
HUMAN ACTION CLASSIFICATION USING 3-D

CONVOLUTIONAL NEURAL NETWORK

Deepak Pathak - 10222
Kaustubh Tapi - 10346

Mentor : Dr. Amitabha Mukerjee
Dept. of Computer Science and Engineering

IIT Kanpur

{deepakp,ktapi,amit} @ iitk.ac.in

April 15, 2012

Abstract

Our objective is to implement human action recognition in video streams through
learning models. In this paper, we propose 3D convolution neural network model which
can learn spatio-temporal features and classify human actions without any prior knowl-
edge. Experimental results obtained on applying 3-D CNN over Weizmann dataset
containing ten classifications gives comparable accuracy with recent research in this
field.

1 Introduction

Action classification has always been an active area of research in computer science but
its main approaches are using image processing which use manually engineered motions
and texture descriptors calculated around STIPs (spatio-temporal interest points). In real-
world scenarios like intelligent video surveillance, customer attributes, shopping behaviour
analysis etc., the choice of feature is highly problem-dependent and it is rarely known which
features are important for the task at hand.

We developed our 3D CNN model based on the idea explained by M. Baccouche [1]. In
this project, we look at this problem using neural networks which automatically build high

1



level representation of raw input without any pre-processing. As deep learning models,
Convolutional Neural Network (CNN) architecture have been applied on 2-D images and
they have yielded very competitive performance in many image processing tasks, but their
application in video stream classification is still an open and unexplored area. In our project,
we successfully applied CNNs in 3-D to effectively incorporate action/motion classification
in video analysis. We extended the 2-D CNN algorithm applied on MNIST image database
[Mike O’ Neill implementation1] of handwritten digits to 3-D CNN where third dimension
corresponds to time frames. We propose to perform 3D convolution in the convolutional
layers of CNNs so that discriminative features along both spatial and temporal dimensions
are captured.

We evaluated the developed 3D CNN model on the Weizmann Dataset containing human
action video dataset of ten classifications and it achieved a reasonably good accuracy and
competitive performance without depending on manually engineered features demonstrating
that 3-D CNN model is more effective for real world environments.

2 Convolution Neural network (2-D)

Convolutional neural networks are also known as ”shared weight” neural networks intro-
duced by LeCun [2]. ConvNets are the adaptation of multilayered neural deep architectures
to deal with real world data.

This is done by the use of local receptive fields (better known as kernels) whose parameters
are forced to be identical for all its possible locations of input array, a principle called weight
sharing. The idea is that a small kernel window is moved over each node from a prior layer.
In the CNN architecture, the sharing of weights over processing units reduces the number
of free variables, increasing the generalization performance of the network. Weights are
replicated over the input image, leading to intrinsic insensitivity to translations in the
input.

A typical convolution framework is shown in Figure-1. Multiple planes are usually used
in each layer (called Features maps (FMs)) so that multiple features can be detected. These
layers are called convolutional layers. The network is trained with the usual backpropagation
gradient-descent procedure. 2-D CNNs are applied on image dataset to classify them and
extract spatio features.

1Refer: http://www.codeproject.com/Articles/16650/Neural-Network-for-Recognition-of-Handwritten-
Digi

2



Calculation of the 1st output pixel Calculation of the 2nd output pixel

Figure-1: Image showing convolution on one Feature Map with (2x2) Kernel.
[CREDIT: Ishtiaq Rasool Khan’s2 implementation of 2-D CNN]

3 Spatio-temporal feature extraction using 3D Conv Nets

In 2D CNNs, convolutions are applied on the 2D feature maps to compute features from
the spatial dimensions only. But for human action recognition in videos along with spatial
features it is also desirable to capture the motion information encoded in multiple contiguous
frames. To effectively incorporate the motion information in video analysis, we propose to
perform 3D convolution in the convolutional layers of CNNs so that discriminative features
along both spatial and temporal dimensions are captured. 3D convolution is achieved by
convolving a 3D kernel to the cube formed by stacking multiple contiguous frames together.
By this construction, the Feature-maps in the convolution layer are connected to multiple
contiguous frames in the previous layer, thereby capturing motion information.

