Transport Protocols

Kameswari Chebrolu
Dept. of Electrical Engineering, IIT Kanpur

End-to-End Protocols

* Convert host-to-host packet delivery service into
a process-to-process communication channel

— Demultiplexing: Multiple applications can share the
network

* End points identified by ports

— Ports are not interpreted globally

— servers have well defined ports (look at /etc/services)

Application Layer Expectations

Guaranteed message delivery

Ordered delivery

No duplication

Support arbitrarily large messages
Synchronization between the sender and receiver
Support tflow control

Support demultiplexing

[.imitations of Networks

* Packet Losses

* Re-ordering

* Duplicate copies

* Limit on maximum message size

* Long delays

Demultiplexing
Application} {Application} {Application}
process process process

Ports——

Queues

Packets

demultiplexed

|

Packets arrive

o

User Datagram Protocol (UDP)

UDP Header
16 31
SrcPort DstPort
Length Checksum
Data

IS

Computes checksum
over UDP header,
message body and
pseudo-header

Transmission Control Protocol (TCP)

* Connection oriented
— Maintains state to provide reliable service
* Byte-stream oriented

— Handles byte streams instead of messages
* Full Duplex

~ Supports flow of data in each direction
* Flow-control

~ Prevents sender from overrunning the receiver

* Congestion-control

~ Prevents sender from overloading the network

TCP Cont...

Application process

Application process

Read bytes

Transmit segments

A
Write bytes
Y
TCP TCP
Send buffer Receive buffer
A
Segment Segmenthegment

TCP Header Format

0 4 10 16 31
SrcPort DstPort

SequenceNum

Acknowledgment

HdrLen| O Flags AdvertisedWindow

Checksum UrgPtr

Options (variable)

Data

— T

Data (SequenceNum)

Sender Receiver
-~
Acknowledgment +
AdvertisedWindow

Connection Establishment

Active participant

(client) (server)

State Transition Diagram

CLOSED

Passroe open

Close

Actrve openfSYIN

LISTEN

SYMN/SYN + ACK

SYN/SYN + ACK

NewdfSYMN

SYN_RCVD =

CloseflFIN

L

Acﬂ fﬁq + ACK/ACK

SYN_SENT

ESTABLISHED

FIN_WAIT _1

ﬂ?m&.-w &HI ACK

lﬁCK

FIN_WAIT_2

k FIN/ACK

FIN/ACK \

CLOSE_WAIT

l Close/FF1IN
CLOSING LAST_ACK
l ACK Timeour after tao l ACK

TIME_WAI'T

segmient liferimes

- CLOSED

Sliding Window: Data Link vs Transport

P2P: End points can be engineered to support the link

TCP: Any kind of computer can be connected to the Internet

> Need mechanism for each side to learn other side's resources
(e.g. buffer space) -- Flow control

P2P: Not possible to unknowingly congest the link

TCP: No 1dea what links will be traversed, network capacity can
dynamically vary due to competing traffic

> Need mechanism to alter sending rate 1n response to network
congestion — Congestion control

Sliding Window: Data Link vs Transport

P2P: Dedicated Link -- Physical Link connects the same two
computers

TCP: Connects two processes on any two machines in the Internet
> Needs explicit connection establishment phase to exchange state

P2P: Fixed round trip transmission time (RTT)
TCP: Potentially different and widely varying RTTs
> Timeout mechanism has to be adaptive

P2P: No Reordering
TCP: Scope for reordering due to arbitrary long delays
> Need to be robust against old packets showing up suddenly

Slow Start

* Add a variable cwnd (congestion window)
* At start, set cwnd=1
* On each ack for new data, increase cwnd by 1

* When sending, send the minimum of receiver's
advertised window or cwnd

R

2R

3R

-

Figure 2: The Chronology of a Slow-start

Cne Round Trip Time

Congestion Avoidance

(Additive Increase, Multiplicative Decrease)

* On detecting congestion, set cwnd to half the
window size (multiplicative decrease)

* On each ack of new data, increase cwnd by
1/cwnd (additive increase)

Combining Slow Start and
Congestion Avoidance

* Two variables cwnd and ssthresh
* On time out, set ssthresh = cwnd/2; cwnd = 1
* When new data 1s acked,

— If (cwnd < ssthresh) cwnd += 1;

