being defined by
its time-varying backbone curve, we can sample the back-
bone configuration at a series of times #; and apply the chain
fitting algorithm to each of these backbone curves. Borrow-
ing a term from the animation community, we refer to the
backbone and joint angle data at these time samples as key
frames. Collecting the fitting results from across all the key
frames produces a discrete function

o =g(n, t) &)

for the joint angles, which can be fed into the snake robot to
execute the gait.

@ Springer

276

Auton Robot (2010) 28: 271-281

This approach becomes significantly more powerful
when augmented with a second fitting procedure that ex-
tracts parametric functions describing the joint angles. In its
raw form, the function g acts as a script for executing the
exact set of backbone curves used to create it; the nonlin-
ear and numeric relationship between the backbone curves
and the corresponding joint angles means that altering the
gait requires repeating the entire fitting process, which is
too computationally costly to perform in real time. To avoid
this cost, we can instead identify parametric functions of
joint number and time which produce the same joint angles
as g, so that the real-time controllers can act directly on the
parameters.

The first step in this keyframe wave extraction process is
to separate out the odd and even joint angles into the func-
tions

Qodd = godd (Modd» Tk) (6)
and
(even = even (nevens). @)

We then find continuous parameterized functions foqq(/, ?)
and feven(l, t) which evaluate to gogg and geven at I = noda
and ! = neyen, respectively.

6 Experiments

We have applied annealed chain fitting and keyframe wave
extraction to a variety of snake robot gaits, with wave-
pattern results matching those found in Lipkin et al. (2007),
and, where applicable (Gonzalez-Gomez et al. 2007). These
are not novel gaits, but serve as good examples for the work-
ings of our new algorithms, and the agreement of the gaits
they produce with the previous empirical studies serves as
an important validation of the algorithms.

6.1 Rolling in an arc

Consider the rolling gait illustrated in Fig. 7. In this gait, the
snake robot forms an arc in the plane of the ground and rolls
laterally. To find the joint angles which form this gait, we
chain fit the snake robot to the arc at a full revolution’s worth
of twist angles, corresponding to the shapes shown in Fig. 7
and their intermediate positions. Extracting the individual
joint angles from the fitting data results in the plots of goqq
and geven in Fig. 8(a).

The plots in Fig. 8(a) are line plots, as the time discretiza-
tion can be made small enough to approach continuity, but
the spatial resolution is fundamentally limited to the actual
modules of the robot. There are clear patterns to gogq and
Zeven, Making it easy to find by inspection the parameterized

@ Springer

o,
K omme
0':@@:’ g

e

!

Sy

0o d®
&

7

\d

Fig.7 Rolling in an arc. In our basic rolling gait, the snake robot forms
an arc in the plane of the ground and rolls laterally. As the snake ro-
bot rolls, the joints vary between being perpendicular and parallel to
the ground plane. At left, an end-view of the modules illustrates the
wheel-like motion

functions which describe them. Each is sinusoidal in time
and shows no variation with respect to module number. As
there is a quarter-period offset in time between the odd and
even functions and they have equal magnitudes, we can as-
sign a pair of continuous functions of the form

Joda(l, 1) = Asin (wr) ®)

foven(l, 1) = Asin (a)t — %) ©)

to the gait, which, as in Fig. 8(b), are equal to goqq and
Zeven at | = nogg and | = neyen, respectively. This wave-
form matches our previous results for generating rolling
gaits (Tesch et al. 2009), where we experimentally deter-
mined that restrictions of (1) with Aodqa = Aeven> Bodd =
Beven = 0, Q20dd = Seven = 0, @Wodd = Weven and § = _%
form the snake robot into the rolling arc shown in Fig. 9.

6.2 Rolling in a helix

One of the more intriguing features of a snake robot is its
ability to climb a pole by wrapping around it in a helix, as
shown in Fig. 1, and then rolling up the pole. In this gait, as
illustrated in Fig. 11, each segment of the body rolls along
the pole, effectively acting as a wheel. As with the arc gait,
this rolling motion is entirely driven by bending, with no
rotary joints aligned with the direction of rolling. We have
previously used our empirical approach to find one such gait

Auton Robot (2010) 28: 271-281

277

(b) Standing waves which generate the joint angles for the rolling arc.