A 3D convolutional kernel can only extract one type of features from the frame cube,
since the kernel weights are replicated across the entire cube. A general design principle of
CNNs is that the number of feature maps should be increased in late layers by generating
multiple types of features from the same set of lower-level feature maps. Similar to the case

2Available at : http://www1.i2r.a-star.edu.sg/ irkhan/conn1.html

3



of 2D convolution, this can be achieved by applying multiple 3D convolutions with distinct
kernels to the same location in the previous layer.

Now we describe the architecture of 3-D CNN we developed for human action recognition
on WEIZMANN Dataset [4].

Figure-2: Structure of 3-D CNN constructed by us for Weizmann Dataset.

Our CNN architecture constructed for Weizmann dataset : In this architecture
we consider 13 consecutive frames of size 64 x 48 as input to the 3-D CNN (input is [64
x 48 x 13] array). Our architecture consists of six layers including the input layer. After
Input layer, next two layers are Convolution layers (C1 and C2) in which each layer involves
two steps i.e. convolution followed by sub-sampling. This is followed by a 3rd convolution
layer (C3) where no sub-sampling takes place (sub-sampling factor=1). This is further
followed by two neuron layers (N1 and N2) containing the output layer. The last three
layers are fully-connected layers with sub-sampling factor as unity. First convolution layer
C1 consists of 7 feature maps of size 29 x 21 x 7(29 x 21 in spatial dimensions and 7 in
temporal dimension). This layer is obtained by applying 7 different 3D kernels of size (7 x 7

4



x 7) followed by sub-sampling of factor 2. Sub-sampling makes our model resistant to small
spatial distortions. As a result of this, the subsequent layers perform pattern recognition
at progressively larger spatial scales, with lower resolution. Thus a CNN with several sub-
sampling layers enables processing of large inputs, with relatively few free weights. Second
convolution layer C2 consists of 50 feature maps of size 12 x 8 x 3. This layer is obtained by
applying 3D kernels of size 7x7x5 followed by sub-sampling of factor 2. Third Convolution
layer C3 consists of 10 feature maps of size 8 x 4 x 1 obtained by applying 3D kernels of
size 5x5x3 on layer C2. At this stage by applying multiple stages of convolution and sub-
sampling we are able to extract spatio - temporal features from the input. 13 consecutive
input frames have been converted into a 320D ((8x4x1) x 10) feature vector capturing the
motion information in the input frames after all the convolutional layers. Now the neuron
layers (N1 and N2) act as a classical Multilayer perceptron classifier on the 320D input.
Layer N1 consists of 100 nodes of size 1 x 1 and last layer N2 (output layer) consists of
10 nodes corresponding to different actions. We have used back-propagation algorithm for
training the model.

Comparison with M. Baccouche’s [1] architecture : Our CNN architecture is
deeper and extensive than the one proposed by M. Baccouche [1] for KTH dataset. The
number of feature maps in each layer in our construction is larger than their construction.
The number of feature maps in each layer in their architecture are 7,35,5,50 and 6 in layers
C1,C2,C3,N1,N2 respectively. Moreover, the kernel sizes in our architecture are larger as
we deal with larger fearure maps as compared to their architecture.
Also, we have trained our 3-D CNN model using back-propagation with hessian learning to
reduce the number of epochs required for the weights to converge. Our model operates on
larger input size (64X48X13) as compared to (34X54X9).

When input data is normalized, then the performance is significantly improved after each
convolution. Generally, the activation(normalisation) function should be symmetric, and
the neural network should be trained to a value that is lower than the limits of the function.
We have used the hyperbolic tangent as the activation function instead of classical sigmoid
function.

x=F(y)=tanh(y)

5



This function is a good choice because it’s completely symmetric, as shown in the graph.
The activation function used in the code is a scaled version of the hyperbolic tangent.
Scaling causes the function to vary between ±1.7159, and permits us to train the network
to values of ±1.0.

4 Learning through Back-propagation

Our 3D Convolution model learns by standard back-propagation. Back-propagation is
an iterative process that starts with the last layer and moves backwards through the layers
until the first layer is reached. Assume that for each layer, we know the error in the output
of the layer. If we know the error of the output, then it is not hard to calculate changes for
the weights, so as to reduce that error. The problem is that we can only observe the error
in the output of the very last layer.

