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I. INTRODUCTION

Telecommunications networks are migrating towards Internet
technology, with voice over IP maturing rapidly. We believe
that the key open challenge for the converged network of the
near future is its support for diverse access technologies (such
as the Public Switched Telephone Network, digital cellular net-
works, pager networks, and IP-based networks) and innovative
applications seamlessly integrating data and voice. The ICE-
BERG Project at U. C. Berkeley is seeking to meet this chal-
lenge with an open and composable service architecture founded
on Internet-based standards for flow routing and agent deploy-
ment. This enables simple redirection of flows combined with
pipelined transformations. These building blocks make possible
new applications, like the Universal In-box. Such an application
intercepts flows in a range of formats, originating in different
access networks (e.g., voice, fax, e-mail), and delivers them ap-
propriately formatted for a particular end terminal (e.g., handset,
fax machine, computer) based on the callee’s preferences.

We designed ICEBERG, an Internet-core network architec-
ture for integrated communications, to meet these goals:

� Potentially Any Network Services (PANS): This means
that any service can be accessed transparently from any
end-device via any access network, such as accessing e-
mails via a cellular phone. To achieve this goal, we make
our system design and implementation network and device
independent, which allows new networks and their access
devices to be plugged into the ICEBERG architecture with-
out changes to the system.

� Personal Mobility: This is the concept of having the per-
son (and not the communication device) as the communica-
tion endpoint1. By using a single identity for an individual,
we can implement a level of indirection to the desired end-
point for communication. Personal mobility is a key mo-

�

The concept originally comes from Personal Communication Services [40].
The Mobile People Architecture [9] also identifies this principle.

tivation for integrating services across heterogeneous de-
vices from diverse networks.

� Service Mobility: This refers to seamless mobility across
different devices in the middle of a service session (for ex-
ample, switching from a cell-phone to an IP-Phone in the
middle of a conversation).

� Easy Service Creation and Customization: The design
of the signaling protocol directly affects the ease of im-
plementing call processing services, such as call forward-
ing, call waiting, etc. Easy service creation also requires
the system’s assistance for resource reservation, admission
control and integrated billing for the new services. Ser-
vice customization requires user preference management
and user activity tracking.

� Scalability, Availability and Fault Tolerance: We aim to
scale our system incrementally to support a large user base
(i.e., large geographic regions and hundreds of thousands
of simultaneous calls). The components of the network
should be available 24 hours a day and 7 days a week. The
architecture should be able to tolerate failures gracefully
and hide them from end-users. To this end, we leverage
Ninja [21], a companion project at Berkeley, which offers
a cluster2 computing platform for scalable, available, and
fault tolerant services. We envision our network as islands
of ICEBERG-capable Ninja cluster computing platforms
which act as single large-scale computers, with robust sig-
naling protocol running between them.

� Operation in the Wide-area: The challenges in the op-
eration of the ICEBERG network in the wide-area are
network partitions and quality-of-service (QoS). Our pro-
tocols must detect network partitions and react to them
promptly. QoS directly relates to resource reservation, ad-
mission control and billing. We tackle these problems by
designing a distributed Clearing House architecture that se-
lects the best packet traversal routes across various Internet
Service Providers (ISPs), makes aggregated resource reser-
vation and maintains billing information for each user.

� Security, Authentication and Privacy: Security and pri-
vacy issues related to personal mobility are critical and re-
quire careful attention especially in ICEBERG, which fol-
lows an open service model in the Internet. We use a hy-
brid of shared and asymmetric key cryptography at differ-
ent stages of call setup or generic service access. We ap-
ply optimizations at different levels to bring down network
round-trip times as well as computational requirements.

�

A cluster refers to a number of PCs interconnected by high-speed network.
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For the rest of the paper, we first discuss the related work
(Section II). Next, we introduce the ICEBERG architecture
(Section III). Then we describe our signaling protocol which
performs the call setup and control (Section IV). The key fea-
tures of our signaling protocol are that it captures all call ses-
sion dynamics (such as membership changes), tolerates com-
ponent failures and transient network partitions, and detects
the prolonged network partitions. Our signaling protocol sup-
ports the multi-device communication as a first-class service. In
Section V, we discuss data path creation which enables easy
service creation, then we present how our signaling primitives
simplify service implementation of services that require end-
point changes including a novel service called “service hand-
off” which allows users to switch devices in the middle of a call.
Also, in the same section, we demonstrate how ICEBERG com-
ponents simplified our tasks of providing the Universal In-box
service, the Ninja Jukebox service and the Room Control Ser-
vice. We illustrate our initial solutions to resource reservation,
admission control, and billing through the use of the Clearing
House architecture in Section VI. Then we describe our secu-
rity measures in Section VII and present our implementation and
performance evaluation in Section VIII. Finally we discuss our
future work and conclude in Section IX.

II. RELATED WORK

A wide assortment of commercial products that provide
service-integration are becoming available: e-mail-to-fax ser-
vices [20] [24], voice-e-mail-fax integration services [22] [26],
and enhanced telephony services [27]. These commercial ser-
vices show the strong desirability of having personalized inte-
grated communication. While they address specific integrated
services, the ICEBERG architecture provides building blocks
and infrastructure for enabling any type of services.

A desire to more rapidly deploy new services in the telecom-
munications network has driven the development of the Intel-
ligent Network (IN). This is achieved by creating a standard-
ized service creation environment independent of the underly-
ing vendor-specific switch platforms. A critical enabling tech-
nology for IN is Signaling System 7 (SS7), an internationally
standardized channel signaling system for controlling switches
and databases throughout the phone network. Service Switch-
ing Points (SSPs) intercept certain patterns of call processing
steps to invoke service logic in Service Control Points (SCP).
The service logic then influences the subsequent call processing
steps. It is through such mechanisms that 800 number and call
forwarding services are deployed in the PSTN. IN is intimately
coupled to the hierarchical switching structure of the phone net-
work and the logical sequencing of call processing which, in
reality, are different among various switch vendors. Therefore
it has failed to provide service inter-operability across switches
of different vendors. In addition, there is no elegant integration
between fixed and mobile telephony services, let alone integra-
tion with other types of networks. Finally, service creation in
IN has a high cost-of-entry and is limited to a relatively small
number of network operators [13] (more specifically, telecom-
munications service providers and not end users).

