
Unsupervised Morphological Analysis of Hindi

Aditi Krishn

Rabi Shanker Guha

Prof. Amitabh Mukherjee

CS365: Introduction to Artificial Intelligence, Course Project

Department of Computer Science and Engineering, IIT Kanpur

Morphological Analysis has been an active area of research in Natural Language Processing.

Morphology aims at deriving the structure of a language by exploring word structure. A major
breakthrough in this field was Goldsmith's paper 'Linguistica: An Automatic Morphological Analyser'

in 2000 which takes an unsupervised approach to learning morphology and hence has widespread

application because of its language independency. Since this paper was published, there has been
active research in this field and attempts have been made to include phonological rules in the

language structure [1]. In this project we have explored Linguistica and extended it to include those

cases where even the root morpheme changes in morphological variants.

Introduction

Under this project we are trying to develop

an unsupervised program that learns the

structure of words in any human language

on the basis of the data fed to it, taking as

input a raw untagged Hindi corpus without

any text preparation (but the corpus must

contain spaces or separating symbols since

the program analyses the data word by

word). The output is in two parts, one is

the output of a software Linguistica, when

run on Hindi text, which is of the form

(Stems)X(Signature) and the other we get

by further collapsing words, which are

morphological derivations or inflections of

the same root word but have dissimilar

spelling, into a single stem along with

rules of the form:
(Stem) X (rule1: signature), (rule2: signature)

Here, stem is a root form of any word to

which affixes can be attached. For

example ‘friend’ in ‘friendship’ or ‘chal’

in ‘chalta’ are the stems. A Signature is a

list of all suffixes (or prefixes) appearing

in the given corpus associated with a given

stem. Every stem in a corpus has a unique

signature; similarly every signature has a

unique set of stems associated with it.

In the first output we get:

O1 = ({दौड, उड}×{null, आन , ना, आना})

O3 = ({मार}×{ null, आ, ना})

O4 = ({मर}×{ null, आ, ना, वाया})

In the second part we'll try to merge ‘मार’
and ' मर ' into a single stem, say मर and

attach rules to it. rule1: -- & rule2: ा - ,
then their signatures, where the i

th

character in the rule is the ‘matra’

associated with the i
th

 ‘vyanjan’ in the

root.

This kind of setup is based on the attempt

to reduce the Minimum Description

Length of the grammar.

Morphology

Morphology, in the field of linguistics, can

be defined as the identification, analysis

and description of a given language's

structure like morphemes and other

linguistic units such as parts of speech,

affixes, words, etc.

The smallest semantically meaningful unit

in a language is known as morpheme.

Morpheme may or may not stand out as a

complete word, in terms of a freestanding

unit of meaning. Thus every word

comprises of one or more morphemes.

e.g. 'unforgettable' consists of:

un - a bound morpheme negating the root

forget - a free morpheme, the root in this

case

-able – again, a bound morpheme

signifying 'do-able'

Classification of Morpheme:

Free and Bound Morpheme

1. Free Morpheme: Stand-alone words

that can function independently are called

Free Morphemes. e.g. break

2. Bound Morpheme: They provide

meaning only when associated with other

words. e.g. Un- and -able

Derivational and Inflectional Morpheme

1. Derivational morphemes: They affect

the semantic meaning or part of speech of

the affected word, when used in

conjunction with a root word.

E.g. Sad (adjective) to sadness (noun),

here we attach -ness.

2. Inflectional morphemes: They change

a noun's number, gender, grammatical

mood, aspect, person, etc. Without

affecting the word's meaning or class.

E.g. dog (singular) to dogs (plural).Here

we attach as –s

Examples of morphological changes in

Hindi:

चल (verb), चलें (number), {चल , चल रह ,
चलेग } (tense), चलकर (adverb), चल ऊ

(adjective), {चली, चल } (gender)

Previous Work

1. UNSUPERVISED LEARNING OF

MORPHOLOGY: (John Goldsmith)

The papers discuss the techniques and

results of developing an algorithm, which

accepts raw linguistic data as input and

produces as their output an analysis of data

or a grammar, for the purpose of learning

morphology on the basis of essentially no

prior knowledge except the data. The basic

aim described is the determination of

location of the breaks between morphemes

inside any word.