Back-propagation gives us a way to determine the error in the output of a prior layer
given the output of a current layer. The process is therefore iterative: start at the last layer
and calculate the change in the weights for the last layer. Then calculate the error in the
output of the prior layer.

EA
n = 1

2 .
∑

(xin − T i
n)2 (equation [i])

EA
n is the error due to a single action A at the last layer n;

6



xin is the target output at the last layer (i.e., the desired output at the last layer); and

T i
n is the actual value of the output at the last layer.

Given equation [i], then taking the partial derivative yields:

dEA
n

dxi
n

= xin − T i
n (equation [ii])

We use the numeric values for the quantities on the right side of equation [ii] in order to
calculate numeric values for the derivative. Using the numeric values of the derivative, we
calculate the numeric values for the changes in the weights, by applying the following two
equations [iii] and then [iv]:

dEA
n

dyin
= G(xin) . dEA

n
dxi

n
(equation [iii])

where G(xin) is the derivative of the activation function.

dEA
n

dwij
n

= xjn−1 . dEA
n

dyin
(equation [iv])

Then, using equation [ii] again and also equation [iii], we calculate the error for the previous
layer, using the following equation [v]:

dEA
n−1

dxk
n−1

=
∑

iw
ik
n . dEA

n
dyin

(equation [v])

Now take the numeric values obtained from equation [v], and use them in a repetition of
equations [iii], [iv] and [v] for the immediately preceding layer. Now update the value of
each weight in current layer n according to the formula:

(wij
n )new = (wij

n )old - eta.(dE
A
n

dwij
n

) (equation [vi])

7



where eta is the “learning rate”.

The learning rate is slowly decreased during training, as the neural network learns, so as
to allow the weights to converge to some final value. At present, we start with a learning
rate of 0.0005 and multiply the current learning rate by a factor of half, which results in a
continuously decreasing learning rate.

In his “Efficient BackProp” article, Dr. LeCun [5] proposes a second order technique
that he calls the “stochastic diagonal Levenberg-Marquardt method”. According to his
comparisons, he concludes that for stochastic diagonal Levenberg-Marquardt] convergence
is about three times faster than a carefully tuned stochastic gradient algorithm. So in
keeping with the advice our model implements this technique through propagating second
order derivative (Hessian matrix) for maximised error. After implementing Diagonal Hessian
approach, number of epochs required for weights to converge has reduced considerably.

5 Implementation details

The implementation of the project involves use of matlab and C++. Initially implemen-
tation in matlab involves getting frames out of video dataset then applying bounding box
algorithm 3 on each frame i.e. focussing on the area of interest in each frame which is basi-
cally surrounding the person in Weizmann dataset. The background is then subtracted to
obtain silhouetted dataset of frames. These pixel values of all the frames per video are then
written into different text files in order to maintain randomness in training and testing.

Now 3-D Convolutional neural network is implemented in C++. The code is basically
implemented in command line which automatically reads input values from the text files.
After each epoch , individual weights of all kernels are saved into a text file and they get
automatically updated after training over each epoch. This implementation is generalised
one in which we can easily vary the number of feature maps in each layer and number of
layers. Moreover this implementation can be evaluated on any dataset with some minor
changes.

6 Experiment on Weizmann dataset

3Refer: Ankit Gupta - http://sites.google.com/site/ankit0370/

8



We trained and tested the extended 3-D CNN on the standard WEIZMANN dataset
[4]. It contains 90 video clips from 9 different subjects. Again, each video clip contains
one subject performing a single action. There are 10 different action categories: walking,
running, jumping, gallop sideways, bending, one-hand-waving, two-hands waving, jumping
in place, jumping jack, and skipping. This dataset is then divided into total 226 sub-
sequences containing 10 actions performed by different persons in different context. We
applied cross-validation on this dataset with training over 181 sequences and testing over
45 sequences containing all the classifications.

Now each subsequence is passed as sequence of 13 frames (64 x 48 x 13 as input) with
12 frame overlap. In this way, 3-D ConvNet is trained to extract spatio-temporal features
even for partial actions i.e. any continuous sequence of frames which is multiple of 13.