The IETF PINT working group, in particular the WebIN ar-
chitecture [31], identified the difficulty of service creation in
IN, and proposed the remedy of running the service logic in

the Internet (in other words, SCPs are part of the Internet im-
plemented by non-proprietary programming or scripting lan-
guages). Nonetheless, the difficulty of integrating with other
non-telephony networks remains. We believe that this difficulty
is inherent in PSTN-core based networks. ICEBERG takes an
Internet-core based approach. By isolating the access network
specific functionalities in only one component of the system,
adding new networks is simplified in ICEBERG. In addition,
ICEBERG eases the creation of services, including novel and
sophisticated services that are beyond telephone call features,
through the flexible composition of computation units, powerful
signaling protocol primitives, and preference management and
user activity tracking components (Section V).

Hybrid services, in [12], are defined as services that span
different network technologies, similar our to “PANS” con-
cept. The hybrid service architecture also takes an Internet-core
based approach. Its network is composed of managed networks
(“clouds”) interconnected by their edge gateways. Each cloud
has a service platform, a middleware layer to provide a set of
commonly needed functional components. A cloud is analo-
gous to a ICEBERG-capable Ninja cluster computing platform.
While their architecture is similar to ours at a high level, the
detailed mechanism of preference management, name mapping,
location tracking, signaling, service creation, and demonstrative
novel services are not available for us to make an comparison.

TOPS [3] is a packet telephony architecture which includes
a directory service, application layer signaling protocol, a logi-
cal channel abstraction, and an encapsulation format to insulate
telephony applications from the underlying network transport
capabilities, and mechanisms to support a variety of conferenc-
ing modes. The directory service is the key component of the
system. It manages users’ call receiving preference, performs
name mapping between terminal addresses and unique names,
and tracks current user location. These three functionalities are
separated into different components in ICEBERG (namely, Pref-
erence Registry, Name Mapping Service, and Personal Activity
Coordinator) for better modularity and more effective data man-
agement since these three types of data have different dynamics.
Conference control in TOPS is accomplished using an expanded
set of its signaling protocol, while in ICEBERG, the basic sig-
naling readily supports multi-party calls. Issues on scalability,
availability, fault tolerance, and wide-area operations are not ad-
dressed in TOPS, which we do in both our architecture design
and the signaling protocol design.

The Mobile People architecture (MPA) [9] [35] tackles the
problem of personal mobility by introducing a person layer on
top of the application layer emphasizing the idea that the person,
rather than the device, is the communication endpoint. Each per-
son is identified by a globally unique Personal Online ID. Each
Personal Proxy is associated with a person and performs person-
level routing including location tracking, accepting communica-
tions on a person’s behalf, converting the communications into
different application formats according to preferences, and for-
warding the resulting communication to the person. The use of
a Personal Proxy achieves location privacy. While a Personal
Proxy is independent of the existing network and telecommuni-
cation infrastructure and is easy to extend to new devices and
networks, one drawback is that regardless of where a person is,
all communication to the person must go through her Personal
Proxy, which can yield very inefficient routes. Such inefficiency
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can only be prevented by intercepting the call setup and resolv-
ing the callee destination during the call setup instead of after-
wards as in the MPA. This capability requires support from the
infrastructure. The ICEBERG architecture provides such sup-
port by managing user preferences and performs location track-
ing in the core infrastructure rather than at endpoints. Here, we
assume the infrastructure is trustworthy. In addition, we pre-
serve location privacy by not revealing user locations outside
their administrative domains, namely, their ICEBERG service
provider (Section III).

For the requirements of scalability, availability, and fault tol-
erance, we leverage cluster computing platforms like Ninja [21]
and Active Service (AS1) [1]. Although each intends to be a
general cluster computing environment that support any cluster-
based services, Ninja targets long running services with infinite
lifetimes (such as web servers), while AS1 targets services with
finite session lifetimes (like video-conferencing). ICEBERG
contains both kinds of services. We augment Ninja with AS1
features for session-based services (Section III-A).

In terms of the signaling protocols, ITU’s H.323 [23] and
IETF’s Session Initial Protocol [37] are the dominant Internet
Telephony signaling protocols. Schulzrinne, et. al., in [36], pro-
vides an extensive evaluation of H.323. H.323 is complex due to
its numerous component protocols, hard to extend due to its re-
quirement of full backward compatibility between versions and
centrally registered codecs, non-scalable due to its use of state-
ful TCP connections for signaling transport and a central con-
trol for conference calls, and limited in preference support for
customizable services. Both SIP and our signaling protocol pro-
vide significant improvements on these aspects. Neither SIP nor
H.323 have addressed fault tolerance and scalable mechanisms
of tracking accurate membership in a multi-party call, which we
do (Section IV).