Fig. 8 Waveform for a rolling arc gait. As in Fig. 7, at each time ¢,
the first link of the snake robot is made tangent to the arc with a twist
angle of ¢ = ¢, and the remaining links are fit to the curve. With the ex-
ception of the first two odd modules (which are distorted by boundary

Fig. 9 Snake robot in its rolling arc configuration

for our snake robots (Lipkin et al. 2007). Others have found
an analytical solution for a rolling helix gait for a universal-
joint snake robot (Goldman and Hong 2007, 2008), but it
relies on both the bidirectional bending capabilities of the
universal joints and the symmetries inherent in rolling a ro-
bot with a cylindrical cross-section up a cylindrical pole, and
is thus not readily extensible to an alternating joint configu-

condition effects) there is no variation in the joint angles with respect
to module number, and sinusoidal variation with respect to time. These
joint angles are described by a pair of standing waves of equal magni-
tude which are phaseshifted from each other by § =7 /2

ration or non-cylindrical geometry. The chain fitting process
does not share these requirements, and we can use it to sys-
tematically find joint angles for a rolling helix gait without
relying on symmetries of the problem.

Generating the rolling helix gait follows much the same
process as did generating the rolling arc. At each time ¢,
we place the first link tangent to the helical backbone with
twist angle ¢ = ¢ and iteratively fit the rest of the links to the
curve, as illustrated in Fig. 5. During this fitting, the mech-
anism takes on a characteristic zig-zag pattern around the
backbone curve, which stems from the alternating-joint con-
figuration of the robot. Extracting the odd and even angles
gives the plots of godd and geven in Fig. 10.

Once again, a clear pattern emerges in the joint angles,
which can be seen to vary sinusoidally with respect to both
module number and time. This pattern is a traveling wave,
and the continuous functions foqq and feven in Fig. 10 are

@ Springer

278

Auton Robot (2010) 28: 271-281

V /7 e
VN 228
/) 2

Y)/~
7//Z8

L/
T

Fig. 10 Waveform for a rolling helix gait. At each time ¢, the first link
of the snake robot is made tangent to the helix with a twist angle of
¢ =t, and the remaining links are fit to the curve, following the pattern
in Fig. 5. For this gait, the joint angle varies sinusoidally with respect

Fig. 11 Rolling up a pole as a helix. In this gait, the snake robot forms
a helix around a pole, then twists on its own central axis, so each body
segment rolls against the pole with the same net direction of travel

of the form in (1), with parameters Aogd = Aeven> Bodd =
Beven = 0, Qodd = Leven, Wodd = Weven and § = _%~ These
parameters match our previous empirical results (Tesch et
al. 2009), validating that chain fitting at various twist angles
indeed produces the rolling helix gait used to climb the pole
in Fig. 1. Note that the phase shift of § = +7 is character-
istic of rolling gaits, and reflects the fact that the odd and
even modules exchange their direction of bending at every
quarter-rotation.

@ Springer

N\ 7, 7
N ,////;/{/
N\ 4

Y

to module number as well as time, and thus is described by a pair of
traveling waves. As with the rolling arc, the phase shift between the
odd and even waves is § = —m /2, which is characteristic of all rolling
gaits

6.3 Rolling in an “S”

Some gaits, even simple ones, cannot be described by the
single-wave model, and our new approach reveals appro-
priate models to use to generate these gaits. For instance,
consider a variation on the rolling gait, in which the robot
assumes the “S” shape in Fig. 13. No choice of parameters
in (1) will produce this motion, but by applying chain fitting
and wave extraction to this gait, as in Fig. 12, we can find a
suitable function. By inspection, the two sets of joint angles
are described by parameterized functions of the form

Jodd(, 1) = Agdd sin (Roda! + Aodd) sin (wodd?) (10)

Jeven(l, 1) = Acven Sin (Qeven! + Acven) Sin (Wevent + 6),
(1)

where the spatial and temporal components are multiplied
together, rather than added as in the previous gaits, and
A and § represent the spatial and temporal shifts, respec-
tively.