— Else cwnd += 1/cwnd;

Congestion Window vs Time

Cwnd
Cwnd/2
< > = > <« >« >
Slow Waiting for * Slow Congestion
Start Timeout Start Avoidance

Timeout

> Time

Fast Retransmit & Fast Recovery

* Fast Retransmit: Retransmit packet at sender after
3 duplicate acks

* Fast Recovery

= On 3" dupack, retransmit packet, ssthresh = min
(cwnd/2,2); cwnd = ssthresh+3

— Another dupack, cwnd = cwnd +1; transmit packet if
allowed by cwnd

~ On ack acknowledging new data, cwnd = ssthresh,
invoke congestion avoidance (linear increase in cwnd
now on)

Saw Tooth Pattern

(With fast retransmit and recovery)

. e

| | | | | | | | | |

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Time (seconds)

Sliding Window Recap

ending applicatio

TCP
LastByteWritten

!

<
Mn

LastByteAcked LastByteSent

Sending Side:

* LastByteAcked <= LastByteSent
* LastByteSent <= LastByteWritten

* Buffer bytes between

LastByteAcked and
LastByteWritten

eceiving applicatio

TCP
LastByteRead

NextByteExpected LastByteRcvd

Receiving Side:

* LastByteRead <= NextByteExpected
* NextByteExpected <=
LastByteRcvd+1

* Buffer bytes between LastByteRead
and LastByteRcvd

Flow & Congestion Control

* Butffers are of finite size
— MaxSendBuffer and MaxRcvBuffer
* Receiving side:
— LastByteRcvd — LastByteRead <= MaxRcvBuffer

— AdvertisedWindow = MaxRcvBuffer — ((NextByteExpected — 1) —
LastByteRead)

* Sending side:
— MaxWindow = min (cwnd, AdvertisedWindow)

— EffectiveWindow = MaxWindow — (LastByteSent —
LastByteAcked)

— LastByteWritten — LastByte Acked <= MaxSendBuffer

— Persist when AdvertisedWindow 1s zero

RTT Estimation: Original Algorithm

* Measure SampleRTT for sequence/ack combo

* EstimatedRTT = a*EstimatedRTT + (1-a)*SampleRTT

~ a 1s between 0.8-0.9
— small a heavily influenced by temporary fluctuations

~ large a not quick to adapt to real changes

* Timeout = 2 * EstimatedRTT

Jacobson/Karels Algorithm

* Incorrect estimation of RTT worsens congestion

* Algorithm takes into account variance of RTTs

If variance 1s small, EstimatedRTT can be trusted

If variance 1s large, timeout should not depend

heavily on EstimatedRTT

Jacobson/Karels Algorithm Cont..
* Difference = SampleRTT - EstimatedRTT

* EstimatedRTT = EstimatedRTT + (d *
Difference)

* Deviation = Deviation + d (IDifferencel -
Deviation)), where d ~ 0.125

* Timeout = u * EstimatedRTT + q * Deviation,
whereu=1and q=4

* Exponential RTO backoff

Protection Against Wraparound

* Wraparound occurs because sequence number
field 1s finite

— 32 bit sequence number space

* Solution: Use time stamp option

* Maximum Segment Lifetime (MSL) 1s 120 sec

Bandwidth Time until Wraparound

T1 (1.5Mbps) 6.6 hrs
Ethernet (10Mbps) 57 minutes
T3 (45 Mbps) 13 minutes
FDDI (100Mbps) 6 minutes
STS-3 (155Mbps) 4 minutes
STS-12 (622Mbps) 55 seconds
STS-24 (1.2Gbps) 28 seconds

Summary

* Transport protocols essentially demultiplexing
functionality

* Examples: UDP, TCP, RTP

* TCP 1s a reliable connection-oriented byte-stream
protocol

~ Sliding window based

— Provides flow and congestion control

Must Reads

* D. Clark, "The Design Philosophy of the DARPA
Internet Protocols", SIGCOMM, Palo Alto, CA, Sept
1988, pp. 106-114

* J. Saltzer, D. Reed, and D. Clark, "End-to-end
Arguments 1n System Design". ACM Transactions on
Computer Systems (TOCS), Vol. 2, No. 4, 1984, pp.
195-206

* Van Jacobson, "Congestion Avoidance and Control",
ACM SIGCOMM, 1988