Figure-3: Different Actions performed in the Weizmann Dataset
[CREDIT: WEIZMANN dataset4[4]]

Experimental Results

The 3-D CNN model is trained over training dataset for several epochs. The weights
appeared to converge after 18 epochs, after which the accuracy became almost constant.
The variation of error with number of epochs is depicted in the following graph.

4Available at: http://www.wisdom.weizmann.ac.il/ vision/SpaceTimeActions.html

9



Figure-4: Graph showing variation of error v/s no. of epochs trained.

Dataset Config1 Config2 Config3 Config4 Average(%)

Weizmann 91.11 88.8 93.3 91.11 91.07
Table : Summary of Results for different configurations

Fully trained 3D Convolutional Neural Network when tested on WEIZMANN Dataset(divided
into 181 training videos and 45 testing videos) gives an accuracy of 91.07% for 10 classifi-
cations.

Dataset on which accuracy measured Accuracy(%)

Accuracy over videos(Voting) 91.07

Accuracy over subsequences of 13 consecutive frames 88.26

These results are comparable to the model proposed in M. Baccouche [1] which was evauated
on KTH dataset containing 6 classifications with accuracy of 91.04%.

Confusion matrix

Confusion Matrix depicting the mis-classifications has been shown in following table-

10



Recognized Bend Jack Jump Pjump Run Side Skip Walk Wave1 Wave2

Actual

Bend 2 0 0 0 0 0 0 0 0 0

Jack 0 4 0 0 0 0 0 0 0 0

Jump 0 1 6 0 0 0 0 0 0 0

Pjump 0 0 0 7 0 0 0 0 0 0

Run 0 0 0 0 3 0 0 0 0 0

Side 0 0 0 0 0 4 0 0 0 0

Skip 0 0 0 0 0 0 6 0 0 0

Walk 0 0 0 0 0 0 0 4 0 0

Wave1 0 0 0 0 0 0 0 0 4 0

Wave2 0 1 0 2 0 0 0 0 0 1

Confusion matrix: Rows correspond to actual action(label) and columns correspond to the
action recognized.

7 Conclusion

We developed a 3D CNN model for human action recognition on WEIZMANN Dataset.
Our model learns and extracts both spatial and temporal features by performing 3D con-
volutions. The developed deep architecture extracts multiple channels of information from
adjacent input frames and then performs convolution and sub-sampling separately in each
channel. The final feature representation is computed by combining information from all
channels. We use Multilayer Perceptron classifier to classify these feature representations.
According to M. Baccouche [1], learned feature maps in 3-D CNN seem to capture visually
relevant information (person/background segmentation, limbs involved during the action,
edge information. . . ).
This fully automated learning model produces accuracy that is comparable to the recent
works in this field.

8 Further Work

In future we would like to use LSTM (Long Short Term Memory) as a classifier for
the spatio-temporal features extracted from the 3D Convolution .To improve the accuracy,
neuron layer N1 can be replaced with one layer of LSTM (Long Short Term Memory) blocks
between layer C3 and N2(output) layer. The main challenge in doing this is incorporating
a single learning algorithm for both Convolution and LSTM. We would also like to test our

11



model on more recent datasets like- YouTube Action Dataset, Hollywood-2 Dataset and
LIRIS Human Dataset.

References

[1] Baccouche M., Mamalet F., Wolf C., Garcia C., Baskurt A. : “Sequential Deep Learn-
ing for Human Action Recognition”. In : Salah A.A., Lepri B. (eds.) HBU 2011. LNCS,
vol. 7065, pp. 2939. Springer, Heidelberg [2011].

[2] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-based learning applied to doc-
ument recognition” Proceedings of the IEEE, v. 86, pp. 2278-2324, [1998].

[3] S. Ji, W. Xu, M. Yang, and K. Yu. “3D convolutional neural networks for human action
recognition”. In ICML, 3362, 3366 [2010].

[4] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri. Actions as space-time
shapes. PAMI, 29(12):22472253, December [2007].

[5] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Muller. “Efficient backprop”. In G. B. Orr
and K.-R. Muller, editors, Neural Networks: Tricks of the Trade, pages 950. Springer-
Verlag, [1998].

12