Several bandwidth broker implementations have been pro-
posed in [34] as a scalable mechanism for QoS provisioning
over a Diff-Serv (RFC 2475) architecture. In [17], M. Günter et.
al. presented the broker signaling trade-offs in the context of the
Swiss National Science Foundation project CATI [8], but they
do not optimize end-to-end path selections. The Internet2 QoS
working group operates Qbone [25], an inter-domain Diff-Serv
testbed. They have started to investigate the inter-broker signal-
ing to automate the adaptive reservation scenario, but currently
the brokers are configured manually. Duffield et al. describe
in [10] an adaptive reservation scheme that is optimized for vir-
tual private networks (VPNs), and compare its performance to
static provisioning using real traffic traces. However their work
only considers a single ISP scenario. Our Clearing House (CH)
design (Section VI) provides a scalable approach for inter-ISP
signaling, and helps coordinate resource reservations between
multiple ISPs dynamically. The CH uses a capability based se-
curity scheme, similar to Kerberos [38], that requires users to
present tickets to use ISP services. We picked a capability based
security scheme instead of an access control based scheme to
ensure fast call setup time. The CH also provides secure billing
services, which have not been addressed in the work mentioned
above.

Fig. 1. ICEBERG Architecture Overview

III. ICEBERG ARCHITECTURE

Figure 1 depicts the ICEBERG architecture overview.
The ICEBERG network plane shows two ICEBERG Service
Providers representing two different administrative domains: A
and B. The services they provide are customizable integrated
communication services on top of the Internet. Similar to the
way that Internet Service Providers (ISP) provide Internet ser-
vices through the use of Points of Presence (POPs) at differ-
ent geographic locations3, ICEBERG Service Providers consist
of ICEBERG Points of Presence (iPOPs). Both A and B have
iPOPs in San Francisco (SF) and New York (NY). Each iPOP
contains Call Agents (CAs) which perform call setup and con-
trol, an Automatic Path Creation Service (APC) which estab-
lishes data flow between communication endpoints, a Preference
Registry (PR) for users’ call receiving preference management,
a Personal Activity Coordinator (PAC) for user location or ac-
tivity tracking, and a Name Mapping Service (NMS) which re-
solves user names in various networks. iPOPs must scale to a
large population and a large call volume, be highly available,
and be resilient to failures. This leads us to build the iPOP on
the Ninja cluster computing platform. The ICEBERG network
can be viewed as an overlay network of iPOPs on top of the
Internet.

ICEBERG Access Points (IAPs) are the gateways to the ac-
cess networks, such as the PSTN, GSM cellular networks, and
the pager networks. They serve as bridges between the access
network plane and the ICEBERG network plane.

Each iPOP employs an Internet Service Provider (ISP)4 (for
example, in Figure 1, SF iPOPs of both A and B employ ISP1,
NY iPOPs of A and B employ ISP3). The ISP makes service
level agreements and peering arrangements with other ISPs to
carry the traffic among iPOPs. The Clearing House serves as a
bandwidth broker and accountant for iPOPs and interacts with
the ISPs.

�

ISPs generally locate POPs such that users can make a local call and gain
Internet access.

�

Please note that ICEBERG service providers are completely orthogonal to
Internet Service Providers
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Deploying ICEBERG, namely, establishing a new ICEBERG
Service Provider, is simply a matter of creating an iPOP with an
NMS, PR, PAC, and APC service running on it, and IAPs for
the access networks to be supported.

In our system, the NMS, PR, and PAC are used in the control
path. The APC service deals with the data flow (for example,
voice streams). The IAP deals with both control path (signaling
translation) and data flow (voice stream packetization).

For the rest of the section, we first describe how we leverage
the cluster computing platforms. Then we describe each ICE-
BERG component in detail. Finally, we present a scenario to
illustrate how ICEBERG components interact with one another.

A. Leverage Cluster Computing Platforms

Each iPOP requires processing scalability to a large call vol-
ume,

�������
availability5 through fault masking, and cost-

effectiveness. Clusters of commodity PCs interconnected by
a high-speed System Area Network (SAN), acting as a sin-
gle large-scale computer [2] (assuming no network partitions
within a cluster), are especially well-suited to meeting these
challenges [16]. Cluster computing platforms like the Ninja
Base [11] and Active Service Platform (AS1) [1] provide an
easy service development environment for service developers
and mask them from cluster management problems of load-
balancing, availability, and failure management. We describe
briefly the underlying mechanism of both platforms and how we
leverage them.

In a Ninja Base, each node houses an execution environment
into which mobile code can be pushed. Services have many in-
stances within the cluster, but clients are shielded from this by
using a service Redirector Stub to interact with the cluster. The
Redirector Stub for a service is dynamically generated at run-
time and contains the embedded logic to select from a set of
nodes within the cluster. Within the Base, all nodes maintain
a replicated registry of all service instances; each node periodi-
cally sends out a multicast beacon carrying its list of local ser-
vices to all other nodes in the Base, and listens for the multicast
beacons from other nodes. The Base also maintains persistent
service states. As a result, the failure of a service instance on
one node automatically triggers another service instance to take
over for the failed one. To the outside world, a Base acts like a
non-distributed, robust, highly-available, high-performance ser-
vice.

AS1 differs from the Ninja Base approach in that AS1 service
clients send keep-alive service requests instead of using redirec-
tor stubs. AS1 maintains a table mapping each service request to
its associated service agent. A new service request causes AS1
to spawn a new service agent, and to enter the service request
and agent pair into the table. A timeout on a service request
in the table indicates the end of the service lifetime, and causes
the table entry to be removed. A failed service agent will also
cause its entry to be removed from the table just the same as in
a Ninja Base. Service requests contain the current session state,
and service agents are entirely soft state.

We have implemented iPOPs on Ninja Bases which should
have at least two nodes in the cluster for load-balancing and fault
tolerance. In addition, we have added support for the keep-alive
service request from AS1: call requests are the service requests;
�	��

���

: 24 hours a day and 7 days a week.

Call Agents are service agents. We run the Preference Registry,
Name Mapping Service, Personal Activity Coordinator, and Au-
tomatic Path Creation Service on Ninja Bases, which handle the
fault detection and recovery of these components. For the rest of
the paper, “iPOP” refers to an ICEBERG-capable Ninja Base.

