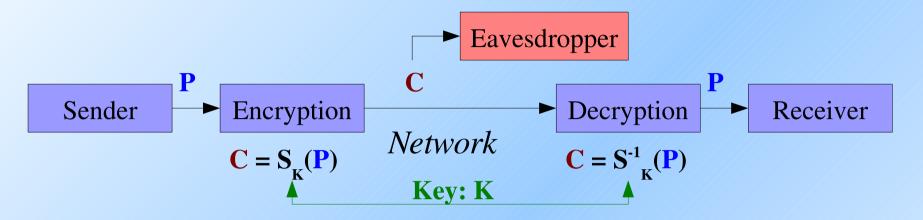
Cryptography and Network Security

Bhaskaran Raman

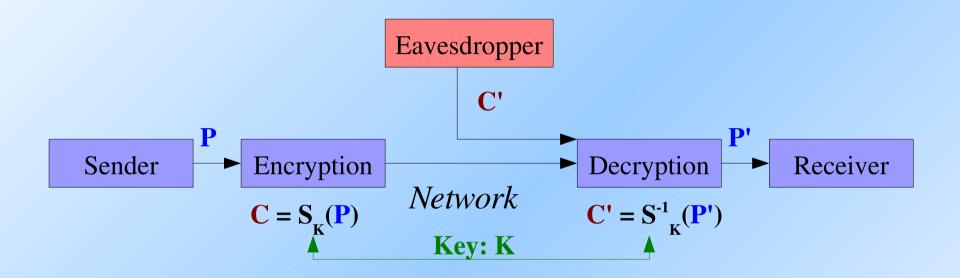
Department of CSE, IIT Kanpur

Reference: Whitfield Diffie and Martin E. Hellman, "Privacy and Authentication: An Introduction to Cryptography", in Proc. IEEE, vol. 67, no.3, pp. 397 - 427, 1979



Cryptography Fundamentals

- Privacy versus Authentication:
 - Privacy: preventing third party from snooping
 - Authentication: preventing impostering
- Two kinds of authentication:
 - Guarantee that no third party has modified data
 - Receiver can prove that only the sender originated the data
 - Digital Signature
 - E.g., for electronic transactions


Cryptographic Privacy

- Encrypt before sending, decrypt on receiving
 - Terms: plain text and cipher text
- Two components: key, and the algorithm
 - Should algorithm be secret?
 - Yes, for military systems; no, for commercial systems
- Key distribution must be secure

Cryptographic Authentication

The same system can also be used for authentication

Cryptanalysis

- Cryptanalysis: attacker tries to break the system
 - E.g., by guessing the plain text for a given cipher text
 - Or, by guessing the cipher text for some plain text
- Possible attacks:
 - Cipher-text only attack
 - Known plain-text attack
 - Chosen plain-text attack
 - Chosen text attack

Security Guarantees

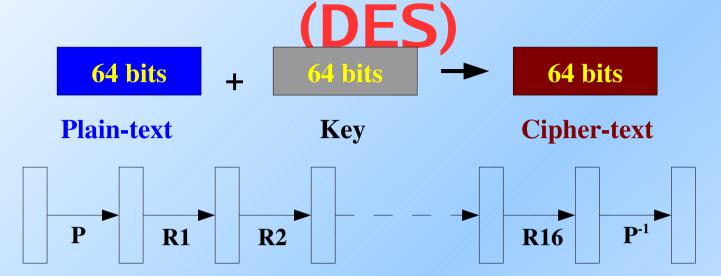
- Two possibilities:
 - Unconditional
 - Computational security
- Unconditional security: an example
 - One-time tape
- Most systems have computational security
 - How much security to have?
 - Depends on cost-benefit analysis for attacker

