
BriMon: Design and Implementation of Railway
Bridge Monitoring Application

A Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of

Master of Technology

by

Hemanth Haridas

under the guidance of

Dr. Bhaskaran Raman

and

Dr.Kameswari Chebrolu

to the

Department of Computer Science and Engineering

Indian Institute of Technology, Kanpur.

May 2006

Abstract

In this thesis we design a multi hop wireless sensor network based solution for the

problem of structural bridge monitoring (of railway bridges). The problem presents

several novel challenges. The real challenge here is to collect vibration data of a

railway bridge, enabling on-demand analysis of the bridge. We not only provide

an in-depth analysis of these challenges but also design a solution using multiple

wireless technologies (IEEE 802.11 and IEEE 802.15.4). We take an application

driven approach in providing a solution to the above problem. The implemented

solution shows how the design choices dictated solely by the application are different

from the general solutions that exist in the sensor network domain.

We design and implement protocols (routing and transport) on motes which are

driven by the application. The transport protocol designed by us is NACK based

and is used for reliable data transfer from all nodes to the base node. The routing

algorithm determines the path that data follows. We further integrate our work with

a fellow colleagues’ synchronization mechanism and Wake on WLan mechanism. We

use synchronization mechanisms to synchronize readings of accelerometers placed at

different points and for synchronized sleep and wakeup mechanisms and a novel Wake

on WLan mechanism for detection of arrival of a train. The transfer of data from the

base node to the moving train is achieved using WiFi. We use off the shelf hardware

to implement most of the solution, but where inexpensive off the shelf hardware is

not available we build our own hardware. The solution has been implemented on

Moteiv’s Tmote-sky and the Soekris (single board computer). TinyOS and nesC has

been used for programming the motes.

The challenges we have tackled in this work are one of a kind in this domain.

There have been various works on monitoring of bridges and structures in India and

abroad but most of them are wired solutions but a few are single hop wireless sensor

network solutions which severely limit the size of the bridge being monitored. The

architecture of the solution we have designed and implemented is unique to the best

of our knowledge. The transfer of data to a moving train and detection of the arrival

of the train are a new experiment in their own right.

2

Acknowledgment

I would like to thank Dr Bhaskaran Raman and Dr Kameswari Chebrolu for

their continuous guidance, support and mentoring. It is their support at the time

of crisis that has made this thesis a reality. I was fun working with them. I am

honored to have interacted with such wonderful people. I would like to thank Dr C

V R Murty for his critical inputs. Dr K K Bajpai and Abhishek Singhal provided

us with valuable domain knowledge which shaped the application design and their

contribution was invaluable. Nilesh Mishra’s help and coordination while integrating

both of our components was indeed remarkable. I would like to thank the department

for such a healthy, conducive and entertaining environment that made my thesis work

so much fun even in times of frustration. All the staff at Media Labs Asia (DGP

Project) were very helpful all along the thesis, a special mention should be made of

Sukanto Kole who along with lending a helping hand was also a constant companion.

I take this opportunity to thank V M D Jagannath, all my collegues and all my batch

mates and my juniors for their support and encouragement. This thesis would not

have been possible without the love and affection of my parents and my sister. I

dedicate my thesis to my parents and all my teachers.

1

Contents

1 Introduction 10

1.1 Problem Statement . 11

1.2 Overview of the Application Design and Implementation 13

1.2.1 Overview of Application Design 13

1.2.2 Overview of Implementation 15

1.2.3 Steps in Data Collection . 16

1.3 Related Work . 17

1.3.1 Application Design . 18

1.3.2 Transport Protocol . 20

1.3.3 Routing Protocol . 21

1.4 Thesis Contributions . 21

1.5 Thesis Organization . 22

2

2 Application Design 23

2.1 Data Organization . 25

2.2 Time line Diagram of the Network 29

2.3 Component Interaction . 30

2.3.1 Layering . 31

2.3.2 Components . 33

3 Hardware Design 36

3.1 Choice of Accelerometer Chip . 38

3.2 Design of Application Circuit for Accelerometer 40

3.3 Design of Attenuator Circuit . 41

3.4 Design of Circuit to Interface Mote with Soekris 41

3.5 Design of Switch circuit . 42

3.6 Design of Power Circuit . 43

4 Transport Protocol 44

4.1 Overview . 44

4.2 Protocol Description . 45

4.3 Message Format . 50

4.4 Implementation Details . 53

3

5 Routing Protocol 54

5.1 Overview . 54

5.2 Protocol Description . 55

5.3 Message Formats . 60

6 Experimental Results 62

6.1 Range of the Tmote . 62

6.2 Significance of LQI and SS . 64

6.3 Correlation of LQI and Packet Loss 67

6.4 Analysis of Transport Protocol . 69

7 Conclusions and Future Work 76

7.1 Conclusion . 76

7.2 Future Work . 77

A Description of Hardware and Software 79

A.1 Tmotes . 79

A.2 TinyOS and NesC . 82

A.3 Accelerometers . 83

A.4 TOSMsg Packet Format . 83

4

B Some Facts on Bridges/Trains 86

5

List of Figures

1.1 Schematic description of our solution at work along with the problem

setting . 12

1.2 Components of a single sensor node 13

1.3 Components of the base node . 14

1.4 Application Design of a Single Node 14

1.5 Application Design of the Entire Network 18

2.1 Wake up mechanism for the network 24

2.2 Organization of data in the network 28

2.3 Data transfer within the sensor network 28

2.4 Timeline diagram of the wireless sensor network 30

2.5 Application stack of a node sending a file from one node to another . 31

2.6 Interaction between application and transport layer 33

2.7 Interaction between application Flash and the Accelerometer 34

2.8 Interaction between transport layer, Routing and MAC 34

6

3.1 Circuit of Base Node developed by us 37

3.2 Circuit of Node developed by us . 37

3.3 Application circuit for MMA7260Q accelerometer chip 40

3.4 Physical layout of the ADXL203 Evaluation Board 41

4.1 Temple Topology : Typical Topology specific to the application . . . 45

4.2 Description of Transport Protocol . 48

4.3 Description of Transport Protocol . 49

4.4 Structure of Header Message . 51

4.5 Structure of Data Message . 51

4.6 Structure of Tail Message . 52

4.7 Structure of Acknowledgment Message 52

4.8 Structure of NACK Message . 52

4.9 Structure of Wait To Send Message 53

5.1 Routing Protocol : key . 56

5.2 Routing Protocol : Stage 1 . 56

5.3 Routing Protocol : Stage 2 . 57

5.4 Routing Protocol : Stage 3 . 58

5.5 Routing Protocol : Stage 4 . 59

5.6 Routing Protocol : Stage 5 . 59

7

5.7 Routing Protocol : Stage 6 . 59

5.8 Message structure of a beacon . 61

5.9 Message structure of a route entry message 61

6.1 Plot of LQI vs Distance . 65

6.2 Plot of SS vs Distance . 65

6.3 Plot of LQI vs packet Loss . 68

6.4 Plot of data transfer duration vs number of files 69

6.5 Plot of data transfer duration for same amount of data transfer vs

number of files and different file sizes 73

A.1 TOSMsg Packet Structure . 84

8

List of Tables

1.1 Comparison of existing deployments with BriMon 19

2.1 Constants for calculation of amount of data collected at each node . . 25

2.2 calculation of amount of data collected at each node 26

3.1 Comparison of accelerometers chosen by us : ADXL203 and MMA7260Q 39

3.2 Voltage Rating of various components 43

4.1 Message Formats . 51

5.1 Routing Layer Message Formats . 60

6.1 Transmission Range of Tmote-Sky . 63

9

Chapter 1

Introduction

India has the second largest rail network in the world, transporting over four billion

people annually. An essential part of this network are 120,000-plus steel bridges [17], a

lot of which are aging, weak, distressed and accident-prone. Actual numbers indicate

that 43% are over 100 years old and 57% are over 80 years old. There is currently no

system in place to continuously monitor these bridges. It is extremely dangerous to

operate trains carrying hundreds of passengers on a railway network, of which these

bridges are a part. It is mandatory to either repair these bridges or construct new

ones in place of them. To replace all the old bridges at once is not a feasible solution

because it would involve prohibitive costs. Moreover with no data to support the

claim that these bridges are indeed old and need urgent attention, it would be rather

difficult to have a strong case for the replacement of these bridges. A more feasible

solution is to continuously monitor these bridges and have data on the status of

these bridges which could be easily interpreted by structural engineers. Meaningful

conclusions could be drawn about the health of the structure in question [14]. A

comprehensive data set can also help in the advancement of structural engineering

research.

Currently structural engineers use wired systems to monitor these bridges. The

setup requires accelerometers, shake-tables and expensive data acquisition systems.

10

The equipment is expensive and bulky, so the analysis can be carried out only at

few points of the structure and it also limits the data set available for structural

engineers for analysis. The setup takes anywhere between a few days to few weeks

[30] and requires manual expertise. Due to the kind of costs involved in terms of

money, time and expertise, such an exercise is performed infrequently and that too

not on all the bridges that require monitoring. On the other hand an inexpensive,

light weight, multi hop wireless automated setup would require less time to setup and

can be relatively widely deployed. This would result in data set being available in

digital form for detailed off line analysis using various scientific software on back end

computers.

1.1 Problem Statement

In this section we articulate the problem statement and describe the problem in

detail and thus motivate the solution for the application. The problem can be stated

as follows The structural response (readings of the accelerometer) of the

Railway bridge have to be reliably delivered to a central location for further

processing.

A further analysis of the problem yields the following requirements

1. Vibration readings has to be obtained at every pier, in fact at 2 points on a

single pier

2. There should not be significant loss of vibration data .

3. Data should be recovered even in case of system failure.

4. Vibration data needs to be collected in the following scenarios

• Vibrations induced when train is passing on the bridge (Forced Vibrations

).

• Vibrations induced after the train has passed over the bridge (Free Vibra-

tions)

11

• Vibrations induced by wind (Ambient vibrations)

The above requirements have to be satisfied with the following constraints

1. All equipment has to be operated by battery power, calls for intelligent sleep

and wakeup mechanisms.

2. Currently no energy efficient way available to tell, when train passes over the

bridge .

3. Hostile environments both for equipment and wireless transfers.

4. System may fail due voltage variations, physical damage etc.

External
Antenna Base node

Node 4
Node 3 Node 2 Node 1

IEEE
802.15.4

IEEE802.11
Soekris

Accelerometer
Connected to
Sensor node

Figure 1.1: Schematic description of our solution at work along with the problem
setting

The Figure 1.1 gives a peek into the kind of problem we are trying to solve and

the entire solution we have proposed.

12

1.2 Overview of the Application Design and Im-

plementation

1.2.1 Overview of Application Design

In this work we take a bottom up approach to provide a wireless sensor network

solution to the problem under consideration as opposed to a top down approach. We

design and implement algorithms and protocols specific to our application, which may

not necessarily be optimal in other application settings. We optimize our solution to

give the best solution in the considered application setting as opposed to designing

generalized solutions which will work for all situations. In taking an application driven

approach we seek to separate actual problems from potential ones and differentiating

relevant issues from irrelevant ones.

We use Tmote-sky’s sensor node as nodes of a sensor network and soekris single

board computer as an aggregator and gateway at the base node.

Figure 1.2: Components of a single sensor node

Figure 1.2 shows the block diagram of a single node to be deployed at each of the

piers of a bridge. The diagram shows an accelerometer connected to the tmote through

an attenuator. The attenuator just matches the voltage level of the accelerometer to

that of the tmote. Both the attenuator and the accelerometer are controlled by the

switch circuit connected to the tmote. The switch circuit is used to power on and

13

Figure 1.3: Components of the base node

power off both the circuitry.

Figure 1.3 shows the block diagram of the base node deployed at the edge of

the bridge responsible for collecting data. The diagram shows a tmote connected

to a soekris through a UART to serial converter. This setup is used to transfer

data from the tmote to the soekris for further data transfer (using WiFi) to another

soekris sitting inside the train. Both the soekris and the UART to serial converter are

controlled by the switch circuit connected to the tmote. The switch circuit is used to

power on and power off both the circuitry.

Accelerometer Attenuator ADC Packets

Figure 1.4: Application Design of a Single Node

We use vibration analysis to monitor the health of the railway bridges. Vibra-

tion analysis [6] involves analysis of time and frequency domain waveforms, identify-

14

ing changes in amplitude and frequency suggesting repair or/and replacement. The

technology is based on the assumption that frequencies of the collected data can be

mapped to specific components of the test subject.

A tri-axial accelerometer is used to get vibration data of the Railway bridge,

by placing them one each on the piers of the bridges. An accelerometer is an electro

mechanical device that produces electrical signal proportional to the applied acceler-

ation. A tri-axial accelerometer measures acceleration in the X, Y and Z axis. The

vibration data is fed into a wireless sensor node through the external ADC of the

mote. The attenuator placed between the ADC of the mote and the accelerometer

makes sure that the signal level of the accelerometer is within the operating range of

the mote’s ADC.

The sensor node (mote) collects the data from the accelerometer and stores the

collected data in its flash. Each of the motes is equipped with flash (write once read

many times) of size 1MB. The mote upon reception of a command to transfer data

transmits the data reliably to a designated node called as the base node. The base

node is responsible for issuing commands , aggregating data and collecting information

about the status of the network periodically. The application design at a single node

is depicted in the Figure 1.4.

1.2.2 Overview of Implementation

In this section we describe the relevant features of off the shelf hardware and software

that impacts our implementation.