B. Name Mapping Service

Personal Mobility is a key mechanism for managing commu-
nication across heterogeneous devices from diverse networks.
The idea of Personal Mobility is to make the person6, and not the
communication device, be the communication endpoint [9] [40]
The concept is becoming more important as people acquire more
and more end devices. By using a single identity for an indi-
vidual, ICEBERG provides a level of indirection to the desired
communication endpoint.

In ICEBERG, we associate each user with an ICEBERG
Unique ID (iUID). The structure of iUIDs is still an open prob-
lem in ICEBERG. For now, an iUID takes the form of an e-mail
address7. The Name Mapping Service maintains the mapping
between the users’ various communication endpoints and their
iUIDs.

C. ICEBERG Access Point

An ICEBERG Access Point (IAP) is a gateway that intercon-
nects a wired or wireless access network with the rest of the
ICEBERG network. It consists of both hardware and software
for transcoding between the signaling protocols and the data for-
mats used by the access network and those used by the ICE-
BERG network. For keeping track of each stage of the call ini-
tiation process, an IAP maintains call state machines for all the
calls (either inbound or outbound) handled by it, in cooperation
with the access network signaling protocol (like SS7); and the
IAP issues ICEBERG call requests to the iPOPs.

Running an IAP on a Ninja Base would only provide a few
benefits as an IAP includes a network-specific gateway that may
contain hard state for each call (a function of the signaling proto-
col used by the access networks). Such access network-specific
state cannot be replicated, thus the failure of an IAP causes all
calls handled by it to be dropped (as a comparison, the failure
of a Base Station Controller in the GSM network would cause
all calls handled by it to be dropped). Thus, it is the gateway’s
responsibility to provide the appropriate level of fault tolerance.

D. Call Agent

A Call Agent is a service agent that performs call setup and
control for a caller’s device. A Call Agent interacts with the
Clearing House for resource reservation, call admission control
and accounting, with a Name Mapping Service to resolve caller
or callee identities or addresses, with the Preference Registry
for the desirable call receiving device, and with the Automatic
Path Creation Service for data flow establishment. There is one
Call Agent per device per caller. An iPOP spawns a Call Agent
on a node in the cluster whenever a call request (for either an
inbound or outbound call) arrives at the iPOP. The Call Agent is
�
It is possible to name roles (e.g., department chair, graduate admission) as

well as individuals.�
The problem with iUIDs based upon e-mail addresses is that a person may

belong to several administrative domains, already have multiple e-mail ad-
dresses, and may change addresses.
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kept alive by the periodic call requests from its client (the device
or its IAP). The Call Agent is terminated when the call requests
cease after the device hangs up.

We choose not to build Call Agents or iPOPs as part of the
IAPs for three reasons. First, call setup and control within the
ICEBERG network is the same for all access networks. It is not
desirable to duplicate this functionality in the IAPs of each ac-
cess network. Second, since IAP failures cause call drops, we
want to minimize the amount of logic in IAPs, and therefore
make them less failure-prone. Lastly, building iPOP into an IAP
does not scale to a large number of calls as an access network
gateway contained in an IAP can only handle a limited num-
ber of calls, while an iPOP as a separate entity can handle calls
from many IAPs. The benefit of this decoupling is that IAPs
are the only access network dependent components. All other
ICEBERG components are designed in a network and device
independent fashion. This greatly simplifies the expansion of
ICEBERG to new networks and devices.

E. Automatic Path Creation Service

The Automatic Path Creation Service (APC) establishes data
flows between communication endpoints. A data path is an ab-
straction of a data flow – a set of transcoding operators strung
together using connectors [21]. An operator is a unit of compu-
tation on some data, and a connector is an abstraction of the Ap-
plication Data Unit (ADU) transport mechanism between two
operators (e.g., RTP connector, UDP connector, etc.). For in-
stance, a series of codec operators followed by a speech-to-text
operator is a path. The concept of a data path is powerful for
enabling communication among heterogeneous end-devices be-
cause of its flexible service composability.

In our architecture, Call Agents make requests to the APC
service for data path creation. The Call Agents provide the APC
service with endpoint information, such as the endpoint’s ad-
dress (e.g., IP address and port number for a desktop phone, the
phone number and cellular gateway address for a cell phone)
and transport protocol (e.g., RTP). The employment of APC en-
capsulates the data path creation and instantiation process from
the rest of the system, and cleanly separates data from control.

F. Clearing House

The Clearing House (CH) is a third-party entity that manages
the traffic flow between the ICEBERG Network plane and the
ISP Plane (Figure 1). This entity interprets traffic specifications
received from the iPOP, and searches for the optimal packet flow
path from the sender to the receiver on the ISP plane. The CH
also maintains resource reservations across ISPs, performs ad-
mission control, and provides authentication and secure billing
services to the ICEBERG architecture. We assume that the CH
can be trusted by both the ISPs and ICEBERG, and ISPs coop-
erate with the CH for resource reservation. We illustrate the CH
architecture in more detail in Section VI.

Note that the packet flow path is different from the data path
described in the previous section: the packet flow path describes
the sequence of ISPs the packets traverse, while the data path
refers a sequence of operators associated with connectors. We
will show in Section V-A that each data path is contained in one
iPOP, so the operators and connectors of a path live on the same
iPOP.

G. Preference Registry

To achieve the goal of customizable communication services,
we need mechanisms for user preference management. The
Preference Registry is such a distributed service that stores and
processes user preferences. It takes as input the caller ID, callee
ID, time of day, and dynamic user information (e.g., current lo-
cation or current user behavior), and returns the callee’s pre-
ferred endpoint (e.g., cell-phone number or e-mail address).
During call setup, the Preference Registry is queried for a
callee’s preferred endpoint. Users convey their preferences
(such as when they want to be called, on what device, by whom)
using a tool that generates scripts (e.g., Perl or Tcl) and stores
them in the Preference Registry.