BASIC ALGORITHM of LINGUISTICA:

John Goldsmith proposes to divide the

process of morphological analysis into 'a

set of heuristics' and 'Minimum

Description Length (MDL)' evaluation

process. The heuristics then is divided into

'initial bootstrapping heuristics' which

determines the first analysis of stems and

suffixes, and 'incremental heuristics' which

modifies this analysis. The MDL then

decides whether the modifications made

by the incremental heuristics should be

adopted or dropped.

The first part of output in this project is

obtained by running Linguistica Program

on a large untagged Hindi Corpus.

2. PRIORS IN BAYESIAN LEARNING

OF PHONOLOGICAL RULES:

(Sharon Goldwater and Mark Johnson)

The paper describes a Bayesian procedure

for unsupervised learning of phonological

rules from an unlabelled corpus of training

data. Goldsmith's "Linguistica" program's

output is taken as the input and it returns a

grammar that consists of stems and set of

signatures along with a set of phonological

rules i.e. insertion, substitution and

deletion rules which allows the grammar to

collapse many more words into the

signature as compared to Linguistica.

Linguistica Output:

O1= ({work, roll} X {null, ed, ing, er})

O2= ({carr} X {y, ied, ier})

O3= ({carry} X {null, ing})

O4= ({din} X {e, ed, ing, er})

After adding phonological rules:

O1= ({work, roll, dine, carry} X {null, ed,

er, ing})

rule1=if CeeC then e->null

rule2=if CeiC then e->null

rule3=if CyeC then y->i

(Where, C is a consonant)

The second part of output in our project is

inspired by this but this method cannot be

directly applied to Hindi text since in

Hindi generally such transformations do

not occur. In Hindi other than suffixes and

prefixes changes occur within the

morpheme like ‘shikshak’ &

‘shaikshikata’, ‘maarna’ & ‘marvana’. We

have dealt with this in our algorithm for

dissimilar morphological forms with an

unsupervised approach.

Linguistica

The following observations will help us

understand the approach taken by

Goldsmith[1].

A word which has a complex composition

in terms of morpheme boundaries is

characterised by substrings that have a

relatively high frequently in the corpus.

Analysis of such a morpheme structure

results in a more compact definition of the

grammar. For example the verb 'jump' is

followed by ~s, ~ed, ~ing, ~er, ~. Such a

description would enable us to describe the

set {jumps, jumped, jumping, jumper,

jump} in a more compact way. Hence a

measure of the compactness of the

analysed grammar can be a measure of the

success of the morphological analysis.

At the same time, morphological analysis

is not merely breaking up words at

boundaries of high frequency substrings.

For example not all words ending in 'ing'

are word boundaries like 'sing', 'string',

etc. Also for morphemes like 'ity' a simple

high frequency heuristic would not suffice

because the frequency of 'ty' would always

be greater than or equal to 'ity' {dirty,

treaty} and the frequency of 'y' would be

even higher {sky, fly, etc.}. At this point the

overall context also matters.

Based on these observations the following

algorithm for analysing the corpus is

proposed:

function Analysis(Corpus)

 A := Boot-Strap(Corpus);

 New_A := Increment (A);

 while (MDL(New_A) < MDL(A)) do

 A:= New_A;

 New_A := Increment(A);

 end

 return A;

end

Boot-strapping Heuristic:

The bootstrap heuristic is an initial

approximation that produces a

morphological analysis of a corpus of

languages. The approximation is based on

the first observation (described above).

The first step is to generate a set of

candidate suffixes and stems for further

analysis. For this the word is broken up at

points of high successor frequency.