• The tmote-sky motes , hereafter referred to as the tmotes is one of the latest

offering from Mote-IV [11] corporation in the wireless sensor network domain.

The tmote-sky features a CC2420 radio from Chipcon [4]. The CC2420 radio

provides two metrics RSSI (Receive Signal Strength Indicator) which can be

measured at any time and LQI (Link Quality Indicator) which is calculated by

measuring the first 8 chips of each packet. The CC2420 chip is controlled by the

MSP430 micro controller from TI [22] through the SPI it shares with the flash

15

as well as the external expansion connector. This means that there is a need

for careful bus arbitration while using any of them simultaneously. The tmote

features an on-board MSP430F1611 8Mhz micro controller from TI with 48KB

ROM and 10KB RAM. The 10KB ram, which incidentally is the largest on-chip

RAM means that a large amount of data can be kept in the RAM without any

writes or reads needing to the flash. As we demonstrate later this capability

has influenced our design decisions. There are 8 external ADC ports provided

which can be used to collect external signals. A 1MB STM25P80 Flash [21] on

the tmote is another extremely useful feature. This can be conveniently used

to store data, code and other information permanently on the tmote until the

flash gets formatted.

• TinyOS [23] is an open source operating system designed for networked em-

bedded systems or sensor networks. The platform we are using (tmotes) is

comparatively new and all the software has been written for mica motes. Even

though most of the libraries work for the tmotes too, some of the applications

are still not available on the tmote platform. But development is catching up.

1.2.3 Steps in Data Collection

The parent child relationship between the nodes is established by a routing algorithm

initiated by the base node once the network is setup. The mote after it receives

transmit command, transmits the collected data first to its parent, the parent to its

parent and all the way to the base node. This parent selection procedure may have

to be repeated a number of times during the lifetime of the network as individual

node failures/reboots may disrupt the network topology. As the nodes themselves

are stationary the topology is not expected to change much.

All the data is transmitted from all the nodes to the base node using a reliable

NACK based transport protocol. A node is not only responsible for its own data but

also the data that it has received from its children and children’s children (descen-

dants), essentially data of all the nodes that are below it in the network topology. The

leaves in the network (nodes which do not have children) are the first to start trans-

16

mitting to their parent. A node starts transmitting data only after it has received

data from all its children.

As soon as data is received at the base node the base node forwards this data to

the Soekris (single board computer) connected to it by the SPI interface. As Soekris

has much more memory than the data collected by all the motes combined (in case

of a small to medium deployment of 10s of nodes), it can store all this data in its

memory. Soekris actually runs a scaled down version of the linux kernel and has a

PCMCIA (Personal Computer Memory Card International Association) card slot to

which a WiFi (Wireless Fidelity, 802.11) card can be attached, thus enabling WiFi

based communication. The application design of the entire network is depicted in

the Figure 1.5. Soekris then transmits this data to a WiFi device on the moving

train. The WiFi device on the train has been put to more use than merely collecting

data. It has also been used to wake up the entire setup wakeup using Wake-on-WLan

[9]. Intelligent sleep and wakeup schemes allow the wireless sensor network (WSN)

deployed on the railway bridge to run for months together on battery power. The

WSN wakes up using the Wake-on-Wlan scheme and subsequently collects data and

transmits data to the base node.

1.3 Related Work

In this section we describe previous available literature in this domain and the current

research going on similar problems elsewhere. We start with a survey of various

sensor network applications available in the literature. We compare those with our

application and design. We chose 3 applications among the many present to do the

comparison. Then we go on to survey the various transport protocols available and

reason why they are not a best fit for our application. We do the same with the

available routing protocols.

17

Soekris on Train

sink
Network

sinksink
NetworkNetwork IEEE 802.15.4 transfer

IEEE 802.11 transfer

Figure 1.5: Application Design of the Entire Network

1.3.1 Application Design

The application requires to collect vibration data from the accelerometer placed at

the piers of the railway bridge. The data collected should be retrieved and available

for processing at a central server. The deployment is in a isolated location where

there is neither network connection nor power.

Habitat Monitoring [7] is one of the first sensor network deployments. The

application aims to monitor the habitat of seabird nesting environments at GREAT

DUCK ISLAND MAINE. The current deployment is of 32 mica nodes. The archi-

tecture of the application is tiered, the lowest level consists of sensor nodes, which

transmit their data to the gateway, which transmits sensor data to the base station

through the transit network. The sensor nodes senses temperature, pressure humid-

ity and other phenomena. The data collection is periodic. The deployment is a long

term deployment, ran for more than 6 months. Compression techniques have been

employed to reduce the amount of data transfer.

18

WISDEN [30] is multi-hop wireless data acquisition system for structural health

monitoring used to monitor large structures. This work aims to replace existing wired

systems to collect vibration data from different parts of the structure. It uses reliable

data delivery and light weight synchronization mechanisms. As the data requirements

surpass the radio bandwidths intelligent compression techniques are employed. The

deployment is short term consisting of 14 micaz nodes. The architecture is flat, sensor

nodes feeding data to the PC or laptop through the base node. The sensors used are

accelerometers and the sampling rate is 200-250Hz.

The deployment of industrial sensor networks at semiconductor plant and north

sea [6] aims to use sensor network technology to do predictive equipment maintenance.

Further the work aims to produce a cost effective solution. The deployment focuses

on vibration analysis for predictive maintenance and uses piezo electric accelerometer

to measure vibrations. The work uses PSFQ [25] for reliable data delivery both in

single hop and multi hop setting. It uses a hierarchical architecture where sensor

nodes feed data to a stargate gateway which feeds to the root stargate which in turn

feeds to the internet and to the enterprise server.

The comparison of all the applications explained in Table 1.1

Habitat WISDEN Industrial BriMon

Monitoring sensor network

Duration Long term short term few months long term

of deployment (6 months)

Hardware Mica2 Mica2 and Micaz Micaz and Imotes Tmote-sky

Existing system manual wired expensive single hop

to be replaced wireless systems

Data collection periodic periodic periodic periodic and

model event based

Architecture Tiered Flat Tiered Tiered

Sensors used temperature accelerometer accelerometer accelerometer

pressure etc

Compression YES YES NO NO

Table 1.1: Comparison of existing deployments with BriMon

19

1.3.2 Transport Protocol

We need a transport protocol to reliably transmit large amount of data from each of

the nodes in the sensor network to the base station. As the amount of data we are

handling is higher than the amount of RAM available in each of the nodes the protocol

should tightly integrate with the tmote’s flash and handle it intelligently. The fact

that the tmote’s flash and radio share the same bus, increases both the difficulty and

the relevance of this intelligent arbitration of radio and flash. Interleaving both the

operations is thus a challenge. Though most of the arbitration is done by lower layers

we need to do some careful programming along with exercising caution.

There are a plethora of transport protocols available in the literature. PSFQ

[26], RMST [18] , ESRT[2] , CODA [27] , GARUDA to name a few. Our initial

analysis rules out a lot of protocols as unsuitable. CODA does not provide reliability,

and is thus unsuitable for us. Most of the transport protocols in the sensor network

domain were designed for hardware with limited radio capacity, but in the recent

times better radio chips have improved the capability leaps and bounds. This call for

new and improved protocols which are optimized for the new radio. ESRT is a event

to sink reliable transport and provides only event reliability hence is ruled out.

We are left with PSFQ and RMST which provide reliability. RMST was designed

for upstream transfers i.e. from each node to the base node, the kind of transfers that

happen in our application, but it does not integrate with the flash and no proper

implementation and support is available. PSFQ is a protocol basically designed for

down stream transfers i.e. from base node to each of the nodes. It does integrate well

with the flash but for mica hardware where the flash and the handling with respect

to the radio (arbitration) is different. PSFQ has been used in upstream transfers and

known to perform non-optimally [6]. Still there is an effort to port PSFQ to tmote

and adapt it to our application [16]. So we design a reliable transport mechanism

optimal for our application and hardware borrowing ideas from existing literature. A

comparison of all protocols can be found here [24]

20

1.3.3 Routing Protocol

The BriMon application is to be deployed in isolated environments for long durations

of time. This warrants a routing protocol to find the parent of each node in order to

transmit data to the base node. Like transport protocols there are a lot of routing

protocols available in the literature. Many of these protocols are generic protocols

which aim to find the route from all nodes to all nodes. But our requirement is to

just find the route from each of the nodes to the base nodes.

We consider protocols MultiHopLQI [12], MintRoute [28] and single destination

DSDV [13] suitable for our application after initial evaluation. Both MultiHopLQI

and MintRoute these protocols use LQI and number of hops as a metric to determine

the parent of each node. Single destination DSDV prevents loops by numbering each

routing entry, though was not designed for this domain shows some promise with

respect to use in our application, but as the case in MultiHopLQI and MintRoute

even this protocol does not have a separate routing phase. In all of these protocols

all the nodes start transmitting the beacons simultaneously and the routing phase

continues through out the network lifetime, which is unacceptable for our application

design. We want a separate routing phase, followed by a data transmission phase.

The reason for having a separate routing phase is to help us save power in an efficient

manner and to avoid interference between data transmission and routing phases. We

can however modify these protocols to suit our requirements but as we found in our

experiments in section 6.3, LQI is not a good measure of packet loss and packet loss

itself is a good measure of itself, we change the metric to packet loss from LQI and

create a new routing phase in our protocol.

1.4 Thesis Contributions

We would like to mention that we use the synchronization mechanism and a few other

hardware components from the master’s thesis of our colleague [8]. Our major Thesis

contributions can be detailed as follows.

21

1. Analysis of the Bridge Monitoring application (BriMon) and designing an opti-

mal solution to the problem. We employ a application specific approach, which

helps us to separate out actual concerns from probable concerns.

2. Design and implementation of an application specific Routing protocol for the

BriMon application.

3. Design and implementation of an application specific reliable transport protocol

for the BriMon application. We design and implement a NACK based reliable

transport protocol to transfer large amounts of data (100s of KB).

4. Integration and testing of the application, routing and transport protocol for

large amounts of data transfers and topologies probable in the application set-

ting. The application is supposed to work without any glitches for months

together, hence this type of testing plays an important role in the success of the

application.

5. Fabrication of attenuator circuit to make sure that the output voltage level of

the accelerometer is within the range of the tmote.

1.5 Thesis Organization

The rest of the report is organized as follows. Chapter 2 gives the application design

of the solution. Chapter 3 describes all the hardware components we had to design.

Chapter 4 describes the reliable transport mechanism and Chapter 5 explains the

routing protocol. In Chapter 6 we detail the various experiments conducted and

their results. In Chapter 7 we conclude and describe the future work needed in brief.

22

Chapter 2

Application Design

In this chapter we explain the application Stack, the various components and their

interfaces we have designed. Here we give a bird’s eye view of the entire application

before proceeding to give a much more detailed description. The series of events

leading to collection of vibration data are as follows (Figure 1.1 in previous chapter).

1. The train (engine) contains a powerful radio (IEEE 802.11), and transmits

beacons continuously as it arrives near the bridge. The sensor mote (mote A)

which is kept at a distance of d2 from the bridge in the direction of the arrival

of the train wakes up on sensing the channel on which the train is transmitting

beacons using Wake-on-WLan technology [9]. This mote does a duty cycling

between sleep and wake-up. This means that its sleep and wake up time have

to be such that it positively detects the arrival of the train [9, 8]. Now mote A

wakes up mote B (base node) by transmitting 802.15.4 packets, which in turn

wakes up other sensor nodes similarly by transmitting wakeup packets. The

wake-up mechanism is depicted in Figure 2.1.

2. The sensor mote connected to the soekris (base node) is responsible for powering

on the soekris board as well as the other nodes deployed on the piers of the

bridge.

23

d2

d1

Mote A Mote B

C1 C2
C3

Trai
n

sleeping sleeping sleeping

woken Base node

sleepingWakeupWakeup

IEEE 802.11

IEEE 802.15.4

d2

d1

Mote A Mote B

C1 C2
C3

Trai
n

woken woken woken

woken

Base node

wokenWakeupWakeup

IEEE 802.11

IEEE 802.15.4

WakeupWakeup WakeupWakeup WakeupWakeup

Figure 2.1: Wake up mechanism for the network

3. These sensor nodes collect vibration data from the tri-axial accelerometer and

transmit it to the base node through the multi-hop wireless sensor network.

4. The base node (sensor node) transfers this data to the soekris. The soekris

transmits data pertaining to previous passage of the train to soekris sitting on

the train.

5. The data collected at this point of time is transmitted to the next train passing

by. The train which has collected the data from the sensor network, ultimately

feeds the backbone at any of the stopping stations. The data is either available

online or made available for further processing.

The organization of the rest of the chapter is as follows. We start by introducing

how data collected by each sensor node is organized and the way it gets transmitted.

24

Then we go on to explain the time line of the network followed by the explanation of

interaction between various components with special emphasis on the layering of the

components that so much enhances the design.

2.1 Data Organization

The solution employs a Wireless Sensor Network (WSN), each of the node in the

WSN connected with a tri-axial accelerometer. Every node collects vibration data

(accelerometer readings) as the train passes over the bridge. The setup (accelerometer

and sensor network) is responsible for measuring 3 kinds of vibrations as already

stated.

• Ambient Vibrations (Induced by wind)

• Forced Vibrations (Induced by Train passing on the bridge)

• Free Vibrations (After the train has passed the bridge)

It is important to know the exact amount of data that each node will collect.