H. Personal Activity Coordinator

The Personal Activity Coordinator (PAC) assists the Pref-
erence Registry for more powerful service customization. The
PAC tracks a user’s current activity (for example, “Alice is on
her cell phone with Bob, who is a VIP”) and other dynamic
events, such as a user’s current location, or the call status of a
device – busy, on-hold, etc. The PAC allows users to control pri-
vacy policies, such as which information is tracked and to whom
the information can be released. The information maintained in
the PAC is used by the Preference Registry as additional inputs
and hints in processing user preferences. This information is
stored as soft state. Some default user behavior is assumed if
the PAC does not provide any information.

I. An Illustration

In this section, we illustrate how ICEBERG components work
together to provide a personalized call handling service through
a scenario: Alice uses her cell phone to dial Bob’s cell phone
number. Bob currently prefers to receive phone calls from Alice
on his office PSTN phone.

The call from the cell phone is intercepted at an IAP (or one
could imagine that Alice first dials into an IAP). The IAP lo-
cates8 an iPOP for Alice and issues an ICEBERG call request
to the iPOP. The iPOP informs the CH about the call request
so that the Clearing House can make resource reservations, per-
form admission control and do accounting. If the call is admit-
ted, the iPOP spawns a CA to serve Alice’s cell phone. The
CA first finds the identity of the called party (i.e., Bob), as well
as the location of Bob’s Preference Registry, using the Name
Mapping service. It finds Bob’s preferred endpoint, and returns
an appropriate iPOP for reaching the callee9, from his Prefer-
ence Registry. The callee iPOP also interacts with the CH for
resource reservation, admission control and accounting. Next,
Bob’s iPOP spawns a CA to serve Bob. This CA then locates a
PSTN IAP to ring Bob’s office phone. When Bob picks up the
phone, the CAs interact with the APC service to establish the
data path. From this point on, Alice and Bob are in conversa-
tion.

IV. THE ICEBERG SIGNALING SYSTEM

A signaling system is a collection of network elements, Call
Agents (CA) in our case, that use a communication protocol to

�

This can be done through some service discovery service.
�

Please note that the preferred endpoint is not returned for user privacy.
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effect call setup, routing, and control. In this section, we present
the ICEBERG signaling system. We follow the same approach
of separating signaling from data as in many other communica-
tion systems. Also, our signaling protocol is independent of the
access networks. Detailed security measures for signaling are
presented in Section VII.

Current telecommunication systems designed their signaling
protocols, such as SS7 for the PSTN, to support two-party calls
with homogeneous devices (i.e., telephones), as the basic call
service. Additional services, such as call forwarding and con-
ference calls, are implemented through overriding, augmenting,
and reusing the basic call signaling primitives. As a result, these
services incur extra expenses to users. In ICEBERG, we aim to
provide more sophisticated basic services with little cost to users
while enabling more powerful service building primitives. Our
architecture supports multi-device communication as the basic
call service and allows it to become a common case. A multi-
device call can involve an unlimited number of participants and
heterogeneous devices10 (for example, using an audio tool and
a video tool together for a call). The primitives of this basic
call service make services, such as conference calls, call for-
warding, and a novel service called service handoff, trivial to
implement. We detail this in Section V. We assume that in a
multi-device call, the call participation is invitation-based, and
not subscription-based. Any call participant can invite new par-
ties to join the call.

A multi-device call can be highly dynamic. New devices (or
new call parties) may be invited to join the call (possibly si-
multaneously), and they must establish data flows with each call
participant. A participating device may leave the call, and its CA
needs to tear down a portion of the data path. In addition, CAs
that serve the call may fail, then get restarted with a new iden-
tity at a new location, and the new CA must obtain the current
state of the call (such as the current call membership and de-
vice status) including the state changes that occurred during the
fault recovery process. Network partitions may also occur, and
then are healed. The state changes occurring in each partition
must be captured by the participants. The signaling protocol
must address the issues of maintaining accurate call member-
ship and capturing the complete call state in face of any faults
and in a scalable fashion. To our knowledge, these have not
been addressed effectively in other Internet Telephony signaling
protocols.

For call membership, we introduce the notion of a call ses-
sion, which refers to a collection of communicating CAs. The
communication is based on broadcasting messages to a shared
group communication channel for each call session, rather than
pairwise communications between CA pairs. This yields scala-
bility to a large number of call participants. The channel offers a
level of indirection that hides the identity and the location of the
CAs, and relieves each CA from maintaining the dynamic ses-
sion membership – this effectively addresses the issue of mem-
bership dynamics.

Now we turn to the issue of call state. New participants to
a call session do not have the session membership information,
and therefore do not know where to obtain the complete session

���

A call party can use multiple devices at the same time in a coordinated way.
If these devices are used in an uncoordinated way, then the call party is merely
making multiple calls at the same time.

state. We reject the approach of using a centralized session state
manager. Such an approach is a single point of failure in the
system. Further, it creates a bottleneck in the control path since
all state updates must flow through it. Finally the single en-
tity managing call state must also implement rigorous error de-
tection and recovery, incurring protocol complexity and imple-
mentation overhead. Our approach is to maintain the call state
as soft state [6]. Soft state is defined operationally as state that
is periodically refreshed by update messages. Protocol actions
are triggered by new messages and timer expirations. Because
the session state is sent to the call session periodically (see Sec-
tion IV-B for details), newcomers to a session will automatically
obtain the current session state through these update messages
(with some latency).

The use of the shared group communication channel, com-
bined with a soft state protocol for call state management, maps
perfectly onto the Light Weight Session (LWS) architecture [33].
LWS is described as a lightweight (soft state), loosely-coupled,
decentralized (anonymous CAs) communication model. We use
IP multicast as the shared group communication channel and
call sessions are identified by multicast addresses.

