
PROJECT - REPORT

CS365

Artificial Intelligence

Genetic Algorithm for Edge matching puzzles

INSTRUCTOR: Amitabh Mukherjee

Group S4

Aniruddha Kumar Sahu

Gangaprasad Koturwar

1



Abstract

Edge Matching puzzles are ancient puzzles and were put forth to the world as challenge in
2007 by Christopher Monckton. The puzzle was modified and was published under the name
Eternity. The puzzle attracted programmers and mathematicians owing to its huge search
space and the NP completeness of the problem. No complete solution has been provided to
the puzzle yet and thus the puzzle still continues to be the challenge.

Further details regarding this challenge can be found at: [Eternity-Puzzle.com] 1

Through this project under Artificial Intelligence we are trying to apply Genetic Algorithm
to solve the puzzle. The results when compared to other successful algorithms are poor but
they can be improved to a greater extent.

PUZZLE OVERVIEW: The puzzle consists of 256 tiles, each tile(fig 1) colored with
different colors out of color patterns provided.

fig 1. A tile in the puzzle 2

Each tile has its edges colored with different colors from the color patterns(fig 2) pro-
vided(consists of 23 colors). The puzzle has been developed by taking care that no two tiles
will have all their edge patterns matching.

1http://www.eternity-puzzle.com
2Courtesy: Papa Ousmane Niang’s paper

2

http://www.eternity-puzzle.com


fig 2. Patterns used in puzzle 3

Tiles are to be placed on a 16X16 grid. The constraint to be followed in placing tiles is to
make sure the matching edges of the adjecent tiles should match w.r.t the color they represent.
Thus in case of 16X16 grid there can be maximum of the 480 edges to be matched. Apart
from the color pattern discussed above a particular color(grey in this case) is reserved for the
boundry tiles. Each entering tile can adapt any of the 4 orientation owing to its rotation. i.e
once the tile is chosen there are further 4 choices regarding the placement.

The puzzle can be better understood if smaller versions of the same are considered. This
puzzle can be viewed as 2X2 and also in 4X4 versions. In case of 2X2 there can be maximum
of 4 edge matches and 24 in case of 4X4. A general formula for maximum edge matches of nXn
puzzle is:

(E.M)max = 2n(n− 1)

The main challenge of the problem is its huge search space. If all the possibilities are con-
sidered while placing the tiles the total no of possibilities in case of 2X2 turns out to be 4! in
chosing the tile and further 4 choices for each chosen tile i.e. 4!X44 or 6144. The similar cal-
culation for 8X8 gives 64!X464 possibilities!!! And the value increases rapidly in case of 16X16
which is (256!X4256) turns out to be of the order 10665. Which makes all the search algorithms
less effective in solving the puzzle.

RECURSIVE BACKTRACKING ALGORITHM: This is the most primary attempt
in searching the solution. It builds the grid through piece by piece construction of the grid.
The algorithm follows the following steps:

3Courtesy: Papa Ousmane Niang’s paper (Figure 1)

3



1. Initialize by placing a random tile on grid

at any point of buiding solution,

2. Search for the suitable tile to be placed

- If found place then,

place the tile;

- If not found then,

remove last placement and search for another alternative;

3. Continue the procedure untill whole grid is filled

Recursive Backtracking Algorithm

The algorithm is very promising to provide the solution and meets the requirements in
smaller versions of the puzzle. The drawback of the program is its recursive backtracking.
As the size of search space increases program takes lots of time. Results from the previous
attempts shows the time taken to solve the puzzle:

Code 6X6 8X8 10X10

Doc Smith 891msec 91mins 10+hrs

Joel 790msec 107mins 10+hrs

Table 1 Results comparison

Doc smiths code is written in C++ and Joels code uses the same algorithm but imple-
mented using JAVA. The same code when tried for 16X16 takes several days to show reasonable
progress.
Further details regarding these implementations can be found at: www.grokcode.com 4

GENETIC ALGORITHM: The evolutionary algorithm which primarily works similar to
the evolution process on earth. As a very rapid overview to the algorithm, the algorithm works
as follows:

4http://www.grokcode.com/10/e2-the-np-complete-kids-game-with-the-2-million-prize/

4

http://www.grokcode.com/10/e2-the-np-complete-kids-game-with-the-2-million-prize/


A population is created by creating a group of individuals randomly. The individuals in the
population are then evaluated based on their fitness which is defined by the user. The fitness
function gives the individuals a score based on how well they can perform at the given task.
Two individuals are then selected based on their fitness, the higher the fitness, the higher the
chance of being selected. These individuals then ”reproduce” to create one or more offspring,
after which the offspring are mutated randomly. This continues until a suitable solution has
been found or a certain number of generations have passed, depending on the needs of the
programmer.