Symbol Units
Let the speed of the train passing over the bridge be V Kmph

Let the length of bridge be L meter
Let the length of the train be T meter

Let the length between each pier of the bridge be S meter
Number of piers in the bridge n -

Number of samples per second (Sampling rate) r per second
Number of Axes a -

Size of each sample b bytes

Table 2.1: Constants for calculation of amount of data collected at each node

• The amount of time the train remains on the bridge

t =
(L + T)

(V ∗ 1000)/3600
seconds (2.1)

25

• The total amount of data

D = (r ∗ a ∗ b ∗ t) (2.2)

Now we shall plug in the values of the various parameters to calculate the actual

amount of data generated at each node. Refer Table tab:datacal

Symbol Value Units
V 60 Kmph
L 600 meters
T 500 meters
S 80 meters
n 7 -
r 100 per second
a 3 -
b 2 bytes

Table 2.2: calculation of amount of data collected at each node

Here we provide a justification for the values in Table 2.2. In India, trains run

at an average speed of 80-100 kmph (fastest trains), but their speed is lesser when

they pass on some bridges, so we have taken the value 60kmph. The length longest

railway bridge in India is 3.06km, but a lot of bridges are in the range of 0.5 to 2km.

The length of a train is around 500m (30m per coach and 20 coaches). We need to

sample at a rate of 100 samples for second to get useful data about the vibrations

and all 3 axes are necessary.

• The amount of time the train remains on the bridge (Substituting in equation

2.1)

t =
(600 + 500)

(60 ∗ 1000)/3600
= 66seconds (2.3)

• The total amount of data (Substituting in equation 2.2)

D = (100 ∗ 3 ∗ 2 ∗ 66) = 39.6KB (2.4)

The data collected in each node is around 39.6 KB, but the tmote has only

10KB RAM. But the RAM is also used for storing other local variables and arrays,

26

so the effective RAM available for actual data storage will be around 6-7KB (in our

present implementation). So how do we store 39.6 KB of data in 6-7KB. The answer

lies in the huge flash that the tmote features. So we create an abstraction called a

File.

A File is an abstraction created to handle the amount of data generated at a

single node, which is greater than the amount of RAM available. The size of the File

is fixed in a network. All data generated at a node is divided into fixed number of files.

The number of files at all nodes is the same because the amount of data generated

for an event at every node is the same. The File has the following attributes.

• The node id of the node which originally collected the data.

• The file no within that node.

• Start address of the file in the flash.

• Size of the file (for convenience we keep the size of the file constant, this does

not affect the performance).

We divide all the data node collects into files, the size of the files is small enough

that files can be easily stored in the RAM. But these files need to be transferred to

the flash before the arrival of data for the next file. The files are transfered one file at

a time to the next node (parent node) in the network. The transfered file is stored in

the flash before the next file is transfered. So in this way we store and transfer data

in the form of files. But we store all the properties of the File in the RAM.

Once the data is stored on the flash as files , data is also read as files and

transmitted to the lower layer (transport) as a buffer to be reliably transmitted to

the next node in the network as packets, where the packets are then reassembled and

reconstructed as a buffer in the transport layer, which is then passed as a file to the

application layer, where it is again stored as a file in the flash. This node is now

responsible for transmitting not only its file but also the file that it has received from

its children. Consider a 7 node network arranged as a temple topology with the base

node and nodes numbered 1-6. Consider that the entire data at each node is divided

27

Data of all the nodes

Data of single node 1 Data of single node 3Data of single node 2

File 1 File 2

File 3

File 1 File 2

File 3
File 1 File 2

File 3

File 1 File 2

File 3

File 1 File 2

File 3

File 1 File 2

File 3

packets packetspackets

Figure 2.2: Organization of data in the network

Figure 2.3: Data transfer within the sensor network

28

into 2 files File 0 and 1 of equal size. The organization of data is depicted in the

Figure 2.2. Figure 2.3 shows which nodes are in possession of what data at the end

of the entire transfer.

2.2 Time line Diagram of the Network

We have described how the data is organized within the network and how this data

gets transmitted to the base station and ultimately to the central server for processing.

In this section we describe the time line of the entire network describing the status

of the network at various time instants.

All the nodes in the network run the same code except the base node. The reason

the base node runs a different code is because we experienced arbitrary packet errors

and packet truncation while running the same code as that run on other nodes. So we

had to do a lot of testing and implementation changes to work around the problem.

So when data was sent at high rates to the base node we experienced arbitrary packet

errors and packet truncation. We could not exactly pinpoint the error to a particular

component but the problem was solved by using the radio component one layer below

the one used in previous implementations. All nodes except the base node runs layered

code where as the base node runs monolithic code due to the reason stated above.

The same problem has been faced by few others, who are working in this domain

[15, 20].

Figure 2.4 depicts the timeline of all nodes in the network except the base node.

All nodes when they boot up, undergo some initialization (initialization of states

, variables and formatting the flash) and then they duty cycle between sleep and

wakeup.

The nodes do a duty cycling between sleep (ts) and wakeup (tw). At the receipt

of a command from the Base station all the nodes switch on their respective sensing

circuitry and start collecting data (tc). The circuitry consists of an triaxial accelerom-

eter and the corresponding attenuator circuit. The details of the attenuator circuit

29

time

ts
tw tc tr tt

tw Wake up

ts Sleep

tc Collect Data

tr Route

tt Transmit Data

Figure 2.4: Timeline diagram of the wireless sensor network

are described in section 3.3. The switching circuitry is responsible for powering on

and off the accelerometer and the attenuator. We need a switching circuit because

unlike the tmote the rest of the circuit cannot be powered off by a command and

the rest of the circuitry draws as much, if not more current. After the motes have

collected data , they transmit the data during the transmit phase (tt) . The rout-

ing phase can happen at anytime of the lifetime of the network but before the data

transmission phase (tr). The Routing phase has been shown to happen just after the

data collection phase in the diagram for convenience. After the node has transmitted

its data to its parent it can go back to its duty cycling until it receives any other

command from the base station. The gaps between (tt) and (tr) indicate that the

transmit phase and routing phase may have a small amount of time lag. Similarly

there routing phase may not start immediately after data collection phase and the

nodes may wait for some time before going to sleep after transmission is completed.

2.3 Component Interaction

In this section we describe the various software components and the interaction taking

place between them for the application to work. We also explain the layering in the

stack. Instead of showing all the components and their interactions in a single diagram

we make use of multiple diagrams for reasons of better clarity.

30

Here we would like to mention that we cannot have more than one transfers to

the same destination at the same time. Such transfers according to our experiments

would lead to unacceptable packet losses for both the transfers. So if more than one

node is requesting transfer to a particular destination, one of the nodes is asked to

wait while the other transfers the data. The waiting node resumes its transfer later.

This mechanism is achieved through Wait To Send (WTS) messages, described in

chapter 4 (Transport Protocol).

2.3.1 Layering

Application Layer

Routing Layer

Transport Layer

SendFile.send () SendFile.sendDone ()

Route.getParent ()

MAC

SendDataMsg.send ()

SendDataMsg .
sendDone()

Application Layer

Routing Layer

Transport Layer

ReceiveFile.receive ()

Route.getParent ()

MAC

ReceiveDataMsg .
Receive()

PHY PHY

Sending Node Receiving Node

Route.parentAssigned () Route.parentAssigned ()

Figure 2.5: Application stack of a node sending a file from one node to another

The entire application (Figure 2.5) is developed as layers (or components) inter-

acting with one another. The diagram shows the interaction of application, transport

and routing Layers to transmit a single file from one node to the other node. Imple-

menting functionality in the form of layers is a natural choice for protocol development

in the networking domain. But we have an additional reason to use layering. TinyOS

and NesC embodies the concept of implementation and interfaces. It not only pro-

vides extensive support for definition and implementation of interfaces, it also widely

encourages the use of it. In a layered stack like ours the lower layer implements

31

and provides a well defined interface and the upper layers use these interfaces to im-

plement other functionality. For example the transport layer provides the interface

SendFile.send (), which the application layer uses to split the entire data set to

files and transmit it reliably through the transport layer. Similarly the routing layer

handles the selection of next hop for data transfer which the transport layer uses to

transmit a file to the base node. The MAC layer handles the sending of individual

packets which again the transport layer uses.

The application layer issues a SendFile.send() command to the transport

layer when it gets a transmit message from the base node through the other nodes.

Note that only the leaves in the network start transmission, while the other wait

to receive transmission from their children and then they start their transmission

after they get data from their children. The transport layer breaks down the file

into packets and transmits the packets to the receiving node. The transport layer

employs a reliable NACK based mechanism, where NACKs are sent for the entire

file and not as soon as packet loss is detected. The transport layer gets the parent

address to which it has to transmit the packets from the routing layer by issuing a

Route.getParent() command. As soon as the receiving node receives all the packets

(after reliable NACK based mechanism), the transport layer signal the application

layer using ReceiveFile.Receive(), indicating that the receiving node has received

a file from the sending node (Figure 2.3). Now the receiving node is responsible for

sending this file and all the files that it has received from its child (sending node),

along with the files with respect to the data collected from its own accelerometer

forward along the network to its parent. Then that parent is responsible for sending

the data to its parent and so on till the data reaches the base node.

At every node the parent is queried from the routing layer by issuing the com-

mand, Route.getParent(). For a node to query its parent from its Routing layer,

the precondition is that the node should have the knowledge of its parent. To make

sure that a node does not get an invalid parent , the transport issues a command

Route.isActive() to find out whether the route is active or inactive. The other

mechanism that helps is that the Routing layer itself signals the completion of route

assignment by sending Route.parentAssigned(isLeaf), telling the transport and

subsequently the application that whether the corresponding node is a leaf or not. It

32

is important for a node to know whether it is leaf or not because it is the leaves in

the network that are responsible to start the transmission of data, the other nodes

start transmitting data once they get data from their children. The mechanism has

been shown in Figure 2.5.

2.3.2 Components

Application Layer

Transport Layer
SendFile.send() SendFile.sendDone ()

InitializeBuffer.initialize ()
InitializeBuffer .
initializeDone ()

ReceiveFile.Receive ()

Figure 2.6: Interaction between application and transport layer

• Figure 2.6 describes the interaction between the application and the transport

layer (component). The application layer is responsible for collecting data,

storing it in the flash , reading it from the flash , dividing it into files and sending

it to the transport protocol for reliable transmission. The application layer

uses the command InitializeBuffer.initialize() to initialize the buffer

at the transport layer to its buffer so that it can seamlessly pass data to the

Transport layer and also to pass other initialization data. The transport layer

sends a signal InitializeBuffer.initializeDone() to trigger the success of

initialization. The Application layer uses the command SendFile.send() to

send a file to the Transport layer which in turn signals a SendFile.sendDone()

to notify the success of send. Whenever the transport layer receives a file it

notifies the application layer by signaling a ReceiveFile.receive()

• Figure 2.7 describes the interaction between the application and the flash-

HAL (Flash Hardware Abstraction Layer) and the application layer and the

AccelerometerHAL (Accelerometer Hardware Abstraction Layer). The Flash-

HAL is basically a library provided by the TinyOS distribution to write and

read to the flash. The write to the flash is accomplished using the command

BlockWrite.write(), passing data, length and addr in the flash to write to,

33

AccelerometerHALFlashHAL

Application Layer

ADC.getData()

ADC.dataReady()

BlockWrite.write()

BlockWrite.writeDone()

BlockRead.ReadDone()

BlockRead.read()

Figure 2.7: Interaction between application Flash and the Accelerometer

which in turn triggers a BlockWrite.writeDone(). Read is similarly done using

read() and readDone() . The AccelerometerHAL abstracts the accelerom-

eter Hardware. To get data the application uses the command ADC.getData(),

the AccelerometerHAL in turn signals a ADC.dataReady() giving the applica-

tion layer with ADC data two bytes at a time (because it is a 12 bit ADC).

• The application design is such that there can be only one transfer happening

at a time to a node. This is because having multiple transfers to a single node

creates enough interference that the resulting packet loss becomes unbearable

for the application. As a result of having only one transfer at a time the latency

of transfer increases, which is acceptable as far as our application is considered

as long as only the nodes which are doing the data transfer are awake and the

rest of the nodes are in low power mode, in turn saving power and increasing

the lifetime of the network.

Routing Layer

Route.getParent ()

SendDataMsg.send ()

SendDataMsg .
sendDone()

MAC

Route.ParentAssigned ()

Transport Layer
ReceiveDataMsg .
Receive()

Figure 2.8: Interaction between transport layer, Routing and MAC

• The interaction between the transport, routing and MAC layers are depicted

in Figure 2.8. The transport Layer’s responsibility is to reliably deliver the file

34

passed to it by the application layer to the Transport Layer of the node’s parent.

Routing layer handles the determination of the route for every node to the base

node, simply put it determines every node’s parent. The interaction between

the routing, transport and MAC have already been sufficiently described in the

previous sub-section .

We have explained various aspects of the application design, a bit of hardware

design, component interaction, layering and the timeline diagram of the network. In

the coming chapters we would explain each of these in detail.

35

Chapter 3

Hardware Design

In this chapter we describe the design and fabrication of hardware components as

required by our application. We have built most of our hardware on PCB’s. Our

motive was not to create reliable and sound hardware but to develop a prototype as

quickly as possible. We would like to mention that though we explain all the hardware

components here for the sake of completeness, some of the hardware components have

been designed as part of a colleague’s thesis [8]. The organization of the chapter is

as follows. First we explain the various parameters that influenced our choice of an

accelerometer chip then we go on explain the fabrication of the application circuit

based on the chip. The design of the attenuator circuit is explained in the next section

followed by the design of the UART to SPI circuit. The design of the switch circuit

and the power circuit follows next.