Using one multicast address per call session raises two scal-
ability concerns: multicast address scarcity and scaling routing
state to a large number of small multicast groups. The first prob-
lem, due to the flat IPv4 multicast address space, will vanish
with the deployment of IPv6 [4], MASC [18], or with new IP
multicast models like Simple Multicast [14] and Express Multi-
cast [19]. For the second problem, by pushing the routing state
to edge routers of the backbone [5], or to end systems [28] (such
as iPOPs), and building the control structure across these edge
routers or end systems through tunneling, the accumulation of
the routing state for all multicast groups in the backbone is pre-
vented, and this yields scalability to a large number of groups.

Our signaling protocol consists of two phases: call session es-
tablishment and call session maintenance. The first phase is the
formation process of the call session, namely instantiating the
CAs, which in turn join the multicast session. The latter phase
involves exchanging call states among the CAs in the session,
and creates or modifies the data path based on the call states.
In [39], we described our signaling approach and call session
maintenance in greater detail.

We first describe the call session establishment protocol in
Section IV-A, then the call session maintenance and control pro-
tocol in Section IV-B.

A. Call Session Establishment

The communication in this phase is pairwise among CAs.
Group communication takes place after the session is initially
established (Section IV-B).

Figure 2 shows the message flows and state transitions in call
state machines on IAPs during a call session establishment. We
used the following techniques to provide a fault tolerant call ses-
sion establishment protocol:

� For all the calls handled by an IAP, the IAP sends peri-
odic, keep-alive, idempotent, and stateful ICEBERG call
requests, as their heartbeats, to their serving iPOPs. The
call requests contain the current state in the call state ma-
chines maintained on the IAPs, and are identified by the
call party iUID and his/her device in use.
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Fig. 2. Call Session Establishment

� The call requests are handled by the call state machine-
aware (but soft state) CAs. An iPOP maintains a table map-
ping each call request to its associated CA just the same as
in AS1. iPOPs are responsible for routing the call requests
and other messages to their serving CAs, or spawning new
CAs for new call requests. Based on the call state carried
in a call request, the CA performs appropriate actions, such
as name lookup or Preference Registry lookup, etc.

� CAs advance the call state machines on the IAPs to the
next state by sending periodic “InstallState” messages to
the IAPs until call requests with the new state arrive at the
CAs.

� Inter-iPOP communication also takes the form of idempo-
tent soft state heartbeat messages for the detection of net-
work partitions between the iPOPs.

The nature of soft state and idempotent messages enables our
protocol to recover from transient failures gracefully with no ex-
tra logic to the normal operation. In addition, prolonged failures
can be detected and the appropriate clean-up actions taken in
reaction to them.

Now we illustrate the fault detection and recovery of our pro-
tocol in detail. Because CAs are kept alive by the periodic call
requests from IAPs, when a CA fails, the next call request will
cause the iPOP to spawn a new CA for the call. The call request
contains sufficient state for the new CA to continue the service
of the call. A timeout on call requests indicates that either the
caller has hung up the call or the IAP is network partitioned
from the iPOP. As a result, the iPOP terminates the associated
CA, and removes the call request and CA pair from its table.

Timeouts on the heartbeats between the two iPOPs indicate
an extended duration network partition between the iPOPs, and
the call establishment is aborted.

iPOPs also send heartbeats to IAPs so that the IAPs can de-
tect network partitions between themselves and IAPs (not shown
in the figure). A non-transient network partition causes an IAP
to use an alternative iPOP to continue call establishment. The
heartbeats between the two iPOPs convey the new identity of
the iPOP to the other iPOP. The soft state messages exchanged
between the two iPOPs eliminate the need for explicit error re-
covery on both iPOPs.

B. Call Session Maintenance and Control

Following the call session establishment phase is the call
maintenance phase. During this phase the call participants may
hang up or interact with their devices in the middle of the call
(e.g., invite a new call party, switch to a new device, or perform
call forwarding, etc.). This phase involves altering and propa-
gating call states to all the CAs in the established call session.
The call state of a call session includes call party identities, the
involved communication devices and their status (e.g., busy or
on hold), data path endpoint information for all the data streams
in the session (e.g., IP addresses and port numbers of the data
stream end points, location of transformation agents, etc.), and
the time this call state is sent. Maintaining dynamic call ses-
sions and carrying out the control functions in a fault tolerant
fashion completes the design of a robust signaling system. In
this section, we describe the control protocol in detail.

Each IAP periodically sends the call request with the Estab-
lished state to the iPOP in this phase, as shown in Figure 2.
The call request contains the call state of its endpoint. The call
state is one of the rows in Table I. The CA, in turn, periodically
announces the call state in the call request to the call session.
At the same time, the CA also listens to the multicast channel
and receives call states of the other endpoints. Hence, each CA
maintains the complete call state of a call session: the entire Ta-
ble I, each entry of which is uniquely identified by “iUID” and
“Device” (the primary key of the table). The reliability of call
state propagation is ensured simply by periodic retransmission
over the lifetime of the call session.

iUID Device Status Path Endpoint Info Time sent

alice@domain1.com laptop busy 123.3.4.5/9876 13:34:45:79
bob@domain2.com cell phone busy gw: 10.3.2.2/66 13:34:42:87

time slot: 5
... ... ... ... ...

TABLE I

CALL STATE IN A CALL SESSION

The combination of periodicity and the use of multicast is
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often called the announce/listen model in the literature, and
is appropriate where eventual consistency rather than transac-
tional semantics are sufficient. A desirable property of the an-
nounce/listen model is that component failures are tolerated as
the normal mode of operation, rather than addressed through a
separate recovery procedure [1]: recovery is enabled by simply
listening to channel announcements. The announce/listen model
initially appeared in IGMP [7], and was further developed and
clarified in systems such as the MBone Session Announcement
Protocol [32].