For example the word government can be

broken up in the following manner:

Stem Followed By Count

gover n 1

govern e,i,m,o,s,# 6

governm e 1

Thus 'govern' emerges as a clear cut

candidate for stem. However such a

heuristic sometimes leads to erroneous

results. For example, let us take the word

'conservatives'

String c o n s e r v a t i v e

Successor 9 18 11 6 4 1 2 1 1 2 1 1

Frequency

Thus, 'co', 'conse', 'conserv' and

'conservati' emerge as possible candidates.

This can be eliminated by imposing the

following conditions:

Accept cuts with at least 5 letters in stem.

Demand that the successor frequency must

be a clear peak 1...N...1

For each stem accept only signatures with

5 stems.

On applying these conditions, 'conserv'

emerges as the most probable stem.

Minimum Description Length:

The minimum description length is the

quantitative measure which helps us

determine which of the analysis is better in

a set of the same. The MDL is independent

of the vocabulary and is a mathematical

model to determine how well the analysis

fits the data. For this we compute the

probability (p) assigned to the model and

interpret it as compression -log2 (p) bits.

Thus, the compressed length of the corpus

is:

Frequency of analysed word:

W is a word analysed as belonging to stem

t and suffix f, in signature 𝜎
Freq(𝑇 + 𝐹)

= Freq(𝜎) ∗ Freq(𝑇 ∣ 𝜎) ∗ Freq(𝐹 ∣ 𝜎)

=
[𝜎]

[𝑊]
∗
[𝑇]

[𝜎]
∗
[𝐹in𝜎]

[𝜎]

where, [W] is the total number of words.

Length of Morphology:

The complexity of morphology is more

complex, but can be summarized as

follows. Almost all structures - structure of

a morphology, structure of a grammar—

can be understood and presented as a set of

lists, in which each item in the list is a

"pointer": a connection either to another

list, or to a primitive item (such as a letter

or phoneme). In the analysis the

morphology contains:

 List of suffixes

 List of stems.

 A list of signatures with the

associated stems.

The complexity of a list with N items is

calculated as follows:

It consists of the sum of the length of each

of the pointers on the list where the length

of a pointer to an a item i on a list is of

length -log2 prob(i), where again the units

in which this length is measured is bits.

The length of the statement which makes it

explicit that there are exactly N items ~

log2 N bits to formulate.

And, the total length of the bits used to

represent the list.

For example, consider a list of suffixes:

{ed, s, NULL, ing}

The complexity of the list would be:

1. Sum of length of pointers to 'ed',

's', 'NULL', 'ing' like the length of

pointer to 'ed' is 3 because p(ed) =

1/8.

2. log2 N = log2 4 to specify the

length of the list.

3. 6*B bytes, where B is the length of

each character.

Thus the length of a list of suffixes and a

list of stems can be calculated as described

above.

The length of the signatures is computed

as follows:

∑ log
[𝑊]

[𝜎]𝜎∈Signatures

+∑ log < stems > +log < suffixes(𝜎) >𝜎∈Signatures

+∑ (∑ log
[𝑊]

[𝑡]𝑡∈Stems(𝜎)𝜎∈Sigs

+∑ log
[𝜎]

[𝑓in𝜎]𝑓∈Suffixes(𝜎))

When all of this is summed up, a clear

measurement of the complexity of an

analysis is produced, and an automated

process can determine which of two

analyses is to be preferred.

Incremental Heuristics

1. The incremental procedure accepts an

analysis and applies the following

procedures to come up with a new

morphology.

2. Accept any analysis of word if it

contains a known stem and a known

suffix.

3. Collect any string that precedes a

known suffix. This way find all

apparent suffixed and use MDL to

decide whether it is an improvement or

not.

4. Slide stem suffix boundary to the left

and use MDL to decide.

Our Algorithm

The output of the above described process

consists of a set of stem-suffix pairs.