The prototype of the base node and the ordinary nodes are shown in Figure

3.1 and 3.2 respectively. The photograph of the base node shows a tmote connected

to a soekris through a UART to serial converter. This setup is used to transfer

data from the tmote to the soekris for further data transfer (using WiFi) to another

soekris sitting inside the train. Both the soekris and the UART to serial converter

are controlled by the switch circuit connected to the tmote. This setup is required

because the data rates of the tmotes is limited and we use WiFi capability of soekris for

36

Soekris

External
AntennaSensor node

UART to
Serial
Converter

Switch

Soekris

External
AntennaSensor node

UART to
Serial
Converter

Switch

Figure 3.1: Circuit of Base Node developed by us

Accelerometer

Switch

Sensor Node

Accelerometer

Switch

Sensor Node

Figure 3.2: Circuit of Node developed by us

37

transferring aggregated data of the sensor network. In the photograph of an ordinary

node an accelerometer connected to the tmote can be seen. The accelerometer is

controlled by the switch circuit connected to the tmote. The switch circuit is used to

power on and power off both the circuitry to operate in low power mode. The switch

circuit is used to power on and power off both the circuitry.

3.1 Choice of Accelerometer Chip

The choice of the accelerometer is crucial to the success of the application. Ac-

celerometers are used for various applications ranging from mobile phone handsets,

hard drive protection systems, safety critical automobile systems to monitoring health

of structures. The most important parameters of the accelerometer that impact our

application are as follows.

1. The number of axes along which the accelerometer can measure the acceleration

is important. Accelerometers are available which can measure single axis, dual

axis and triaxial accelerations. We would ideally prefer a triaxial accelerometer

which can monitor all the axes namely X, Y and Z for detailed analysis of the

vibrations of the bridge.

2. The resolution of the accelerometer defines the lowest unit of acceleration that

can be measured by the accelerometer. The lower the resolution the better. A

1mg resolution accelerometer can measure accelerations as low as 1/1000th of

a g (1g=9.8m/s2).

3. The sensitivity of an accelerometer is the magnitude of the output voltage per

g of acceleration. A sensitivity of 800mV/g means that that the output of the

accelerometer increases by 800mV with every 1 g increase in acceleration.

4. The noise performance of an accelerometer is extremely critical. It determines

the amount of noise that get added per
√

Hz. Noise of up to 350μ g/
√

Hz rms

is bearable for our application [14].

38

5. The range of acceleration is the maximum and minimum acceleration that an

accelerometer can measure. We need an accelerometer that can measure from

-2g to +2g. The bandwidth of the accelerometer defines the range of acceler-

ations that an accelerometer can measure. The application of monitoring of

huge structures like bridges requires the accelerometer to be able to measure

very low frequencies (high time periods)[14].

6. The supply voltage of the accelerometer should be low as we are using it for low

power application where battery power is a major constraint. Furthermore the

current consumption should also be low.

7. The output voltage of the accelerometer at 0g determines whether we require an

additional circuitry to adapt this voltage to that of the mote’s. The tolerable

voltage of the mote is 0-3V so the sum of voltage at 0g and the additional

voltage at 1g should neither be greater than 3v nor lower than 0V.

Parameter ADXL203 MMA7260Q
Company Analog Devices FreeScale Semiconductors
Package 8-Terminal Ceramic LCC 16-pin QFN

No of axis 2 3
Resolution 1mg -
Sensitivity 1000mV/g 800mV/g

Noise performance 110μg/
√

Hz 350μg/
√

Hz
Bandwidth 0.5-2500Hz XY-350Hz Z-150Hz

Acceleration range ±1.7g ±1.5g, ±2g, ±4g, ±6g
Supply voltage 5V 2.2V-3.6V

Output voltage at 0g 2.4V-2.6V 1.485V-1.815V
Current consumption 700μA 500μA

Table 3.1: Comparison of accelerometers chosen by us : ADXL203 and MMA7260Q

We finalized on two accelerometer chips based on the above said parameters,

ADXL203 [1] and MMA7260Q [10]. The comparison between these chips is given in

Table 3.1.

39

Figure 3.3: Application circuit for MMA7260Q accelerometer chip

3.2 Design of Application Circuit for Accelerome-

ter

We have used an evaluation board for ADXL203 chip while we have tried to fabricate

the application circuit for the MMA7260Q. The design of the circuit for MMA7260Q

was done using protel trial version. One of the difficulties we faced was getting the

proper package (16-pin QFN) for the chip so we ended up creating the package itself

before using it in the application circuit. A package basically consists of the schematic

and the footprint of the chip on the circuit board. The application circuit is given in

Figure 3.3. We have designed the application circuit but the fabrication of the circuit

is pending.

The physical layout of the evaluation board we are using is reproduced (Figure

3.4) as it is given in the data sheet [1].

40

ADXL203EB
REV. 0

203CE

C2

C3

C1 ST

J1

+V

X

Y

G

Figure 3.4: Physical layout of the ADXL203 Evaluation Board

3.3 Design of Attenuator Circuit

The response from the accelerometer is in the range of 1.5V to 3.5V. The output

voltage at 0g acceleration of the accelerometer is 2.5V and there is an additional

1V voltage increase for every 1g of acceleration. So if we expect the structure to

have maximum acceleration of at least +/- 1g, the output range of the accelerometer

will be 1.5 to 3.5 V. But the tmote ADC (analog to digital converter) is capable of

withstanding voltage from 0 to 3V only, so we use an attenuator circuit to reduce the

output voltage of 1.5 to 3.5 V to 0.5 to 2.5 V which is a safe voltage level for the

tmote ADC. The application circuit is available at [3](section 3 differential amplifier).

Voutput = R2/R1(V2 - V1). Here V2 = signal from accelerometer, V1 = 1V, R2 = 1ohm,

R1 = 1ohm. Since signal ranges from 1.5V-3.5V thus using formula we get Voutput in

the range 0.5V-2.5V.

3.4 Design of Circuit to Interface Mote with Soekris

Our application design demands that we use a soekris single board computer along

with the tmote, both talking to each other. The tmote has a easily usable USB

41

interface, unfortunately the soekris does not have a USB port but only has a serial

port which comes close to what we want. We even tried to use a USB to serial

converter. But somehow it did not even work on a windows machine and we needed

it to run on a scaled down version of a linux running on soekris. The reason as we

later hypothesized may have to do with the right driver not getting installed or the

FDTI chip on the mote which is responsible for talking to the USB interface not

getting powered on as the USB to serial converter does not give any power at the

USB end. So we had no choice but to use the UART of the tmote and convert it

into serial port interface. We could not use the RS232 chip because the tmote UART

works at 3.3 V voltage level so we at last chose the ST3232 to interface the tmote

with the soekris. Details can be found in [8].

This setup is used to transfer data from the tmote to the soekris for further data

transfer (using WiFi) to another soekris sitting inside the train. Both the soekris and

the UART to serial converter are controlled by the switch circuit connected to the

tmote. This setup is required because the data rates of the tmotes is limited and we

use WiFi capability of soekris for transferring aggregated data of the sensor network.

3.5 Design of Switch circuit

The entire setup the sensor network consisting of wireless motes and the soekris

board is supposed to be deployed on a battery where no continuous power source is

unavailable. The sensor nodes (tmotes) can be switched to low power mode to save

battery power but the rest of the circuitry (accelerometer, soekris , attenuator) have

to switched off using an additional circuitry. We use chips 4069 and 4027 to achieve

the required functionality. Details can be found in [8]

42

3.6 Design of Power Circuit

The various components described above run on battery power. Each of these compo-

nents run on different operating voltages. But we cannot have more than one battery

on a deployment, so there is a need to design a power circuit which takes input from a

single battery source and feeds to different circuits handling their voltage and current

ratings. The Table 3.2 lists the different hardware components and their respective

voltage ratings. Details can be found in [8].

Hardware Component Voltage Rating Chip Used
Soekris 5-15 V -

Tmote-sky 2.7-3.3V LP2950
Accelerometer ADXL203 5V 7805

Switching circuit 5V 7805
UART to Serial converter 5V 7805

Table 3.2: Voltage Rating of various components

43

Chapter 4

Transport Protocol

4.1 Overview

In this chapter we describe the reliable transport protocol we have designed and

implemented to be used for transmitting data from each node to the base node. We

use a store, wait, and forward technique for data transfer. It is quite different from

store and forward in the sense that a node after it receives data from a child node

stores the data and waits from time Tw to hear transmissions from any other child

node which may have been delayed. We make use of the RAM as well as the flash

to store data in the intermediate nodes. As described in the earlier chapter the data

collected by a single node (mote) is much larger than can be stored in the RAM of the

mote hence the data is divided into files, small enough that a single file can be easily

stored in the RAM. Each of these files are then transmitted one by one to the parent

and then they are stored in the flash, until it gets forwarded to the base node, where

it gets forwarded to the Soekris board though the SPI interface shown in Figure 1.3 .

The typical topology in the BriMon application is shown in the Figure 4.1.

We implement robust hop by hop reliable mechanisms and do away with end to end

reliable mechanisms for performance reasons. A end to end reliability adds additional

44

overhead to the protocol and decreases performance. Consider a network with 3

nodes, node0, node1 and node2 where node2 is trying to transmit data reliably to

node0. Consider that the medium is very lossy and packet loss rates of 50% are

not uncommon. If we had a end-to-end reliability mechanism node0 would request

node2 for its packets and the transfer would happen again through node1. So all

three nodes are awake, which reduces the network lifetime. But in case of hop-by-hop

reliability node1 makes sure it has all packets of node2 before beginning transmission

to node0. So only 2 nodes are awake at a time. The case is severe in case of long

linear topologies, which are common in our application.

A hop-by-hop reliable mechanism implies that every node is responsible for the

reliable delivery of not only its own data but also the data of its children and its

children’s children and so on till the leaf is reached. So leaf nodes are responsible for

transmitting its data to its parent only. In this case nodes 6 and 7 transmit their

data (only their data) to nodes 4 and 5 respectively. But node 4 has to transmit not

only its data but also the data that it has received from node 6 to its parent i.e. node

3. A similar procedure applies for node 5 also.

5

4

7

6

1

3

2

Figure 4.1: Temple Topology : Typical Topology specific to the application

4.2 Protocol Description

In this section we describe the details of the transport protocol, explaining exactly

how the transmission happens. We emphasize on the reliability of transfer detailing

the actions taken by the protocol from various errors and packet losses. Let us assume

for the rest of our discussion that nodeS is transmitting a file to nodeD. We explain

45

the scenario during the transmission of a single file between 2 nodes, most of what is

explained here applies to all transmissions that happen.

The Header and Tail messages act as delimiters to the file and data message

carries the actual payload. The ACK message is sent by the receiving node to the

sending node to notify the receipt of the entire file. The receiving node sends NACK

messages in case of packet loss, upon receipt of NACK messages, the sending node

sends RETR messages (retransmissions). The WTS Message is used to stop a node

from transmitting when the receiving node is busy receiving data from another node.

We use a NACK based reliable delivery mechanism. The reason for using a

NACK based mechanism instead of ACK based mechanism is that, NACK based

mechanisms perform better in environments where packet losses are high. This means

the number of packet transfers that need to happen to get data to the destination is

less in the case of NACK based mechanisms compared to ACK based mechanisms.

This is because there is an extra packet transmission for every packet received in ACK

based mechanisms but in the case of NACK mechanism a packet may be transmitted

for n number of packet losses. If for instance ACKs are bundled the number of

transmissions will be higher because the entire bundle has to be retransmitted even

if one packet gets lost, which is not the case in NACK based mechanisms where

individual retransmissions are possible.

Here we explain the need for the WTS message. Consider the scenario when

2 nodes node2 and node3 are trying to transmit to nodeD simultaneously. If both

are allowed to transmit simultaneously packet losses would be unbearable. So nodeD

arbitrates and asks one node (node3) to stop transmitting through the WTS message

which is a Boolean indicating whether a node should transmit or not. Once node2 is

done with its transmission it asks node2 to resume transmission again through WTS

message. Node3 can go to sleep all this while and be on a sleep wakeup duty cycle.

Consider nodeS (source) is sending data to nodeD (destination) and nodeS has

partitioned that data into n number of files, all data (files is initially stored in the

flash). Here we go through the basic mechanism before delving into the details. Now

nodeS first reads the first file from the flash making it available in the RAM and then

sends the file (as packets of course) to nodeD. If nodeD does not receive all the packets

46

it sends NACKs for all the packets not received to nodeS. Each NACK packet carries

NACK for NACK MSG LEN packets. NodeS after receiving NACKs retransmits

the corresponding packets. This process can continue till the maximum number of

retransmissions are done and then the nodeS gives up and sends the tail message

indicating that the file transfer is complete. This maximum number of retransmissions

is a configurable parameter. On the other hand if nodeD receives all packets sent by

nodeS , nodeD sends an ACK to nodeS. Upon receipt of the ACK nodeS, reads the

next (second) file from the flash and prepares to send the same to nodeD.