When a CA receives a new call state (i.e., if the state’s key
cannot be found in the call state table), it knows that a new end-
point just joined the call session, and this CA needs to establish
a data path to the new device through the Automatic Path Cre-
ation Service (more in Section V-A). Call state changes (for ex-
ample, changing the data path endpoint information) are made
by the IAPs through periodic call requests with the modified call
state, and then the modified state is propagated to the call session
through the CA’s periodic announcements. When a CA receives
a modified call state, the associated data path will be modified
accordingly.

Each CA of a session is oblivious to the transient failures and
recovery of the other CAs, since the recovered CA only needs
to join the signaling multicast group and re-build the call ses-
sion state (including the additional session state changes made
during the CA fault recovery). Prolonged failures of a CA will
cause the device it serves to be cut off from the session. Ex-
tended network partitions among iPOPs involved in a call dur-
ing this phase are detected by the call state timeouts, and for a
multi-party call, the call may be partitioned into multiple calls.
Nonetheless, the partitioned calls will automatically re-integrate
when the network partitions are healed.

Despite the simplicity of the design, this scheme handles si-
multaneous call state changes at multiple CAs gracefully.

We are investigating the appropriate choice for heartbeat in-
tervals. This variable affects the time to recognize network par-
tition and IAP failures.

C. Discussion

The signaling system described above meets the following de-
sign goals:

� Fault Tolerance: Through the use of lightweight call ses-
sion and soft state protocols, the signaling system tolerates
component failures, adapts to dynamic call session mem-
bership, and detects network partitions.

� Scalability: The use of group communication rather than
pairwise communication for signaling scales to a large
number of call participants in a call.

� Network and Device Independence: Our signaling pro-
tocol is designed to be independent of the access networks
and devices.

V. SERVICE CREATION

Easy service creation is an essential goal of the ICEBERG
architecture. The concept of a data path is an enabler and sim-
plifier for service creation, which we discuss in Section V-A.
Our signaling protocol primitives and other ICEBERG compo-
nents, such as the Preference Registry, Name Mapping Service,
Personal Activity Coordinator also empower novel services and

simplify their creation process, which we illustrate in the fol-
lowing sections.

A. Data Path, a Simplifier

Data path construction establishes the flow of data between
the communication endpoints of different call parties. A path
consists of a sequence of operators and connectors (see Sec-
tion III). The power of the path concept comes from the highly
flexible composability of operators and connectors. Given two
endpoint data formats and locations, the APC service automati-
cally construct a path consisting of a sequence of operators with
appropriate connectors. And it maintains the path in a fault tol-
erant fashion by restarting failed operators and connectors. We
do not yet have a fully-fledged Automatic Path Creation Service.
The current APC service only creates and places predetermined
operators at the appropriate locations. An operator description
is associated with each operator for its creation (which code to
execute), placement (which host in the cluster), and destruc-
tion (what to clean up after the operator terminates). Modify-
ing a data path involves changing the operator descriptions, and
restarting or modifying the currently executing operators.

Creating paths in the wide area and maintaining them in a
fault tolerant fashion are the main challenges for data path cre-
ation and maintenance. A centralized APC service responsible
for instantiating, executing, and maintaining the paths is not ap-
propriate for the wide area, because when it is out of service
(from host crashes or network partitions), it orphans all the paths
it maintains (with operators and connectors running on different
hosts). In addition, the reality of the multiple independent ser-
vice providers prevents the practicality of using a centralized
APC service.

Distributed path creation and maintenance pose difficult ques-
tions of path ownership and access control (i.e., who is allowed
to create or destroy paths). Also, our signaling protocol is based
on an asynchronous (soft state) anonymous11 (using multicast
address as a level of indirection and the rendezvous) group com-
munication model, which makes the protocol incompatible with
synchronous path creation and maintenance between pairs of
endpoints. Multiple owners of a single path would need to co-
operate synchronously to create and destroy the path, so a path
should be owned by only one entity. This is somewhat counter-
intuitive since a path describing the communication between
two devices does indeed involve two endpoints, and therefore,
the path is perceived to be owned by these two endpoints.

Instead, we present a different view for this scenario with the
following additional information: an intermediate data format
(that may coincide with the data format supported by either end-
point). From each endpoint’s view, all it needs to do is to con-
struct a data path to send and receive data using the intermediate
data format. This essentially decomposes the communication
between two devices into two paths with the output data for-
mat of one path the same as the input data format of the other,
namely the intermediate data format. This way, each endpoint
owns its half of the path, and it creates and destroys the data path
autonomously with no need to synchronize with the other end-
point. Each half-path can be composed of operators all running

� �

Anonymity here refers to the fact that any CA is oblivious to dynamic ses-
sion membership, and does not mean that anyone can participate the call session.
In fact, call participation is invitation based, and not subscription based.
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on the same iPOP that is serving the endpoint, so it is reasonable
to run a single APC service on each iPOP (where network parti-
tions are rare), responsible for creating half-paths for endpoints
serviced by that iPOPs. Like any Ninja service, the APC service
will be highly available and fault tolerant.

The intermediate data format is determined in the following
manner. Each iPOP knows what operators and connectors it has
and which are running. Therefore, it can export a list of data
formats that it supports. During the call setup, the caller’s iPOP
obtains this list from the callee’s iPOP. Then it selects a match-
ing data format as the intermediate data format. We currently
take the first match, but we are investigating more sophisticated
algorithms that select the most cost-effective data format for all
call participants.

Now we address the failure modes of data paths. Data paths
are separated from control paths, except at an IAP, since the
network-specific gateway interacts with both the control and
data components of the access network. Thus, the failure of the
IAP will jeopardize the data path as well. However, failures (al-
though unlikely) of Call Agents, Name Mapping Servers, and
Preference Registries will not affect the data path. Failed op-
erators and connectors in a data path are restarted by the APC
service running on the Ninja Base.