However morphological variants of the

same stem like म र & मर cannot be

identified by this program. Thus we

propose the following approach to take

care of such cases:

Step 1: Pre-process the Linguistica Output

to filter out the root and suffix pair only

Step 2: Remove the 'matra' from the stems

to obtain the base form of it.

Step 3: Sort the list alphabetically

Step 4: Compare consecutive words and

club accordingly

This allows concise grouping of

morphological forms of words.

#Set of matra

#ा ा ा ा ा ाे ा िा ा ा ा ा ा

root := array();

while (line in File) do

 foreach word in line

 root[] := findRoot(word)

 end

end
#Sort the list of roots

Sort(root)

Loop through root

 If (root[i] == root[i-1])

 Group (root[i], root[i-1])

end

#Subtracts the root from the word

def findRoot(word):

 s =

DeleteMatraFromWord(word)

 return s

Results

The following results have been obtained

by running Linguistica on CFLIT corpus

of about 53,000 sentences containing more

than 60,000 unique words. We get

approximately 14,000 stems and 308

suffixes.

The output of Linguistica can be found

here.

The output of running our algorithm can

be found here.

Result Analysis

The analysis also gives words which do

not seem to exist in Hindi grammar.

Mistakenly such words may be present in

the corpus so Linguistica is detecting

them.

E.g.

 { और ड व }
 {इस ा ा र}

Also, at some places the corpus misses

space between words, which must

otherwise be present. In these cases

Linguistica gives an error. E.g.

 {और}
न { या }

False Positive (suffix-wise examples)

E.g.

-na : 1/7 stems

-ta: 0/~50 stems

-ik: 0/26 stems

False Negative

Some words whose word count is not

enough in the corpus are not displayed.

Also, Complex structural morphemes like

‘ga utha’ are not displayed because they

are separated by word boundaries.

Running our Algorithm on Linguistica

Output, we get almost no false negative

outputs but many false positive outputs.

E.g.

(correct output)

 व - NULL, ा
 ा- य,

(Incorrect output)

अनज - ा- NULL,स , ,
 --- ान,

Linguistica works well on almost all

languages with word boundaries but, if the

program has to be run on languages like

Thai or Chinese (which do not have word

boundaries), then certain word separators

have to be introduced.

References

[1] GOLDSMITH, J. 2000. Linguistica: An
Automatic Morphological Analyser.

[2] GOLDSMITH, J. 2001. Unsupervised
Learning Of The Morphology Of A
Natural Language. Computat. Linguis.
27, 2, 153–198.

[3] GOLDSMITH, J.2004. An algorithm for
the unsupervised learning of
morphology.

[4] GOLDWATER, S. AND JOHNSON,
M.2004.Priors in Bayesian Learning of
Phonological Rules.
http://linguistica.uchicago.edu/

[5] GOLDSMITH, J. 2005. An Algorithm For
The Unsupervised Learning Of
Morphology. Tech. rep. TR- 2005-06,
Department of Computer Science,
University of Chicago.
http://humfs1.uchicago.edu/∼jagolds
m/Papers/Algorithm.pdf.

[6] ’Hindi Morphology’ by Rajendra Singh
and R.K. Agnihotri.

Motilal Banarsidass Publ., 1997
[7] http://www.uknow.gse.harvard.edu/t

eaching/TC102-407.html

http://www.cse.iitk.ac.in/users/cs365/2012/submissions/rabisg/cs365/projects/data/totals.txt
http://www.cse.iitk.ac.in/users/cs365/2012/submissions/rabisg/cs365/projects/data/LinguisticaOutput.txt
http://www.cse.iitk.ac.in/users/cs365/2012/submissions/rabisg/cs365/projects/data/LinguisticaOutput.txt
http://www.cse.iitk.ac.in/users/cs365/2012/submissions/rabisg/cs365/projects/data/AlgorithmOutput.txt
http://www.cse.iitk.ac.in/users/cs365/2012/submissions/rabisg/cs365/projects/data/AlgorithmOutput.txt
http://linguistica.uchicago.edu/
http://humfs1.uchicago.edu/