Now we start explaining the protocol in detail. NodeS first sends nodeD the

header message notifying nodeD of the details of the file transmission. The header

message is basically a request for transmission. The header message is sent by nodeS

to nodeD to inform nodeD that a transmission of a file is going to begun. NodeS

informs nodeD about its identity (from addr), apart from the details of the data (file)

it is going to send. The details of the file such as the node to which the data of

the file belongs, the sequence number of the file, the number of packets, the starting

Sequence no of the packets and the number of bytes of data it is going to transmit is

also transmitted. If nodeD is ready to accept the transmission, then nodeD sends a

header ack message which is exactly same as the header message it received except

that it set the is ack field. After nodeS receives Header ack message from nodeD it

starts transmitting data packets at a rate of one packet every Td seconds. Actually

Td can be varied or we can also transmit at the maximum speed (in TinyOS terms

sending a packet as soon as sendDone is called) possible without considering any

specific interval. Actually the this maximum speed is around 10ms so we use Td =

10ms in our implementation.

After all data messages are transmitted nodeD sends an acknowledgment mes-

sage to nodeS. Now nodeS sends Tail message to nodeD. After nodeS receives Tail

ack message from nodeD , nodeS repeats this process for other files if it has any other

file to transmit. If nodeS does not have any more file to transmit, nodeS notifies this

to nodeD by setting the is transmitDone field in the Tail message. The reason we

need a tail message is not very obvious, it seems the header message can very much

replace the tail message, but the case is not so. Consider the scenario when nodeS is

transmitting the last file to nodeD and it is facing heavy packet loss and is done with

47

maximum number of retransmissions, so nodeS needs to tell nodeD that it is done

with its retransmissions even though nodeD does not have all the packets. Now it

cant send a header message as it does not have any other file to transmit, so we use

a tail message for this functionality.

These sequence of events occur when everything goes right and there are no

packet losses but the wireless medium is lossy and packet losses are bound to occur.

So we shall examine various cases when some of the packets get lost. This scenario

is depicted in Figure 4.2.

Node D Node S

Header Msg

Th

Header Msg Ack

Data Msg N

Data Msg 2
Data Msg 1 Td

 Ack Msg

Tail Msg

Tail Msg Ack

Node D Node S

Header Msg
Th

Header Msg Ack

Data Msg N

Data Msg 2
Data Msg 1 Td

 Ack Msg

Tail Msg

Tail Msg Ack

Header Msg
Th

Thr
Header Msg

Tail Msg
Ttr

zero packet loss Header and Tail messages lost

Figure 4.2: Description of Transport Protocol

Let us consider that in case the header message sent by nodeS gets lost and

does not reach nodeD. Now nodeS starts a timer Thr just after it has sent a header

message, if it does not get a header ack before the Thr timer expires, it triggers a

retransmission of header message. The timer Thr has to be greater than 1 round trip

time of a packet. In case a Tail message gets lost the sequence of events that leads

to a recovery is exactly similar to that described. This scenario is depicted in Figure

4.2.

If a data packet gets lost, the receiving node nodeD in this case stores the seqnos

of the packets that it has not received, and once it receives the last packet, nodeD

48

starts transmitting NACK messages with the seqnos of packets it has not received as

payload. Each NACK packet carries sequence numbers of NACK MSG LEN packets.

After nodeS receives the final NACK packet it starts retransmission of lost packets at

the rate of 1 packet every Tretr milliseconds. The final NACK packet is determined

by a boolean field fin in the NACK packet. Usually Tretr is the same as Td. After

nodeD receives all packets it sends an ACK to nodeS. This scenario is depicted in

Figure 4.3.

If the last packet gets lost then nodeD does not transmit neither a NACK nor

a ACK. So the source nodeS starts a watchdog timer as soon as it transmits the

last packet Tlst. If Tlst expires and it has received neither a NACK or an ACK it

retransmits the last packet.

If the final NACK packet gets lost, the source does not know when to begin

retransmission of packets, so the source nodeS runs a watchdog timer TNACK , upon

the expiration of which the source starts retransmission. The timer TNACK gets reset

every time a NACK packet is received.

Node D Node S

Header Msg

Th

Header Msg Ack

Data Msg N

Data Msg 2
Data Msg 1 Td

 Ack Msg

Tail Msg

Tail Msg Ack

 NAck Msg

RETRa Msg m

Data Msg m

RETR Msg m+1
Tretr

Data Msg m+1

Node D Node S

Header Msg

Th

Header Msg Ack

Data Msg N

Data Msg 2
Data Msg 1 Td

 Ack Msg

Tail Msg

Tail Msg Ack

 NAck Msg

RETRa Msg m

Data Msg m

RETR Msg m+1
Tretr

Data Msg m+1

 NAck Msg

RETRa Msg m

RETR Msg m+1

 NAck Msg

Data Messages getting lost NACK messages getting lost

Figure 4.3: Description of Transport Protocol

49

If even after retransmissions nodeD has not got all the packets, it again sends

NACK packets and the same procedure repeats. After nodeD receives all packets it

sends an ACK to nodeS. In case a NACK message gets lost, it is treated as if , RETR

packets with seqnos being carried in the NACK packet were lost. So nodeD (receiving

node) takes no extra care to ensure reliable delivery of packets, the onus is on nodeS

(sending node) to make sure to transmit all packets or give up after maximum no of

retransmissions. This scenario is depicted in Figure 4.3.

There are always other unforeseen errors that can lead to failure, in that case

both nodeS and nodeD run a watchdog timer and just restarts if its in a middle of

a data transfer for too long with no activity. The reasons for failure can be sudden

voltage increases leading to restart of nodes, some improper handling of memory by

the code etc. And then it starts transmitting the same file again. If the source nodeS

restarts it asks nodeD to discard the previous unfinished transfer and start afresh. If

the destination restarts it requests a new transfer from the source nodeS.

4.3 Message Format

In this section we describe the different types of messages used to reliably transmit

a file from one node to its parent. We describe the different types of active messages

(AM) we use in the implementation of the protocol. The TOSMsg packet explained

in appendix 1 includes the MAC header and the MPDU (MAC Protocol Data Unit).

All the active messages are accommodated within the data field of the TOSMsg packet

which is the MPDU.

All the message types have been in Table 4.1. For all future explanations let us

consider the scenario where nodeS is trying to transmit a file to nodeD.

• The structure of the Header Message is shown in Figure 4.4. The header mes-

sage contains the destination the node requesting transmission, node to which

file belongs, the file number, number of packets and number of bytes. The need

for first 3 parameters are quite obvious whereas the latter 2 parameters war-

50

Message Type Description
AM DATA MSG Data packets
AM HEADER Header Message

AM TAIL Tail Message
AM ACK Acknowledgment Message

AM NACK Nack Message
AM RETR Retransmission Message
AM WTS Wait To Send Message

Table 4.1: Message Formats

rants some explanation. The start sequence no of the data packets are required

because, the previous node may have experienced heavy packet losses and may

not have data for the first N packets, so it can start sending data from N+1

packets, effectively saving bandwidth. The no bytes field is required because

the last packet may not contain data in its entire payload.

Is_ackNo_bytesStart_seqnoNo_packetsno_fileno_nodefrom_addr Is_ackNo_bytesStart_seqnoNo_packetsno_fileno_nodefrom_addr

0 1 2 3 5 7 9

MAC Protocol Data Unit (MPDU)

Figure 4.4: Structure of Header Message

• The data message carries the actual data of the files as an array 2 byte data

fields. The seqNo is the sequence no of the packet and helps in determining

packet loss. The data message carries no extra information than what is required

and is optimized for increasing throughput. The structure of the data message

is depicted in Figure 4.5.

Data[]SeqNo Data[]SeqNo

0 2 MSG_DATA_LEN + 2

Figure 4.5: Structure of Data Message

• The structure of the Tail Message is shown in Figure 4.6. The structure of

51

the tail message is very much similar to that of the header message. The only

difference is the transmitDone boolean field which notifies nodeD that nodeS

is done with its transmission of data and that nodeD can either start receiving

data from other nodes or it can start transmitting data.

Is_ack transmitDoneNo_bytesStart_seqnoNo_packetsno_fileno_nodefrom_addr Is_ack transmitDoneNo_bytesStart_seqnoNo_packetsno_fileno_nodefrom_addr

0 1 2 3 5 7 9

Figure 4.6: Structure of Tail Message

• The ACK message (shown in Figure 4.7) is relatively small in size and is a

notification from nodeD (receiving node) to nodeS (sending node) that it has

received the file completely. It contains the id of the node to which the data

belongs and the id of the file that it has received along with the number of

packets received.

No_packetsno_fileno_node No_packetsno_fileno_node

0 1 2 4

Figure 4.7: Structure of Acknowledgment Message

• The NACK message is used by the receiving node to notify packet loss to the

sending node so that it begins retransmissions of lost packets. Each NACK

packet has information about the node id of the data , file id , total packet loss

experienced and the seqnos of the packets not received. Note that there may

be multiple NACK messages as there may be more packets lost than can be

accommodated in a single NACK packet, so the Boolean field is final notifies

the final packet among many packets being transmitted. The NACK message

structure is shown in the Figure 4.8.

Seqnos[]Is_finalCtr_pktLossno_fileno_node Seqnos[]Is_finalCtr_pktLossno_fileno_node

0 1 2 4 5 NACK_MSG_LEN + 5

Figure 4.8: Structure of NACK Message

52

• The RETR message has exactly the same structure as the Data message, but it

is used when retransmitting packets. It is more for programming convenience

that this message type is created. Data message would done just fine

• The structure can be seen in Figure 4.9. The WTS message consists of just a

boolean field sendData.

sendDatasendData

Figure 4.9: Structure of Wait To Send Message

4.4 Implementation Details

In this section we describe a few implementation details which influenced a lot of our

design decisions. The tight integration of the transport protocol with handling of flash

and the fact that tmote’s flash and radio use the same UART are the most important

of those details. Our application design requires the application layer to interleave

writing and reading data to the flash with sending messages over the radio. But as the

radio and flash share the same UART for controller functionality, the application layer

has to do some intelligent arbitration. Though most of this arbitration is done by a

layer down the stack, we had to do some careful programming and exercise caution.

Having appropriate timers at required places, designing a layered architecture for

handling flash and radio at different layers and ensuring their proper interaction were

challenging tasks. Careful experimentation after implementation allowed us to reduce

the value of timers at various places, and thus helping us to optimize the protocol to

a great extent.

53

Chapter 5

Routing Protocol

5.1 Overview

In this chapter we describe the routing protocol we have designed and implemented to

determine the route to transmit data from all nodes to the base node. It is interesting

to note that the data transmission is from all nodes to a single specified node called the

base node and not from all nodes to all nodes. This can lead to many optimizations in

the route determination. Another fact that favors the problem of route determination

is that nodes are static and the position of nodes hardly change after the initial

deployment. This would lead to the argument that the routing protocol is not at all

needed and the route can be actually hard coded in each of the nodes. But we also

need to consider the following scenarios.

• If any of the nodes fail and is unavailable for a small amount of time the entire

network will fail, on the other hand if we determine routes dynamically, there

is a great chance that an alternate route gets formed. But hard coding all the

possible routes is a crude way and may be feasible in certain conditions.

• Having a routing protocol will also enable structural scientists deploy nodes in

54

ad-hoc manner and collect data. This kind of data collection may dictate the

nature of deployments.

5.2 Protocol Description

In this section we describe the routing protocol in detail. Let us consider the temple

topology with 7 nodes of the BriMon application for the rest of our discussion. Node1

is the root or the base node. Following is the set of assumption made by the protocol.

• The routing protocol assumes that all the nodes have a unique id, which is not

an unreasonable assumption to make.

• In our current implementation we assume that all the nodes are awake all the

time. But our design has provision for the nodes to duty cycle between sleep

and wake up.

• The routing protocol assumes that during a transmission of packets from node1

to node2, at least one packet transmitted by node2 is heard by node1. This

basically means that it assumes limited symmetry in transmission.

The Figure 5.1 describes the conventions used in describing the routing protocol.

The routing process sets in prior to data transmission within the network. The

base node starts the routing process by switching its state to NODE TRANSMIT and

It starts sending beacons (Figure 5.2). The state of all other nodes is NODE LISTEN.

And none of the nodes have their parent decided and their parent address is set to

-1. The beacons contain the identity of the originating node and the no of hops it is

to the root and the sequence number of the beacon. The nodes send beacons with

increasing sequence numbers and the sequence number space is reset at the start of

the routing phase.

For the base node the originating node is 1 and number of hops is 0. Lets

say that nodes 2 and 3 are able to hear the beacons transmitted by node 1. Node1

55

Convention for Routing Protocol

Symbol Name Description

NODE_LISTEN
The node is listening, its parent not yet

determined

NODE_TRANSMIT
The node is transmitting beacons, its

parent has been determined

NODE_IDLE
Both its parent and its children have

been determined, it can go back to duty
cycling

NODE_LEAF
The node is leaf in the network (no
children) and is in NODE_IDLE state

NODE_ORPHAN
The node is orphan but got connected

to a parent but with a poor link

LINK
Used to represent the link from a node

to its parent

LINK_POOR
Used to represent the poor link from a
node to its parent, orphan to its parent

1

�
�1

�
1

�1

�
�1*

Figure 5.1: Routing Protocol : key

�
�

1

3

2

4

5

6

7
Beacons
parent 0
hops 0

Figure 5.2: Routing Protocol : Stage 1

56

transmits beacons for a maximum time period Tmaxt. The reason node1 transmits

beacon for Tmaxt is because, if it does not receive any beacons from its ”‘child”’ nodes

within Tmaxt then node1 assumes that there are no nodes to form the route and can

go back to sleep to wake up later to repeat the same procedure. Nodes listening to

node1 wait for a time period Tl before transmitting beacons. The reason the nodes

2 and 3 wait for Tl time is that node1 need not be the only prospective parent (node

transmitting beacons). In effect a node in NODE LISTEN state waits for Tl amount

of time to hear to all its prospective parents. The other functionality of Tl is to

calculate packet loss during that duration. As the rate of transmission of beacons

is known to all nodes (fixed initially) the node listening for Tl will be able to figure

out how many packets it has received as against how many packets it is supposed to

receive.