Detailed discussion for the same can be found at: Genetic Algorithm Overview 5

• Terminologies:

– Individual

Any possible solution to the problem is represented as Individuals in the evolutionary
system. The Individual which meets the requirements of the solution is called the best
individual and is returned as solution.
Individuals in case of Eternity II can be represented as all possible grid fillings.
For ex:

fig. 3 Individual representation for Eternity II.
5http://geneticalgorithms.ai-depot.com/Tutorial/Overview.html

5

http://geneticalgorithms.ai-depot.com/Tutorial/Overview.html


Here the entries shows the tile no and orientation. for ex 33:4 represents tile no 33
placed with 270o clockwise rotation.

– Population

The group of all the Individuals add up to create a population. Population is total no
of all the Individuals in each generation.

– Chromosomes

The blue-print of each Individuals stores the various properties. These serves the sim-
ilar purpose served by chromosomes.

– Genes

The various properties of Individuals are stored as genes.

– Fitness

The fitness function indirectly gives the surviving probability of the individual, and is
totally dependent on the intended solution.
Fitness for the individuals can be related with the no. of edge matches. Exact function
for the same is

Fitness = 1- no of edge matches
max no of edge matches

• The Operations:

The various evolutionary operations are used to create a new generation with better surviv-
ing abilities(fitness) to reach the perfect individual faster. These operations are discussed
below.

– Selection

The individuals are selected from the population to apply different operations to create
new generations. The selection is mostly done on the basis of fitness values. i.e. the
individuels with higher fitness has higher probability of getting selected.

– Crossover

Two parents are selected through selection and then the child is created by passing
some properties of one parent and remaining from the other. Refer fig 3.

6



fig. 3 The crossover operation 6

The same has been implemented for the puzzle as follows:
Two parents are selected (the ones with best fitness) then randomly two regions are
chosen in two randomly selected points among the parents. Here region is defined as
some area mXn tiles, (where m and n are parameters of selected rectangular area).
Then by exchanging region parents generate two offsprings(children) with new genetic
material, but preserve the overall composition of parents.

The steps involved in Crossover operations can be found in 4.6 section of

[Niangs paper] 7

– Mutation

A parent is selected and is allowed to undergo certain property changes internally to
create fitter child. Refer fig 4.

In case of the puzzle this operation has been implemented as follows:
Two type of mutation are performed, (a) Rotate region Mutation and (b) Swap Muta-
tion.
(a) Rotate region Mutation operator, rotates any randomly selected region containing
NxN tiles(where N could be one or more than one) in any possible angles(90, 180, 270
degree)

6Courtesy: Papa Ousmane Niang’s paper (Figure 22)
7Paper can be found: http://home.iitk.ac.in/~anirkus/cs365/projects/p4.pdf

7

http://www.cse.iitk.ac.in/users/cs365/2012/submissions/anirkus/cs365/projects/p4.pdf


fig. 4 The Rotate-Mutation Operation 8

(b) Swap Mutaion operator, exchanges two randomly regions(again, can be of random
size) from same board(parent)

fig. 5 The Swap-Mutation Operation 9

The steps involved in Mutation operations can be found in 4.5 section of [Niangs paper]

– Elitism

During each generation few of the top best fit individuals are selected to retain their
properties as it is for the next generation.

– Evaluations

The total no of individuals formed is basically the evaluations. It can be used as stop-
ping criterion in case best individual is not found.

8Courtesy: Papa Ousmane Niang’s paper (Figure 17)
9Courtesy: Papa Ousmane Niang’s paper (Figure 15)

8



• Algorithm

1. Initialize by creating a random group of Individuals

at any point of creating new generation,

2. Search for the best individual

- If found then,

return;

- If not found then,

continue;

3. Evaluate the fitness of the each Individual

4. Do operations

Crossover, Mutation, Elitism etc

5. Generate the new generation

6. Repeat

Genetic Algorithm

• Implementation

The code has been implemented in C++. We are using the code by Jorge Munoz with
above mentioned implementations.
The code requires little more efforts to run, as the readme file is somewhat misleading.
But code can be used to implement all the necessary parameters.