Public-Key Systems

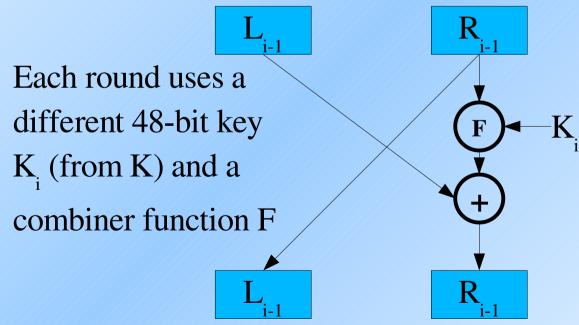
- Shared-key ==> difficulties in key distribution
 - $C(n,2) = O(n^2)$ keys
- Public key system
 - Public component and a private component
 - Two kinds:
 - Public key distribution: establish shared key first
 - Public key cryptography: use public/private keys in encryption/decryption
 - Public key cryptography can also be used for digital signatures

Some Example Systems

- Permuted alphabet (common puzzle)
 - Can be attacked using frequency analysis, patterns, digrams, trigrams
 - Attack becomes difficult if alphabet size is large
- Transposition
- Poly-alphabetic: periodic or running key
- Codes versus ciphering
 - Codes are stronger, and also achieve data compression



Some Popular Systems


- Private key systems:
 - DES, 3DES
- Public key systems:
 - RSA: based on difficulty of factoring
 - Galois-Field (GF) system: based on difficulty of finding logarithm
 - Based on knapsack problem

Digital Encryption Standard

Permutation, 16 rounds of identical operation, inverse permutation

Triple-DES (3DES)

- DES can be broken with 2⁵⁵ tries:
 - 4500 years on an Alpha workstation
 - But only 6 months with 9000 Alphas
- Triple-DES:
 - Use DES thrice, with 3 separate keys, or with two keys (K1 first, then K2, then K1 again)

Rivest, Shamir, Adleman (RSA) Public-Key Crypto-System

- Based on the fact that finding large (e.g. 100 digit) prime numbers is easy, but factoring the product of two such numbers appears computationally infeasible
- Choose very large prime numbers P and Q
 - $-N=P\times Q$
 - N is public; P, Q are secret
- Euler totient: Phi(N) = (P-1)(Q-1) = Number of integers less than N & relatively prime to N

RSA (continued)

- Next, choose E in [2, Phi(N)-1], E is public
- A message is represented as a sequence M1, M2, M3..., where each M in [0, N-1]
- Encryption: $C = M^E \mod N$
- Using the secret Phi(N), A can compute D such that ED = 1 mod Phi(N)
- $ED = k \times Phi(N) + 1$
- Then, for any X < N, $X^{k \times Phi(N)+1} = X \mod N$

RSA (Continued)

- Decryption: $C^D = M^{ED} = M^{k \times Phi(N)+1} = M \mod N$
- Example: Choose P = 17, Q = 31
 - -N = 527, Phi(N) = 480
 - Choose E = 7, then D = 343
 - If M = 2, Encryption: C = 128
 - Decryption: $D = C^{D} \mod N = 128^{343} \mod 527 = 2$

Taxonomy of Ciphers

- Block ciphers: divide plain text into blocks and encrypt each independently
- Properties required:
 - No bit of plain text should appear directly in cipher text
 - Changing even one bit in plain text should result in huge (50%) change in cipher text
 - Exact opposite of properties required for systematic error correction codes
- Stream cipher: encryption depends on current state

Key Management

- Keys need to be generated periodically
 - New users
 - Some keys may be compromised
- Addressing the O(n^2) problem with key distribution
 - Link encryption
 - Key Distribution Centre (KDC): all eggs in one basket
 - Multiple KDCs: better security
- Key management easier in public key cryptography

Fundamentals of Wired and Wireless Networks, Kameswari Chebrolu and Bhaskaran Raman, 09-13 May 2005

Some Non-Crypto Attacks

- Man-in-the-middle attack: play a trick by being in the middle
- Traffic analysis:
 - Can learn information by just looking at presence/absence of traffic, or its volume
 - Can be countered using data padding
- Playback or replay attacks:
 - To counter: need to verify timeliness of message from sender while authenticating
 - Beware of issues of time synchronization