After node 2 and 3 have waited for Tl they have enough information to decide on

their parent. The parent decision process is simple Just choose the parent from which

you have experienced the least packet loss. This condition is too simple, and has some

other additions. No node is allowed to choose a parent if the packet loss is greater

than MAX ADMISSABLE PKTLOSS, until and unless it has no other choice. Now

in this case node 2 and node 3 have heard beacons from only nodeD and lets assume

that the packet loss has been less than MAX ADMISSABLE PKTLOSS. So node 2

and 3 choose node 1 as their parent. So as node 2 and node 3 have chosen their

parent their state changes to NODE TRANSMIT and they in turn start transmitting

beacons.

�1 ��
3

��
2

4

5

6

7

parent 1
hops 1

parent 1
hops 1

Figure 5.3: Routing Protocol : Stage 2

57

Now node 2 and node 3 are in NODE TRANSMIT state and are transmitting

beacons with originating node as node 2 or 3 respectively and no of hops as 1 (Figure

5.3). Node 1 can also hear this and with the help of these beacons updates its list of

children and stops transmitting after receiving beacons for time Tl (It continues to

receive beacons for time period Tc after the receipt of its first beacon from child). The

reason for this is similar to the reason why node2 and 3 waited for time Tl. Node1

actually waits to get information about all its children . Once node1 gets information

for time period Tc node1 stops transmitting beacons and can go back to sleep. The

value of Tc should be such that it should be able to get information about its children

before Tc timer expires. The relation between Tmaxt, Tl and Tc is given below.

Tmaxt >> Tl (5.1)

Tmaxt >> Tc (5.2)

Tmaxt ≥ Tl + Tc (5.3)

�1 ��
3

��
2

��
4

��
5

6

7

parent 3
hops 2

parent 2
hops 2

Figure 5.4: Routing Protocol : Stage 3

Node4 and node5 hear to the beacons transmitted by node2 and node 3. Lets

suppose that node4 experiences packet loss greater than MAX ADMISSABLE PKTLOSS

from node 2 and from node3, it experiences tolerable packet loss , so node 4 designates

node 3 as its parent (Figure 5.4). In case of node 5 lets suppose that it experiences

tolerable packet loss from both node 2 and node3. So node5 has node2 and node3

as prospective candidates as parents. It chooses one of them as its parent (lets say

it chooses node 2) and stores the rest (prospective parent candidates from which

this node has experienced packet loss which is within limits). After choosing their

58

parent and waiting for time Tl (just like node 2 and 3) they change their state to

NODE TRANSMIT and start transmitting beacons. Node 2 and node 3 hear to

these beacons and node3 adds node4 to its children list while node2 adds node5 to

its children list.

�1 ��
3

��
2

��
4

��
5

6

7

parent 5
hops 3

Figure 5.5: Routing Protocol : Stage 4

Now node6 and node7 hear to the beacons of node4 and node5 (Figure 5.5). Lets

say that node6 experiences packet loss greater than MAX ADMISSABLE PKTLOSS

from both nodes 4 and 5. So node6 designates both these nodes node4 and node5 as

reserve parents and its state change to NODE ORPHAN (it becomes an orphan for

now) and it starts a timer Tor.

�1 ��
3

��
2

��
4

��
5

�
6

�
7

parent 5
hops 3

Orphan node

Figure 5.6: Routing Protocol : Stage 5

�
�

1

��
��3
��2 ��

��4
��5 �

�6*

�7

high pkt loss

Figure 5.7: Routing Protocol : Stage 6

If the orphan node does not get any beacons (prospective parents with lesser

packet loss than its current reserve parents), it is forced to choose one of the reserve

59

parents (one with lesser packet loss). But node7 has got beacons from node4 and

node5 and the packet losses are within the limits. So as usual it designates one of

them as its parent (say node5) and puts the other in the ancestors list. Now node7

starts transmitting beacons after it changes its state to NODE TRANSMIT. Nodes

4 and 5 hear to the beacons of node7 and they put node7 in their children list. In the

meantime the Tor timer of node6 which is in NODE ORPHAN expires and lets say it

has not got any other prospective parents so it ends up choosing node4 as its parent

(Figure 5.7, 5.6). Node7 does not hear to any of the beacons from its child node

(nodes with 1 greater hop count) so after Tmaxt it changes its state to NODE LEAF.

After node6 chooses its parent, its state also changes to NODE LEAF in a similar

manner to that of node7. But note that beacons transmitted by node6 are ignored

by nodes whose parents have already been selected. Now we have two leaf nodes

in the network, the leaf nodes start transmitting AM ROUTEENTRY messages to

its parent after populating its parent entry in the AM ROUTEENTRY message, its

parent in turn populates its parent entry and sends it to its parent and so on till it

reaches the base node. So with AM ROUTEENTRY messages the base node becomes

aware of the topology of the network.

5.3 Message Formats

The routing protocol uses 2 message types for its operation. AM BEACON is used for

propagating the route and AM ROUTEENTRY is used to inform the route formed

to the base node. The AM BEACON messages are broadcast messages, propagate

from the base node while AM ROUTEENTRY messages are unicast messages start

propagating from the leaves and go all the way to the base node.

Message Type Description
AM BEACON Beacon messages

AM ROUTEENRY Route report messages

Table 5.1: Routing Layer Message Formats

The beacon contains the identity of the originating node, number of hops to

the base node and the sequence number. The route entry message contains the

60

SeqNoNo of hopsOriginating node SeqNoNo of hopsOriginating node

0 1 42

Figure 5.8: Message structure of a beacon

Node addrs
No of
nodes

Leaf Node addrs
No of
nodes

Leaf

0 1 2 MAX_PARENT_ADDR + 2

Figure 5.9: Message structure of a route entry message

leaf of the route, the number of nodes in the route and the actual route up to

MAX PARENT ADDR nodes. The route is ordered such a way that nodes with

greater number of hops to the base are before ones with lesser hops, thus node with

just 1 hop is at end.

61

Chapter 6

Experimental Results

In this chapter we explain the initial experiments conducted by us, which influenced

our design decisions along with the evaluation of our protocol by varying the parame-

ters. Before proceeding to evaluate our protocols, we would like to mention that our

aim was not to compare our protocols with existing protocols in the domain. Though

we have built our own protocols, they are optimized for our application. Our main

aim is to show that our protocols do well in the our application setting.

6.1 Range of the Tmote

We have modeled our solution around wireless sensor networks. One of the first

experiments that we conducted was to test the transmission range of the sensor node

hardware (moteIV’s tmote-sky). Our solution involves placing these motes on piers

of a bridge where the inter pier distance can be anywhere between 30-90 m. Our

experiment on the range of motes aims to find if we can have successful data transfer

between motes when we have a mote placed on every pier, without having a forwarding

mote in between.

62

The experimental setup involved 2 nodes, one being the base node connected to

the laptop (node0) while the other (node1) sending packets continuously at the rate

of one packet per second. The experiment was carried out by configuring both the

nodes to maximum transmit power (default). While having both nodes switched on

we progressively increase the distance of node1 in steps of 10m and then after 70m in

steps of 5m till we stop getting packets. We repeated these experiments for different

environments. The results are in given in Table 6.1. We define the range of the mote

as the largest distance at which the packet loss is less than 10%.

Environment Range
On a road with trees 70 meters

Indoors in office corridor 30-40 meters
On a air strip 120 meters

Table 6.1: Transmission Range of Tmote-Sky

The airstrip is a large open space with no obstruction, place where small aircrafts

and gliders can land and take off. The important observations of the experiment are

as follows.

1. The range of the mote is highest on the airstrip because there are no physical

obstructions and no RF interference.

2. In the case of a road with trees, the range reduces to 70m because of the

obstructions created by trees, vehicular traffic and movement of personnel

3. The range is the least in an office environment because of obstructions in the

form of furniture and people. The involvement of RF interference also cannot

be ruled out.

4. The environment that matches the environment in our application is the airstrip

environment, so we can expect the motes to operate at a range of the order of

100m in the setting.

The other important observations are as follows

63

1. The range did not improve with an external antenna in all cases suggesting that

the internal antenna of the tmote is quite good. We had to do some hardware

tweaking (shifting a SMD capacitor) followed by soldering the SMA connector

to connect the external antenna.

2. The range significantly decreased if an old battery which has been used for quite

some time is used. However we have not quantified this.

3. During our experiment on the airstrip we observed that the range of the mote

significantly improves if there is an obstruction (human obstruction) just behind

the mote (not in the line of transmission).

4. In all our experiments the motes had to be placed on raised platform, failing to

do so would significantly reduce the range.

We draw the following conclusion from these experiments.

1. On bridges with inter-pier distance of the order of 100m, there is no need for a

forwarding mote between two motes placed on a pier, but for greater distances

we likely need a forwarding mote.

2. However only extensive experiments conducted on the actual site will reveal

the actual scenario. But the worst scenario is that the range of the mote may

decrease or we may face higher packet loss. If the range of the mote decreases

we could use a forwarding mote in between, and any further packet losses are

taken care of by our robust transport protocol.

6.2 Significance of LQI and SS

In this section and the next we explain the experiments we have done to evaluate

parameters for our routing protocol. In this section we measure LQI and SS vs

distance. We evaluate LQI (link quality indicator) and SS (received signal strength)

as a possible parameter for our routing protocol. These parameters are used by the

64

LQI vs Distance

60

65

70

75

80

85

90

95

100

105

110

10 20 30 40 50 60 70 80

Distance in meter

L
Q

Iv
al

u
e

LQICL
LQIBASE

Figure 6.1: Plot of LQI vs Distance

SS Vs Distance

195

200

205

210

215

220

225

230

235

10 20 30 40 50 60 70 80

Distance in meter

S
S

V
al

u
es

SSCL
SSBASE

Figure 6.2: Plot of SS vs Distance

65

routing protocol to select the best parent for a node in order to transmit data to the

base node.

Both LQI and SS are register values and have no units. The radio chip CC2420

provides SS (Received Signal Strength Indicator) that may be read any time. It

also provides LQI upon reception of each packet by sampling the first 8 chirps of

the packet. Actually both LQI and SS are part of the TOS Msg packet but never

transmitted. They can be accessed by Msg->lqi and Msg->strength (In TinyOs

terms).

The correlation of LQI (link quality indicator), and SS (received signal strength)

with the distance between the motes is very important for our work. With the help

of this experiment we would like to see how the LQI and SS vary with distance and

how their values correlate at either direction of the bidirectional link to establish

symmetry of these values at both the sides of the link.

The experimental set up is quite similar to that of the previous experiment. It

consisted of 2 nodes S (node0 and node1), one being the base node (node0) connected

to the laptop. The base node (node0) sends packets continuously to node1, node1

upon reception of these packets, populates the packets with LQI and SS values at

its side (client side) and returns it to the base node. The base node once it gets

these packets populates these packets with LQI and SS values and passes it on to the

laptop. So we have 4 values in total LQI at node1, SS at node1, LQI at node0 and

SS at node0. Then we plot the the average of these values take over a period of time

(60s) at each distance. The experiment was conducted at the airstrip.

Figure 6.1 shows how LQI at both the client (node1 , LQICL) and base (node0,

LQIBase) varies with distance. We experienced consistent values as far as LQI is

concerned. By consistent we mean that for a particular distance between two motes

the variance between all values was small. The LQI values also exhibited symmetry

which means that the LQI value at the transmitting node and the receiving node was

almost the same (not only the average but also the individual values were almost the

same) As can be seen from the graph LQI remains almost constant (varies between

100-110) for distances from 10 to 60 m and then suddenly dips to around 75 at 70m.

At 70m we experienced significant packet loss (around 10-20%), but the packet loss

66

significantly increased (hardly few packets got by) at 80m. The range has significantly

decreased from greater than 100m to a mere 70m because of the fact that we were

using batteries which were not new for the motes in this particular experiment. The

results are affected only to the extent that the range may increase but the shape of

the curve would remain the same.

This experiment initially proves that LQI is in fact a very good measure to de-

termine packet loss, thus a good candidate for the parameter for our routing protocol.

The reason we want to use LQI is because, calculating LQI is quite straight forward

where as calculating packet loss is quite complicated in our protocol setting. With the

choice of LQI as the suitable parameter we can use a lot of existing routing protocols

with the required modifications.

Figure 6.2 shows how SS at both the client (node1 , SSCL) and base (node0,

SSBase) varies with distance. We experienced inconsistent values as far as SS is

concerned. This means that even for the same distance the SS values varied widely.

The SS values exhibited symmetry which means that the SS value at either side of

the link was almost the same (not only the average but also the individual values

were almost the same). As can be seen from the graph the SS values decreased with

distance, but discrepancies can be noticed at distances 40, 60 and 80 m. We repeated

the experiment and found similar inconsistencies in the repetition too. So we rule out

SS as a parameter for our routing protocol because of the inconsistencies observed.

6.3 Correlation of LQI and Packet Loss

As explained in the previous section SS is not a consistent measure of distance,

though LQI shows some promise. Here we investigate whether LQI is good enough

as a measure for measuring packet loss, which can be use as a metric in our routing

protocol. The results were verified in the work [19].

