The 2P MAC for Rural WiFi Networks

Bhaskaran Raman Department of CSE, IIT Kanpur

Presentation at Cutting-Edge, 08 April 2005

Outline

- Why 802.11 WiFi for Rural Internet?
- A Cost Analysis, Network Architecture
- Performance of the 802.11 CSMA/CA MAC
- The 2P MAC
- Conclusions

Communication Revolution: Myth or Reality?

- Depends on who you ask...
- > 75% of the world
 yet to see any
 communication
- Cell-phone
 revolution in India:
 restricted to the
 metros

What are the Barriers?

Cost of land-line telephony: \$400 per line --> \$200 per line

400 million lines ==> \$80 billion

WiFi: A Cost-Effective Technology

- Equipment: cost priced
 - Open, inter-operable standard
 - Competitive mass production
 - Chip-sets: \$25-30, Access Points: \$120-700, PCMCIA
 cards: \$60-110

• Spectrum is free!!!

How to Use WiFi for Rural Internet?

Ethernet cable (to hub/PC)

Digital Gangetic Plains Testbed

Outline

- Why 802.11 WiFi for Rural Internet?
- A Cost Analysis, Network Architecture
- Performance of the 802.11 CSMA/CA MAC
- The 2P MAC
- Conclusions

What are the Costs?

Antenna tower (30m)	Rs. 70K
802.11 devices	Rs. 4K

- Tower cost is dominant
- Alright to have multiple 802.11 radios per location in the network

Network Architecture

- A generic mesh network
 - Multiple radios per node
 - One directional antenna per-link

Outline

- Why 802.11 WiFi for Rural Internet?
- A Cost Analysis, Network Architecture
- Performance of the 802.11 CSMA/CA MAC
- The 2P MAC
- Conclusions

The 802.11 CSMA/CA MAC

- Designed for heavy reuse (in the free spectrum)
- Carrier-Sense Multiple Access with Collision Avoidance
 - Good for situations of random contention
 - For example, several users in a room

802.11 in a Multi-Hop Setting

Exposed node problem

Multiple Interfaces, Directional Antennae

The Exposed Interface Problem

Outline

- Why 802.11 WiFi for Rural Internet?
- A Cost Analysis, Network Architecture
- Performance of the 802.11 CSMA/CA MAC
- The 2P MAC
- Conclusions

SynOp: SynRx + SynTx

- Links at a node operating simultaneously, synchronously (on the same channel)
- Is this feasible? Yes, under certain conditions

$$\begin{split} P_{R_{1}} - (P_{R_{2}} - SL_{\alpha}) &\geq SIR_{reqd} \\ P_{R_{2}} - P_{R_{1}} &\leq SL_{\alpha} - SIR_{reqd} \\ P_{R_{1}} - P_{R_{2}} &\leq SL_{\alpha} - SIR_{reqd} \\ &\left| P_{R_{1}} - P_{R_{2}} \right| &\leq SL_{\alpha} - SIR_{reqd} \\ \end{split}$$

SynOp Feasibility

- Write a set of linear equations
 - Powers of transmission are variables
 - Solve the linear equations
 - Feasible ==> synop possible throughout the network
- Feasible for many practical cases

The 2P MAC Protocol

- 2-P: each node switches between SynRx and SynTx
- When a node is in SynRx, its neighbours are in SynTx, and vice versa

- SynRx + SynTx = 1 round
- Require a bipartite topology

2P vs CSMA/CA: UDP

Throughput

2P vs CSMA/CA: TCP

Some Remarks on 2P

- 2-P can be implemented without tight global

synchronization!

all neighbours, switch immediately

- Timeout mechanism to deal with packet losses
- Firmware, proprietary driver software (e.g. Atheros), or driver-level implementation possible
 - Host-AP modifications tested for single-link
- Other issues: topology, TCP performance

Conclusions

- WiFi (802.11) is cost-effective
- But not performance effective
 - Poor spectral efficiency
 - Bad performance in mesh networks
- Performance can be partially fixed
 - Do better scheduling than CSMA/CA
- Further issues:
 - Performance of VoIP, Video
 - 2P extension for a point-to-multipoint scenario