The details regarding code:[Jorge Munoz paper] 10

10Code can be found on: http://www.caos.inf.uc3m.es/~jorge/papers.php?lang=en#a2009

9

http://www.caos.inf.uc3m.es/~jorge/papers.php?lang=en#a2009


– Results:

The evolutionary operations play a vital role in achieving the solution. These opera-
tions independently try to increase the fitness of the new generation. The code takes
many parameters and runs accordingly. User is supposed to provide the rates of dif-
ferent evolutionary operations. The optimization of these rates can be carried out to
improve the results.
The parameter values are read as relative to each other. For ex, {elitism rate:10,mutation
rate:50,crossover rate:10} makes population ∗ 10

10+50+10
individuals to be retained for

the next generation as elite individuals. Similarly the no of individuals undergoing
crossover,mutation can also be calculated.
The following graph shows the no of successful edge matches for different parameters:

fig. 6 Score-Evaluations graph

The graph shows the various scores achieved by altering the evolutionary operations.
There cant be a definite answer for best set of rates of these operations, but the trend
can be learnt through sufficient number of experiments. The Experiments we carried
showed the above results. (These are the best of the certain number of trials carried
for each category)

10



From the graph it is clear that the operations apllied individually give poor results but
the simulteneous operations improves the result to a larger extent.

code takes too much time to give the output in case of higher evaluation limits. The
best result achieved through this code had matched 391 edges out of 480. i.e. the
fitness value of 0.185416667. We were able to reach 292 (fitness 0.391666667) in much
lesser number of evaluations, which we couldnt test for higher number of evaluations
due to the time it takes and system gets hung in between.

The following image shows the individual with 292 matched edges.

fig. 7 The individual with 292 edge matches. 11

– Drawbacks and future progress:

The algorithm works fairly well for completely unorganized search space and can be
applied in all the cases where other algorithms fail. But the implementation used in the
code leads the process to get stuck in the local maxima. This is very serious problem in
this code and can be realised by codes failure to solve lower order puzzles like 2X2(gets
stuck at 0.5 fitness) and 4X4(0.333 fitness). This can be avoided by using adaptive
operations. As the algorithm proceeds crossover starts having negative impact on the
fitness of the individual, and focused mutation operation can be used to parse the local
maxima. Code is too complex to understand and to carry out these modifications but
the experiments supports this.

11Its original problem Tile is on: http://home.iitk.ac.in/~anirkus/cs365/projects/Tiles.txt

11

http://www.cse.iitk.ac.in/users/cs365/2012/submissions/anirkus/cs365/projects/Tiles.txt


fig. 8 The growth of best individual and problem of local maxima

Apart from this the fitness criteria used primarily focuses on just the no of matched
edges. If a fitness function which depends upon some useful patterns along with the
existing criteria(i.e. Multi objective approach would be more favourable). Also the
tournament selection criteria has been deliberately adapted to avoid extra complexity.
A better selection operation which not only focuses on certain of the best but the whole
population can be introduced.

• The best score:

The best score till date was achieved by using Tabu search algorithm. Roughly the working
of the Tabu Search is as follows:
The algorithm initializes by creating a random solution. During each iteration, different
solutions are formed by some standard procedure. All the solution leading to lowering in
the previous result are discarded and others are made to undergo different solution form-
ings. The ruling out of the weak solution provides this method the required upper edge in
problem of local maxima. This method could match as much as 418 edges in 478,196,791
evaluations. The overall best solution had 467 matched edges which also basically used
this algorithm.

Details can be found in [Wei-Sin Wang and Tsung-Che Chiang paper] 12

12Paper can be found: http://home.iitk.ac.in/~anirkus/cs365/projects/p5.pdf

12

http://www.cse.iitk.ac.in/users/cs365/2012/submissions/anirkus/cs365/projects/p5.pdf


• References:

1. Evolutionary Genetic Algorithms in a Constraint Satisfaction Problem: Puzzle Eternity-
II
by ”Jorge Munoz, German Gutierrez, and Araceli Sanchis”, University Carlos III of Madrid Avda. de la Universidad 30, 28911

Legan’s, Spain (2009)

2. Solving the Eternity-II Puzzle Using Evolutionary Computing Techniques
(A thesis) by ”Papa Ousmane Niang”, Concordia University, Montreal, Quebec, Canada (2010)

3. Solving Eternity-II puzzles with a tabu search algorithm
by Wei-Sin Wang and Tsung-Che Chiang, National Taiwan Normal University,Taiwan, R.O.C.(2010)

4. Eternity II puzzle - Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Eternity_II_puzzle

5. Codes of Jorge Munoz
Codes that used for paper ”Evolutionary Genetic Algorithms in a Constraint Satisfaction Problem: Puzzle Eternity II”

13

http://en.wikipedia.org/wiki/Eternity_II_puzzle