6.4 Sidewinding

Sidewinding is an efficient ground-crossing gait that is es-
pecially effective when traversing loose or slippery terrain.
In contrast to the first three gaits we examined, it involves
changing the locus of points in the backbone curve, rather
than the roll distribution. Burdick et al. (1993) character-
ized the backbone shape during sidewinding as consisting
of ground contact segments and arch segments. The ground
contact segments are parallel to each other and in static con-
tact with the environment. The “S”-shaped arch segments
connect the ground contact segments and are lifted from the
ground. As illustrated in Fig. 14, the snake progressively

Auton Robot (2010) 28: 271-281

279

(724

~

<
P N 5 o
N NN

0.2 i
< S AN SOS @ I %
_8 0 7 ~‘\\

=

GG AR NS
\\\\§§?’!{,“;’ NS

t 0 2 l

Fig. 12 Wave functions for a rolling “S” gait. The joint angles are described by standing waves, in which the spatial and temporal components are
multiplied together, which differs from the additive traveling waves which produce the rolling helix

Fig. 13 Snake robot in its rolling “S” configuration

Ground contact

Segment
Net direction
of travel /
Lowering '« Arch
Point segment
Ground contact Lifting/
track Point

Fig. 14 Sidewinding motion. The ground contact segments are in sta-
tic contact with the environment, while the arch segments are lifted
from the ground and experience no friction. By progressively lifting
the ground contact segments into arch segments while laying arch seg-
ments down into ground contact segments, the snake or snake robot
translates its body mass in the direction shown

raises one end of each ground contact segment into an arch
segment, and lays down the arch segments into the other
ends of the ground contacts. In doing so, the snake transfers
its body mass between the ground contact tracks, producing
a net displacement.

To construct the backbone curves for sidewinding, we
make some simplifications to the general model. Rather than
using the full structure of ground contact and arch segments,
we observe that their combined footprint in Fig. 14 resem-

Fig. 15 Fitting to the sidewinding backbone curve. The backbone
curves for the key frames of the side winding motion are sections taken
progressively from the extended backbone curve. Note that the net mo-
tion is a combination of flow along the extended backbone curve and
the lateral displacement of the curve itself. This lateral displacement
occurs as the snake robot lays down portions of its body to the left of
the static contact points, and lifts those to the right

bles a sine wave, and use this wave to specify the x and y
components of the backbone curve locus. We then specify
the z component of the locus with a cosine wave that raises
the portions of the curve corresponding to arch segments
with respect to those representing ground contact segments.

The last procedure needed to specify the backbone curve
is choosing the coordinate frame of the starting tangent
and the roll of the first module with respect to this frame.
Here, we choose the tangent’s frame by finding the yaw and

pitch spherical coordinates which rotate the vector [1 0 O]T

@ Springer

280

Auton Robot (2010) 28: 271-281

\‘g\ ‘\
\Q‘ s—.\w.A

Fig. 16 Wave functions for the sidewinding gait. As with the rolling
helix, the sidewinding gait is produced by a pair of traveling waves.
The key difference between the two gaits is that the phase shift be-

to align with the starting tangent, and place the first mod-
ule at zero roll around the tangent. This may not be the
ideal choice, but it is close enough that the wave extraction
process corrects for any errors.

With the backbone defined, we generated the sidewind-
ing gait angles by fitting the modules to the extended back-
bone curve from a sequence of starting points, as shown
in Fig. 15. The raw angles found in this fitting process are
somewhat noisy, but as shown in Fig. 16 conform to a pattern
of two traveling waves offset by a phase shift of Z, which
once again matches our previous empirical results (Lipkin et
al. 2007) and those of Gonzalez-Gomez et al. (2007).

7 Conclusions

In combining a high-level backbone approach with low-
level specifications of joint angle waves, we have unified
two previously disparate gait design techniques. On their
own, backbone methods provide a means of shaping the ro-
bot in terms of real-world features, but any adjustment to
the backbone requires repeating the fitting process, which is
too slow for realtime control. Conversely, joint angle wave
approaches provide gait functions which are easily manip-
ulated in real time, but are often not intuitively related to
the macroscopic shape of the system. By fitting to a small
set of representative backbones and then extracting the cor-
responding joint angle waves, we gain the benefits of both
approaches.

