ARTIFICIAL INTELLIGENCE Edge Matching Puzzle

Anirudha Sahu Gangaprasad Koturwar

Mentor- Prof. Amit Mukherjee

Indian Institute of technology, Kanpur

April 4, 2012

The Puzzle and the Challenge

- Published by Christopher Monckton.
- Released on July 2007.
- Offers \$ 2M for the first completed solution to the puzzle.
- No complete solution has been provided yet!!!
- Further details at http://www.eternity-puzzle.com/

Puzzle Overview

- Consists of 256 tiles.
- Each tile is colored with 4 different patterns.
- Tiles are to be placed on a 16X16 grid such that the edges of the adjecent tiles should match.

- Huge search space (256!X4²⁵⁶ i.e. 1.15X10⁶⁶¹ possibilities.)
- Recursive construction of the solution consumes lot of time.
- Problem of Recursive back-tracking.
- Effective branching factor for A* algorithm is about 381. compared to chess which has only about 100.
- No efficient algorithm can be designed NP completeness.
- Succesful attempts have matched as much as 396 to 459 edges out of 480.

Doc Smiths C++ solver

- Uses recursive Back-Tracking algorithm
 - Looks for suitable tile to be placed.
 - If not found, Removes last placement and repeats.

Joel's JAVA implementation

• Uses same algorithm as Doc smith's solver Results:(When run on a dual core 2.00Ghz Intel with 1 GB of RAM)

Code	6X6	8X8	10X10
	891msec	91mins	10+hrs
	790msec	107mins	10+hrs

Munoz's Evolutionary Algorithm

 transformed the constraints into optimization objectives and used the optimization power of Genetic Algorithms

Doc Smiths C++ solver

- Uses recursive Back-Tracking algorithm
 - Looks for suitable tile to be placed.
 - If not found, Removes last placement and repeats.

Joel's JAVA implementation

• Uses same algorithm as Doc smith's solver

Cesults:(When run on a dual core 2.00Ghz Intel with 1 GB of RAM)

Code	6X6	8X8	10X10
	891msec	91mins	10+hrs
	790msec	107mins	10+hrs

Munoz's Evolutionary Algorithm

 transformed the constraints into optimization objectives and used the optimization power of Genetic Algorithms

Doc Smiths C++ solver

- Uses recursive Back-Tracking algorithm
 - Looks for suitable tile to be placed.
 - If not found, Removes last placement and repeats.

Joel's JAVA implementation

• Uses same algorithm as Doc smith's solver

Results: (When run on a dual core 2.00Ghz Intel with 1 GB of RAM)

Code	6X6	8X8	10X10
Doc Smith	891msec	91mins	10+hrs
Joel	790msec	107mins	10+hrs

Munoz's Evolutionary Algorithm

 transformed the constraints into optimization objectives and used the optimization power of Genetic Algorithms

Doc Smiths C++ solver

- Uses recursive Back-Tracking algorithm
 - Looks for suitable tile to be placed.
 - If not found, Removes last placement and repeats.

Joel's JAVA implementation

• Uses same algorithm as Doc smith's solver

Results: (When run on a dual core 2.00Ghz Intel with 1 GB of RAM)

Code	6X6	8X8	10X10
Doc Smith	891msec	91mins	10+hrs
Joel	790msec	107mins	10+hrs

Munoz's Evolutionary Algorithm

 transformed the constraints into optimization objectives and used the optimization power of Genetic Algorithms

The Genetic Algorithm

¹ Simulation of the process of evolution on Earth. Steps Involved: Initialization

• Creating bunch of "organisms" with unique set of "genes" i.e. generating a "generation".

Simulation:

- Every organism is alloted fitness value depending on some criterion.
- Best orgnisms from the generation chosen depending on fitness value.
- Mutation, Crossover, Reproduction.
- Next generation of organisms created.
- Search for the Perfect organism
 - -If found Return;
 - -if not found Continue;

¹courtesy: http://www-cs-students.stanford.edu/ jl/Essays/ga.html

Tile Representation:

• Colour of the edge of the tile is replaced with specific numbers notations.

Applying Genetic algorithm

Tile Representation:

Rotations of tiles			
	Orientation	Rotation(clockwise)	
	1	original	
	2	90 <i>°</i>	
	3	180°	
	4	270°	

Example:

Terminologies:

• Individuals

Represented as 2D matrix with each entry as tile number and its orientation.

For ex 113:3 represents tile no 113 with rotation 3.

- Retains the properties just like genes in chromosomes.
- Properties like fitness are associated with Individuals.

• Generation

A set of certain number of individuals.

- Crossover, mutation, Elitism applied on one generation to get next one.

• Crossover

Copying of the propeties of two parent individuals into the offspring.

• Mutation

Propeties of the individual are modified to create better offspring.

Mutation can be carried out by rotating, swapping etc.

• Elitism

A certain no of best individuals are selected to retain their properties as it is for next generation.

• Fitness

The property of the individual to be optimized.

Normal Fitness: $1 - \left(\frac{score}{480}\right)$

in case of multiple objectives:

Combined Fitness:
$$1 - \left(\frac{1}{k} \sum_{i=1}^{k} \frac{\text{objective}_i}{\text{Maxobjective}_i}\right)$$

where k is number of objectives

Results: Previous Works

 $^2 \mbox{courtesy:}$ Paper in "Evolutionary Genetic Algorithms in a Constraint Satisfaction Problem: Puzzle Eternity II"

Anirudha Sahu Gangaprasad Koturwar

2

April 4, 2012 13 / 16

- Problem of incompleteness Problem of Local maxima.
- optimization of the Genetic operations.
- Fitness Criteria.
- Selection criteria.

Results

Evaluatons	Elitism	Crossover	Mutation	BestFitness
100000000	10	179	50	292
10000000	10	179	50	273
1000000	0	1	0	48
1000000	0	0	1	90
1000000	1	0	0	NoCompl
1000000	1	1	0	159
1000000	1	1	1	262
1000000	1	1	2	268
1000000	1	2	1	254
1000000	2	1	1	257
100000	10	14	12	10
10	2	2	10	1
10000	2	2	10	2

• Evolutionary Genetic Algorithms in a Constraint Satisfaction Problem: Puzzle Eternity II

by "Jorge Munoz, German Gutierrez, and Araceli Sanchis", University Carlos III of Madrid Avda. de la Universidad 30, 28911 Legan's, Spain (2009)

• Solving the Eternity II Puzzle Using Evolutionary Computing Techniques

(A thesis) by "Papa Ousmane Niang", Concordia University, Montreal, Quebec, Canada (2010)

• Codes of Jorge Munoz

Codes that used for paper "Evolutionary Genetic Algorithms in a Constraint Satisfaction Problem: Puzzle Eternity II"