The experimental set up is quite similar to that of the previous experiment. It

consisted of 2 nodes (node0 and node1), one being the base node (node0) connected

67

Packet Loss Vs LQI

0

10

20

30

40

50

60

70

80

90

100

0 0 0 0 0 0 0 0 1 1 1 1 3 3 4 5 5 6 7 8 10 16 35 85

Packet Loss (for every 100 packets)

L
Q

I(
L

in
k

Q
u

al
it

y
In

d
ic

at
o

r)

Figure 6.3: Plot of LQI vs packet Loss

to the laptop. Node1 sends packets continuously to node0 at the rate of 1 packet

every 25ms. The number of packets lost for every 100 packets sent is calculated along

with minimum and maximum LQI values for all the received packets. Multiple such

readings are taken at every distance. Readings are taken at different distances increas-

ing at 10m initially, and then increasing in smaller granularity at greater distances

(3-5m). Experiments were carried out in a long hallway.

Figure 6.3 shows the plot of LQI vs Packet Loss. The X-axis shows number of

packets lost for 100 packets transmitted. The Y-axis shows the corresponding average

LQI value. Ideally LQI values should decrease as packet losses increase but what is

seen is quite inconsistent. We are able to see instances at certain distances (Here

distances are not important so they are not shown) where despite having low LQI

have low packet loss and vice versa. The distance is not important because we are

trying to show that LQI is not a good measure of packet loss at some instances and

so we have to use packet loss instead to LQI.

The implication of this measurement is that we use packet loss as a metric in

68

our routing protocol instead of using LQI as in other conventional protocols.

6.4 Analysis of Transport Protocol

In this section we analyze the transport protocol for reliability and scalability (stabil-

ity with increasing data) . We analyze the protocol on various parameters in a single

hop setting. We have also successfully tested our protocol in a multihop setting but

have not done elaborate experiments. The aim of this exercise is to quantify the

scalability and reliability of our protocol.

Data Transmission time for single hop transfers
for different number of files

2173
4427

8973

13520

18056

22583

0

5000

10000

15000

20000

25000

Number of files (eack of 2400 bytes)

A
m

o
u

n
t

o
f

T
im

e
fo

r
tr

an
sf

er

Time in ms

Time in ms 2173 4427 8973 13520 18056 22583

2 4 8 12 16 20

Figure 6.4: Plot of data transfer duration vs number of files

One of the metrics of the transport protocol is the amount of data that it can

transfer. Our application requirements demand that the protocol should be able to

transmit around 40KB of data. The experimental setup involves 2 nodes node0 and

node1 where node0 is the base node, runs the base node code and connected to the

laptop. Node1 is loaded with the normal code for data collection (that all the nodes

69

in the network are loaded with). We issue a command to node1 to start transfer of

X amount of data through the laptop and node0. The amount of time required for

the transfer of X bytes is recorded for different values of X. The time recorded is

from receipt of the first header message to the receipt of the last tail message. The

experimented was conducted indoors with a distance of few meter between the nodes.

Figure 6.4 shows the plot of the amount of time taken in ms for different file

sizes. The plot is almost linear which indicates that our protocol scales linearly for

increasing amount of data. We shall take one of the readings and try to account for

the time taken for the transfer with respect to our protocol. We choose for simplicity

the case when we transfer 2 files each of 2400 bytes (so total of 4.8KB of data). We

have resorted to approximations in a lot of these calculation for lack of accurate data,

however we show that our protocol does quite well even if take on a conservative

explanation.

As mentioned earlier the time calculated is from the receipt of the first header

message to the receipt of the last tail message. This means the time required for

reading the first file from the flash (only the first file) is not included in the transfer.

With this this we try to account for the 2173ms taken for 2 file transfers (4.8KB)

below.

• The time taken for sending acknowledgment to header (H1) is 15ms. Actually

the total round trip time as we calculated by experiments i.e from the time to

send a message and then its receipt of acknowledgment with no other overhead

at all is around 25ms. The reason for this is that it takes around 10ms for

a packet to get sent at a node (in fact something less than 10ms), we have 2

packets to be sent and we have round trip time (RTT) and some processing

overhead to account for. So the time for sending acknowledgment after receipt

of acknowledgment is around 15ms.

H1 = 15ms(approx) (6.1)

• After receipt of header messages are sent at an interval of 10ms. The total

amount of packets to be sent in this case is 100 (2400 bytes/24bytes per packet).

70

So the amount of time for data transfer is 1000ms.

D1 = 1000ms (6.2)

• After receipt of last packet acknowledgment message gets sent. Interval between

sending of last packet and receipt of acknowledgment is 25ms due to reasons

explained above.

A1 = 25ms(approx) (6.3)

• Interval of time between receipt of acknowledgment and sending of tail message

is 10ms.

Tstart1 = 10ms (6.4)

• Interval between sending of tail message and receipt of acknowledgment is 25ms.

T1 = 25ms(approx) (6.5)

• Interval of time between receipt of acknowledgment for tail and resumption of

next file transfer is δ. This means that the interval is negligible for all practical

purposes

In1 = δ (6.6)

• Amount of time to read the second file from flash is α.

F2 = α (6.7)

• Interval of time to start sending header message is 10ms.

Hstart2 = 10ms (6.8)

71

• Interval between sending of header message and receipt of acknowledgment is

25ms (approx).

H2 = 25ms (6.9)

• Now the file transfer for second file has started and we can plug in values for

variables similarly.

D2 = 1000ms, A2 = 25ms, Tstart2 = 10ms (6.10)

• Amount of time to receive the tail message once it is sent is 15ms

T2 = 10ms (6.11)

By summing all the equation we have the total time take to be

TotalT ime = 2155 + δ + α (6.12)

This almost accounts for the 2173ms time taken for 48KB of data transfer. In

the worst case we may not be able to account for 2-5% of the total time of transfer

(considering approximations also).

The same reasoning can be used to explain all the numbers in the graph. We

conclude by saying that our protocol scales linearly for increasing amount of data

transfers.

In the next experiment we seek to observe the trade off between small and large

file sizes. The experimental setup is same as that of the previous experiment except

that the amount of data transfered is the same for all transfers but the file sizes are

different for every transfer. With this experiment we aim to show that larger file sizes

are better than smaller file sizes.

The experimental setup is the same as that of the previous experiment except

72

Data transmission for different file sizes for same
amount of data : 48KB

24406

22583
22052

21611 21411

20000

21000

22000

23000

24000

25000

File Size (x No of files)

A
m

ou
nt

of
ti

m
e

fo
r

tr
an

sf
er

Time in ms

Time in ms 24406 22583 22052 21611 21411

1200
(x40)

2400(x2
0)

3200(x1
5)

4800(x1
0)

6000(x8)

Figure 6.5: Plot of data transfer duration for same amount of data transfer vs number
of files and different file sizes

for the differing file sizes and variable number of files being transfered.

The experimental results are shown in Figure 6.5. The total time for transfer

readings were taken for the same amount of file transfer, 48 KB but the number of

files and hence the file sizes were varied. The results show a plot of amount of time

taken in ms for different number of files. We can observer a sudden dip in the graph

because the number of files decreases from 40 to 20 at that instant but for the rest of

the readings the change is much less. In this experiment and the previous one we have

observed that the amount of time for each file transfer from the receipt of header for

that file to the receipt of tail for that transfer is directly proportional to the amount

of data being transfered. But the inter-file interval (consisting of round trip times

of header, tail and ack and file read) is almost constant irrespective of the file size

(around 30ms). So when the number of file increases (thus file size decreases) the time

for file transfer decreases individually but the number of inter-file intervals increase

proportional to the increase in number of files hence the transfer time increases.

73

TransferT ime = n ∗ T + (n − 1) ∗ β (6.13)

Where n is the number of files and n-1 is the number of inter-file intervals. T is

time required for transfer of a single file. β is the inter-file interval, which is almost

constant. So as n increases (file size decreases) T decreases hence the the term n ∗ T

remains constant. But as n increases so does n-1 but β is a constant hence the term

(n − 1) ∗ β increases hence total transfer time increases as number of files increase

even with total data transfer remains a constant.

The application layer throughput can be calculated using the formula

Throughput = Data/T ime (6.14)

Where Data is the amount of data transfered while Time is the amount of

time taken for the transfer. Taking values from our experiment we have throughput

= 48000/21.411 = 17.9kbps. But the MAC level throughput calculated separately

is (about 100-110 packets, each of 36 bytes per second) 31.6kbps. The MAC level

throughput is calculated by transmitting packets as fast as possible and calculating

the throughput by taking into account the MAC header. But the CC2420 radio claims

to have 256kbps throughput but the achievable is only around 30-40 kbps []. In the

rest of the section we account for the loss in throughput.

• The through put at the application layer is 17.9kbps

Throughputapplication = 48000/21.411 = 17.9kbps (6.15)

• Accounting the MAC header MAC header we get an additional 8.8kbps (10

bytes per packet and 100 packets per second).

ThroughputMACheader = 10 ∗ 100 ∗ 8 = 8.8kbps (6.16)

74

• Taking into account the sequence number field will account for additional 2 *

100 * 8 = 1.6kbps.

Throughputseqno = 2 ∗ 100 ∗ 8 = 1.6kbps (6.17)

• So we have accounted for 28.3kbps in total.

Throughputaccounted = 28.3kbps (6.18)

The header and tail messages and the corresponding delays due to round trip

times account for the additional 3.3kbps, hence we are able to account for almost all

the throughput loss. We conclude by saying that our protocol is efficient and add

very little overhead (around 10%-20%) for reliable data transfer.

75

Chapter 7

Conclusions and Future Work

7.1 Conclusion

India has the second largest rail network in the world, transporting over four billion

people annually. An essential part of this network are 120,000-plus steel bridges 1,

a lot of which are aging, weak, distressed, accident-prone. Actual numbers indicate

that 43% are over 100 years old and 57% are over 80 years old. There is currently no

system in place to continuously monitor these bridges. It is extremely dangerous to

operate trains carrying hundreds of passengers on a railway network, of which these

bridges are a part. To replace all the old bridges at once is not a feasible solution

because it would involve prohibitive costs. Moreover with no data to support the

claim that these bridges are indeed old and need urgent attention, it would be rather

difficult to have a strong case for the replacement of these bridges. Our work aims at

providing sufficient data for analysis so that structural engineers can make a strong

case for repair or replacement.

We conclude by saying that we have successfully developed all the various soft-

ware and hardware components required for the application, successfully integrated

1http://www.rediff.com/news/2001/jun/25spec.htm

76

most of the components. Data collection from the wireless sensor network and fur-

ther aggregation at the central server has been successfully achieved. The application

has exhibited desired levels of reliability and performance as per our testing so far,

however only a actual deployment on a railway bridge will expose problems with the

application if any. The major problems we have faced both during development and

testing of our protocol was unreliable nature of the wireless medium and compatibil-

ity problems with with various software and hardware components. Other than this

unexpected failure of hardware and software required additional reliable mechanisms

and certain redundancy in design put in place. We plan to do the actual deployment

on one of the railway bridges in summer of 2006.

Though our work was specifically designed and implemented for the BriMon

application, we found that the protocols developed finds almost direct use, without

much modification to other applications. WiBeam is a parallel work done by one of

our colleagues which is a wireless bearing monitoring system which aims to automate

the collection of vibration data from various motors in a ship. Our routing and

transport protocol found direct use with few modifications in this application. Apart

from this a lot of code developed for the BriMon project was used in most of the course

projects of the CS725 (Topics in Networking)course most directly and few indirectly.

Due to wide usability of our code and protocols we also plan to package our code and

release it to the open source community to further research in this domain.

7.2 Future Work

Deployment of the system developed till now is the top priority. Initial deployment

would involve simple short lived sensor network collecting data and storing the same

on a computer placed on the same bridge. A further step would be to transfer the

data to a mobile vehicle, if possible a moving train. Deploying and testing a long lived

network with detection of train arrival, wake up of the network and data transfer to

the train would be the final step of deployment planned. A detailed analysis of the

mentioned deployments would follow. As a further extension of the work we would

also like to evaluate the suitability of our protocols to other sensing applications like

77

the WiBeam project.

78

Appendix A

Description of Hardware and

Software

A.1 Tmotes

The tmote-sky motes , hereafter referred to as the tmotes is one of the latest offering

from Mote-IV [11] corporation in the wireless sensor network domain. The tmote-

connect and tmote-invent are newer offerings but the basic hardware remains much

the same. The tmote-connect adds an ethernet port and the tmote-invent is just

a cosmetic makeup of the older tmote-sky. The other hardware platform which is

similar to the tmote is the micaz, here after referred to as mica motes which is an

offering from CrossBow Technologies [29]. We choose tmote-sky as our hardware

platform. The tmote-sky features a 250kbps CC2420 radio controlled by a 8MHz

MSP430 micro controller, which provides ADC ports and other peripherals. It is

programmable through the USB port of the pc, has a 1MB non volatile flash for data

storage, provides 3 leds as user interface and a slot to attach a external antenna. The

key features of this platform are detailed below.