In this paper, we have explored the use of chain fitting
and wave extraction to generate a variety of rolling and
sidewinding gaits. The waveforms we found match our pre-
vious empirical results, confirming the underlying principle
of our approach. In our future work, we will be particularly
interested in applying these techniques to novel gaits which

@ Springer

<}
Qe ‘I“Q\‘g"?“
»/’v <

00 ';t
00.00

tween the odd and even modules is 7 /4 in sidewinding, rather than
7 /2 for the rolling helix

cannot be described by our single-wave models, and are thus
beyond the scope of our previous design efforts. This work
will include automatic identification of the waveforms de-
scribed by the chain-fit angles, removing the bottleneck of
human intervention present in the current work.

Viewing gaits as surfaces on the joint-number/time space
raises interesting questions about the fundamental nature of
gaits. Many previous gait design efforts can be regarded as
building these surfaces from simple sinusoidal basis func-
tions; are there other useful gaits to be constructed from dif-
ferent or higher-order basis functions? Also, we may be able
to define equivalence classes for gaits based on their sur-
face features that apply across choices of basis functions.
For instance, the general sidewinding definition in Burdick
et al. (1993) admits gaits that cannot be described in joint
space by first order sinusoidal functions; are there shared
features on those gaits’ wave surfaces that link them to-
gether? Further, if those features exist, how do transitions
between equivalence classes in the joint space correspond
to objective changes in the motion of the three-dimensional
backbone?

Acknowledgements We would like to thank Matthew Tesch and
Marissa Jacovich for their input on this work.

References

Andersson, S. B. (2008). Discretization of a continuous curve. /[EEE
Transactions on Robotics, 24(2), 456-461.

Burdick, J., Radford, J., & Chirikjian, G. (1993). A “sidewinding" lo-
comotion gait for hyper-redundant robots. In IEEE international
conference on robotics and automation (ICRA) (Vol. 3, pp. 101-
106).

Chirikjian, G. (1992). Theory and applications of hyper-redundant ro-
botic manipulators. Ph.D. thesis, California Institute of Technol-
ogy.

Auton Robot (2010) 28: 271-281

281

Chirikjian, G., & Burdick, J. (1991). Kinematics of hyper-redundant
locomotion with applications to grasping. In /EEE international
conference on robotics and automation (ICRA).

Goldman, G., & Hong, D. W. (2007). Determination of joint angles for
fitting a serpentine robot to a helical backbone curve. In Interna-
tional conference on ubiquitous robots and ambient intelligence.

Goldman, G., & Hong, D. W. (2008). Considerations for finding the op-
timal design parameters for a novel pole climbing robot. In ASME
mechanisms and robotics conference.

Gonzalez-Gomez, J., Zhang, H., Boemo, E., & Zhang, J. (2006). Lo-
comotion capabilities of a modular robot with eight pitch-yaw-
connecting modules. In 9th international conference on climbing
and walking robots.

Gonzalez-Gomez, J., Zhang, H., & Boemo, E. (2007). Locomotion
principles of 1D topology pitch and pitch-yaw-connecting mod-
ular robots. In Bioinspiration and robotics: walking and climbing
robots. Advanced Robotics Systems International and I-Tech Ed-
ucation and Publishing.

Hatton, R. L., & Choset, H. (2009). Generating gaits for snake ro-
bots by annealed chain fitting and keyframe wave extraction. In
IEEE/RS/J international conference on intelligent robots and sys-
tems (IROS).

Hirose, S. (1993). Biologically inspired robots (snake-like locomotor
and manipulator). Oxford: Oxford University Press.

Ijspeert, A. J. (2008). Central pattern generators for locomotion control
in animals and robotics. Neural Networks, 21, 642—653.

Lipkin, K., Brown, L., Peck, A., Choset, H., Rembisz, J., Gianfortoni,
P., & Naaktgeboren, A. (2007). Differentiable and piecewise dif-
ferentiable gaits for snake robots. In IEEE/RSJ international con-
ference on intelligent robots and systems (IROS), San Diego, CA,
USA (pp. 1864-1869).