79

• The tmote-sky features a CC2420 radio from chipcon [4]. It is a 802.15.4 compli-

ant high data rate radio with 256kbps data rate, provides PHY and some MAC

layer functions. The radio can be configured to operate in different power levels

from 1 to 31, 1 being the lowest power and 31 being the highest power. The

corresponding current consumptions, output power are (8.5mA, -25dbm) and

(17.4, 0dbm) respectively. However making the radio operate in lower power

significantly lowers the rage of operation. The CC2420 radio provides two met-

rics RSSI (Receive Signal Strength Indicator) which can be measured at any

time and LQI (Link Quality Indicator) which is calculated by measuring the

first 8 chips of each packet. The CC2420 chip is controlled by the MSP430

micro controller by TI [22] through the SPI it shares with the flash as well as

the external expansion connector. This means that there is a need for careful

bus arbitration while using any of them simultaneously. The radio also provides

for clear channel assessment based on the measured RSSI value and a program-

mable threshold. This feature is used to implement CSMA-CA. The different

CCA modes are as follows

1. Reserved

2. Clear channel when received energy is below threshold.

3. Clear channel when not receiving valid IEEE 802.15.4 data.

4. Clear channel when energy is below threshold and not receiving valid IEEE

802.15.4 data.

The CCA feature has enabled the Wake-on-WLAN scheme which we have used

in our application[9].

• The tmote features an on-board MSP430F1611 8Mhz micro controller from TI

with 48KB ROM and 10KB RAM. The 10KB ram, which incidentally is the

largest on-chip RAM means that a large amount of data can be kept in the

RAM without any writes or reads needing to the flash. As we demonstrate

later this capability has influenced our design decisions. A 48KB ROM means

that the maximum size of the code that can fit into tmote is 48KB. This is very

less compared to the 128KB offered by the micaz from Crossbow technologies

[29]. The 16 bit RISC based micro controller features extremely low sleep and

active current consumptions which allow the tmotes to run for months together

80

on battery power. It has a digitally controlled oscillator (DCO) which may

be operated up to 8MHz, and can be turned on from sleep mode in 292 ns

at room temperature, which for seamless switching between sleep and wake

up modes. Apart from DCO there are 8 external ADC ports and 8 internal

ports. The external ADC ports can be used to collect external signals while

the internal ports can be used to measure battery voltage, internal thermistor.

Apart from the ADC ports, a variety of peripheral like SPI (Serial port Interface)

, UART (Universal Asynchronous Receiver/Transmitter), I2C (Inter IC) are

also available. The external ADC ports and peripheral are provided through 2

expansion connectors one of 10 pin and the other of 6 pin.

• The tmote uses the USB (Universal Serial Bus) controller from FTDI (Future

Technology Devices International Ltd) [5] to communicate with the host pc. We

can also program the tmote using the USB interface, we do not need a separate

programming board unlike the micaz which need an additional programming

board to program the motes. This feature is extremely useful especially when

there are more than one group working on the same hardware platform, as we

do not need to purchase additional programming boards, just USB connectors

would do.

• A 1MB STM25P80 Flash [21] on the tmote is another extremely useful fea-

ture. This can be conveniently used to store data, code and other information

permanently on the tmote until the flash gets formatted. The flash shares SPI

communication lines with the CC2420 radio and the external SPI pins. So Flash

read and write has to be carefully interleaved with radio communication. The

1MB or 1024 KB of storage is divided into 16 segments each of size 64KB.

• The internal antenna of the tmote has indoor range of around 50m and an

external range of 125m at full battery power. There is also an option of attaching

an external antenna by first soldering SMA connector to the slot provided and

later attaching the antenna to that slot. Additionally one of the capacitors from

its place. This seems to be quite a cumbersome procedure compared with the

mica motes which come with an external antenna. The use of internal antenna

with the tmotes requires that the tmote be placed on a raised platform for

testing with higher ranges (10s of meters).

81

A.2 TinyOS and NesC

TinyOS [23] is an open source operating system designed for networked embedded

systems or sensor networks. Its component architecture enables rapid innovation and

development. TinyOS system, libraries and applications are written in a programming

language called NesC. NesC has syntax similar to C but supports the concurrency

model of TinyOS as well as various other mechanisms that allow application designers

to build components and easily integrate them into their applications.

The platform we are using (tmotes) is comparatively new and all the software

has been written for mica motes. Even though most of the libraries work for the

tmotes too, some of the applications are still not available on the tmote platform. But

development is catching up. TinyOS executes a single program but has 2 threads of

control - Tasks and Hardware event handlers. Tasks once started , run to completion

, don’t preempt one another and can be deferred. On the Hardware event handler are

executed as a response to hardware events , preempt tasks and other hardware event

handlers, and once started run to completion. As tasks and hardware event handlers

can be preempted certain race condition may occur which can be avoided either by

accessing all data exclusively or by using atomic statements inside tasks.NesC apps

are built out of components which have well defined bidirectional interfaces. It also

defines a concurrency model based on tasks and hardware event handlers to detect

data races at compile time.Every NesC app consists of several components wired

together to form an executable. A component provides a interfaces and may use

several interfaces. These interfaces are the only point of access to these components.

A interface declares commands which the interface provider has to implement and

a set of events that the interface user has to implement. So if you want to use a

command provided by a interface you have to first implement all the events specified

by that interface. Modules are used to implement interfaces and configurations are

used to wire other components together.

82

A.3 Accelerometers

An accelerometer is a electro mechanical device that produces electrical signal pro-

portional to the applied acceleration. Accelerometers are characterized by several

performance parameters: sensitivity, which denotes the smallest measurable accel-

eration and is expressed in gs (gravitational acceleration); dynamic range, which

denotes the range of accelerations that the device is capable of measuring and is also

expressed in gs; and noise, which is measured either as an RMS value, or is expressed

as a function of the frequency of vibration. the output of an accelerometer is a time

series of sensor readings with a specified resolution and a specified sampling rate.

Strictly speaking, these are parameters associated with the analog-to-digital circuitry

attached to an accelerometer, but they nevertheless constrain the performance of the

accelerometer. The resolution constrains the sensitivity of an accelerometer; a 10-bit

accelerometer whose dynamic range is 1g cannot have a sensitivity less than 1mg.

The sampling rate, on the other hand, governs the frequencies that can by measured

by the accelerometers.

A.4 TOSMsg Packet Format

In this section we describe the different types of active messages (AM) we use in the

implementation of the protocol. Before that we describe the structure of the TOSMsg

packet as shown in the Figure A.1 which includes the MAC header and the MPDU

(MAC Protocol Data Unit). All the active messages are accommodated within the

data field of the TOSMsg packet which is the MPDU. The size of the MPDU is 28

bytes by default but can be easily changed by changing the TOSH DATA LENGTH

field in the AM.h file. The other relevant field is the length field which holds the length

of the MPDU, in default case it is set to 28. The addr field is used to specify the ad-

dress of the destination node. If address field is populated with TOS BCAST ADDR

the message is a broadcast message, other wise the message is a unicast message

meant for the ”addr” node. The type field specifies the message type and allows us to

define as many as 255 active messages. These active messages can be used to handle

83

different message types in a customized manner easily. The group field specifies the

TOS AM GROUP. For nodes to transmit and receive each other’s messages they need

to be set to the same group. By default it is set to TOS DEFAULT AM GROUP;

grouptypeaddrdestpandsnFcflofcfhilength grouptypeaddrdestpandsnFcflofcfhilength

0 1 2 3 4 6 8 9 10

MAC Protocol Data Unit (MPDU)MAC Header

Figure A.1: TOSMsg Packet Structure

There are some of the fields in the TOSMsg structure that are not actually

transmitted but are there only for internal use. The ”strength” field give the signal

strength of the received packet and the ”lqi” field give the link quality indicator

, which is also used as a measure of packet loss, however we have found it a bit

unreliable. The ack field is used for acknowledgment and the ”time” field is used for

time stamping. The actual TOSMsg structure is reproduces as it is.

typedef struct TOS_Msg

{

/* The following fields are transmitted/received on the radio. */

uint8_t length;

uint8_t fcfhi;

uint8_t fcflo;

uint8_t dsn;

uint16_t destpan;

uint16_t addr;

uint8_t type;

uint8_t group;

int8_t data[TOSH_DATA_LENGTH];

84

/* The following fields are not actually transmitted or received

* on the radio! They are used for internal accounting only.

* The reason they are in this structure is that the AM interface

* requires them to be part of the TOS_Msg that is passed to

* send/receive operations.

*/

uint8_t strength;

uint8_t lqi;

bool crc;

bool ack;

uint16_t time;

} __attribute ((packed)) TOS_Msg;

TOSMsg Structure reproduced from AM.h

85

Appendix B

Some Facts on Bridges/Trains

In world,

1. Longest length - Second Lake Pontchartrain Causeway- 38.42 kms (span 45.7

mt)

2. Longest span - Akashi-Kaikyo Bridge - 3.91km length, 1.99 km span

In India, the longest bridge is Mahatma Gandhi Setu 5.85 km length

Railway bridges in India

• Longest length - Nehru Setu - 3.06 km

• Longest span - Sone, Dehri - 93 spans of 30.5m (upcoming 18 spans of 120 m

+ 2 spans of 30.5 m in Assam)

Fastest train

1. In world, Shanghai’s Maglev 299.33 km/hr (186 miles/hr) (France is testing

321km/hr or 200 miles/hr train)

86

2. In India, Bhopal Shatabdi 140km/hr (test runs upto 184km/hr were conducted

in 2000)

87

Bibliography

[1] http://www.analog.com/en/prod/0,2877,ADXL203,00.html.

[2] B. Akan and Ian F. Akyildiz. Event-to-sink reliable transport in wireless sensor

networks. IEEE/ACM Trans. Netw., 13(5):1003–1016, 2005.

[3] http://www.cs.wright.edu/ ~phe/EGR199/Lab 2/.

[4] http://www.chipcon.com.

[5] http://www.ftdichip.com/.

[6] Lakshman Krishnamurthy, Robert Adler, Phil Buonadonna, Jasmeet Chhabra,

Mick Flanigan, Nandakishore Kushalnagar, Lama Nachman, and Mark Yarvis.

Design and deployment of industrial sensor networks: experiences from a semi-

conductor plant and the north sea. In SenSys ’05: Proceedings of the 3rd inter-

national conference on Embedded networked sensor systems, pages 64–75, New

York, NY, USA, 2005. ACM Press.

[7] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John

Anderson. Wireless sensor networks for habitat monitoring. In WSNA ’02:

Proceedings of the 1st ACM international workshop on Wireless sensor networks

and applications, pages 88–97, New York, NY, USA, 2002. ACM Press.

[8] Nilesh Mishra. Brimon : Application design for railway bridge monitoring. Mas-

ter’s thesis, IIT Kanpur, 2006.

[9] Nilesh Mishra, Kameswari Chebrolu, Bhaskaran Raman, and Abhinav Pathak.

Wakeonwlan. In WWW ’06: 15th International World Wide Web Conference,

2006.

88

[10] http://www.freescale.com/webapp/sps/site/prod summary.jsp?code=MMA7260Q.

[11] www.moteiv.com.

[12] http://tinyos.cvs.sourceforge.net/tinyos/tinyos-1.x/tos/lib/MultiHopLQI/.

[13] Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-sequenced

distance-vector routing (dsdv) for mobile computers. In SIGCOMM ’94: Pro-

ceedings of the conference on Communications architectures, protocols and appli-

cations, pages 234–244, New York, NY, USA, 1994. ACM Press.

[14] Personal communication with Dr Bajpai and Abhisheck Singhal Dept of Civil

Engg IIT Kanpur.

[15] http://mail.millennium.berkeley.edu/pipermail/tinyos-help/2006-

January/014213.html.

[16] http://www.chipcon.com.

[17] http://www.rediff.com/news/2001/jun/25spec.htm.

[18] F Stann and J Heidemann, RMST: reliable data transport in sensor networks in

Proc. IEEE SNPA, May 2003, pp. 102-112.

[19] A Shekawat. Packet delivery performance in sensor networks. Master’s thesis,

IIT Kanpur, 2006.

[20] http://mail.millennium.berkeley.edu/pipermail/tinyos-help/2006-

January/013999.html.

[21] http://www.st.com/stonline/books/pdf/docs/8495.pdf.

[22] www.ti.com/msp430.

[23] http://www.tinyos.net.

[24] C. Wang, K. Sohraby, Bo Li, and W. Tang, Issues of Transport Control Protocols

for Wireless Sensor Networks.

89

[25] Chieh-Yih Wan, Andrew T. Campbell, and Lakshman Krishnamurthy. Psfq: a

reliable transport protocol for wireless sensor networks. In WSNA ’02: Proceed-

ings of the 1st ACM international workshop on Wireless sensor networks and

applications, pages 1–11, New York, NY, USA, 2002. ACM Press.

[26] Chieh-Yih Wan, Andrew T. Campbell, and Lakshman Krishnamurthy. Psfq: a

reliable transport protocol for wireless sensor networks. In WSNA ’02: Proceed-

ings of the 1st ACM international workshop on Wireless sensor networks and

applications, pages 1–11, New York, NY, USA, 2002. ACM Press.

[27] Chieh-Yih Wan, Shane B. Eisenman, and Andrew T. Campbell. Coda: conges-

tion detection and avoidance in sensor networks. In SenSys ’03: Proceedings of

the 1st international conference on Embedded networked sensor systems, pages

266–279, New York, NY, USA, 2003. ACM Press.

[28] Alec Woo, Terence Tong, and David Culler. Taming the underlying challenges

of reliable multihop routing in sensor networks. In SenSys ’03: Proceedings of

the 1st international conference on Embedded networked sensor systems, pages

14–27, New York, NY, USA, 2003. ACM Press.

[29] www.xbow.com.

[30] Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak Ganesan, Alan

Broad, Ramesh Govindan, and Deborah Estrin. A wireless sensor network for

structural monitoring. In SenSys ’04: Proceedings of the 2nd international con-

ference on Embedded networked sensor systems, pages 13–24, New York, NY,

USA, 2004. ACM Press.

90

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