Mori, M., & Hirose, S. (2002). Three-dimensional serpentine mo-
tion and lateral rolling by active cord mechanism ACM-R3. In
IEEE/RSJ international conference on intelligent robots and sys-
tems (IROS).

Nelder, J. A., & Mead, R. (1965). A simplex method for function min-
imization. Computer Journal, 7, 308-313.

Nilsson, M. (1998). Why snake robots need torsion-free joints and how
to design them. In /EEE international conference on robotics and
automation (ICRA).

Stakiotakis, M., & Tsakiris, D. (2007). Biomimetic centering for undu-
latory robots. International Journal of Robotics Research, 26(11—
12), 1267-1282.

Tesch, M., Lipkin, K., Brown, I., Hatton, R., Peck, A., Rembisz, J., &
Choset, H. (2009). Parameterized and scripted gaits for modular
snake robots. Advanced Robotics, 23(9), 1131-1158.

Wright, C., Johnson, A., Peck, A., McCord, Z., Naaktgeboren, A.,
Gianfortoni, P., Gonzalez-Rivero, M., Hatton, R., & Choset, H.
(2007). Design of a modular snake robot. In IEEE/RSJ interna-
tional conference on intelligent robots and systems (IROS), San
Diego, CA, USA (pp. 2609-2614).

Yamada, H., & Hirose, S. (2006). Study on the 3D shape of active
cord mechanism. In /EEE international conference on robotics
and automation (ICRA).

Yim, M., Homans, S., & Roufas, K. (2001). Climbing with snake-like
robots. In IFAC workshop on mobile robot technology.

Yu, S., Ma, S., Li, B., & Wang, Y. (2008). Analysis of helical gait
of a snake-like robot. In IEEE/ASME international conference on
advanced intelligent mechatronics.

Zhang, Y., Yim, M., Eldershaw, C., Duff, D., & Roufas, K. (2003a).
Phase automata: a programming model of locomotion gaits for
scalable chain-type modular robots. In IEEE/RSJ international
conference on intelligent robots and systems (IROS).

Zhang, Y., Yim, M., Eldershaw, C., Duff, D., & Roufas, K. (2003b).
Scalable and reconfigurable configurations and locomotion gaits

for chain-type modular reconfigurable robots. In /IEEE sympo-
sium on computational intelligence in robotics and automation
(CIRA).

Ross L. Hatton received an SB in
Mechanical Engineering from the
Massachusetts Institute of Technol-
ogy in 2005 and a MS in the same
from Carnegie Mellon University in
2007. He is currently a PhD student
in Robotics and Mechanical Engi-
neering at Carnegie Mellon Univer-
sity. His research focuses on under-
standing the fundamental mechan-
ics of locomotion and on finding ab-
stractions that facilitate human con-
trol of unconventional locomotors.

Howie Choset is an Associate Pro-
fessor of Robotics at Carnegie Mel-
lon University, where he conducts
research in path planning, motion
planning, estimation, mechanism
design and hybrid controls. Much of
this work has two foci: snake robots
for search and rescue, manufactur-
ing and medical robotics, and cov-
erage for demining and autobody
painting. He directs the Undergrad-
| uate Robotics Minor at Carnegie
Mellon University and teaches an
overview course on Robotics which
uses series of custom developed
Lego Labs to complement the course work. His students have won
Best Paper awards at the RIA in 1999 and ICRA in 2003, he has been
nominated for Best Papers at ICRA in 1997 and IROS in 2003 and
2007, and won Best Paper at IEEE Bio Rob in 2006. In 2002 the MIT
Technology Review elected him as one of its top 100 innovators in
the world under 35. In 2005, MIT Press published a textbook, lead
authored by him, entitled Principles of Robot Motion.

@ Springer

	Generating gaits for snake robots: annealed chain fitting and keyframe wave extraction
	Abstract
	Introduction
	Background
	Gait design for modsnake robots
	Annealed chain fitting
	Backbone curves
	Fitting algorithm
	Boundary conditions
	Summary of annealed chain fitting

	Keyframe wave extraction
	Experiments
	Rolling in an arc
	Rolling in a helix
	Rolling in an "S"
	Sidewinding

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