B. Multi-device Call Primitives for Easy Service Creation

The operations that carry out the basic call service are the
primitives for additional services. By having multi-device com-
munications as the basic call service, we have enriched the set
of the building blocks. The multi-device call operations are
adding a new communication endpoint of any type to the call
and removing an existing communication endpoint from the
call. Changing a communication endpoint adds the new end-
point, and then removes the existing one. Services that require
endpoint changes, such as call forwarding and call transfer, can
be implemented easily on top of these user-level operations. For
example, call forwarding can be implemented by having the for-
warder invite the forwardee endpoint and then leave the call.

Service handoff is another example. It occurs when users
change their communication devices during a call. Service
handoff enables service mobility, the ability to retain access to
services as users switch between networks. In telecommunica-
tions, the term “service mobility” usually means “service porta-
bility”, the ability for diverse networks to share user service
profiles and to carry out the same set of services in each net-
work [15]. However, when one crosses the network boundary in
the middle of a service session, that service is terminated. The
user must then restart the service in the new network. In con-
trast, service mobility provides seamless integration of hetero-
geneous devices from diverse networks, as if they are accessing
the same network, achieving the goal of Potentially Any Network
Service (PANS).

Service handoff can also be viewed as a generalized call trans-
fer service. Instead of call transferring between homogeneous
telephones, service handoff allows one to perform call transfer
across diverse devices from heterogeneous networks.

Now imagine the following service handoff scenario: Alice is
on her cell phone. She walks into her office and decides to hand-
off the call to her laptop IP phone. She does this by first press-
ing some keys on her cellular phone to indicate the intent and

the target of a service handoff (e.g., “*SHIP” – Service Handoff
to IP phone). The serving IAP that contains a cellular gateway
intercepts the DTMF message and relays it to the serving Call
Agent for Alice’s cell phone. The Call Agent looks up the end
point information (the IP phone’s IP address and port number
in this case) in the Preference Registry with the input of Alice’s
iUID and endpoint type (“IP”). Then the Call Agent invites the
IP phone to join in the conversation, as illustrated in Section IV-
A (i.e., the operation of adding a communication endpoint to a
call12). Finally, Alice turns off her cell phone, which informs the
Call Agent that was serving the cell phone that it should leave
the call (i.e., the operation of removing an endpoint from the
call) and completes the service handoff.

C. ICEBERG Components as Service Enablers

C.1 Universal In-box

The Universal In-box is a service that enables the user to re-
ceive or retrieve voice mail, e-mail, phone-calls, fax, instant-
messages, etc. in a unified fashion. It features an any-to-any
communication capability between the different endpoints (e-
mail to fax, voice-mail to e-mail, pager-message to phone-call,
etc.). This application was one of the first we built on top of ICE-
BERG and it drove much of the initial design. It exemplifies the
device independence and personalization aspects of ICEBERG.
Device name independence is provided by the Name Mapping
Service. Device type independence is enabled by the IAP (which
does the protocol conversion) and the APC service (which takes
care of any data format conversion in a generic fashion).

The Preference Registry provides a clean model for the per-
sonalization features of the Universal In-box. We have built the
Preference Manager, a graphical tool that allows users to con-
veniently specify their communication handling preferences for
the Universal In-box.

The Universal In-box started with support for just two end-
points: cell-phones and vat (desktop audio tool). We have since
added support for voice mail, e-mail and recently, interfaced to
an instant messaging system. The no-frills interface to the in-
stant messaging system, which is less than 300 lines of Java
code (with the appropriate calls to the other Iceberg compo-
nents) was half a day’s work. Although we did not have a fully
functional APC service during these additions, we have found
adding a new data format and access network to be straightfor-
ward. This simplicity is due to the clean separation between the
ICEBERG components which provides different levels of inde-
pendence. Thus, this application has given us good experience
in building services that are extensible to new endpoints.

C.2 Jukebox Service on ICEBERG endpoints

The Jukebox service was built as part of the Ninja
project [11], independent of ICEBERG. It plays MPEG3-
encoded songs stored on the disks in a cluster of workstations.

As an exercise in testing the ease of introducing new services
in ICEBERG, we have built a virtual IAP (with no actual ac-
cess network gateways, but similar to a proxy) for the Jukebox
service that makes the service behave as an ICEBERG commu-
nication endpoint. This IAP handles calls from any ICEBERG

� �

A data path is not created between two devices of one call party.



10

endpoint to the Jukebox service and maintains the call state ma-
chine on behalf of the Jukebox. The special functionality in this
IAP is its ability to interpret requests issued to the Jukebox from
the caller, such as the name or ID of the song (this could be en-
tered as DTMF signals from the caller’s device such as a cell
phone). Then these requests are translated to regular Jukebox
service requests for the Jukebox service.

The ease of introducing new services is demonstrated by the
fact that building the single IAP was sufficient to make the ser-
vice available to any ICEBERG endpoint. Implementing a no
frills IAP required only 500 lines of Java code, most of which
implemented the proxy functionality.

The Jukebox service is now available through this IAP to the
endpoints in our testbed - GSM cell phones and IP desktop au-
dio applications, vat. We expect that as we add other types of
endpoints to our testbed (like the PSTN phone), the service will
be immediately accessible from those endpoints as well.

D. Room Control Service

We have implemented a complex composable service for
multi-modal control of smart spaces using several of the ICE-
BERG access networks. The end-devices we connected to the
system include a desktop computer GUI, microphone and speak-
ers, a cell phone, and a 3Com Palm Pilot Personal Digital As-
sistant. Users can use graphical, text, or speaker-independent
speech-based user interfaces to interact with one another and to
control the A/V resources in several rooms in Soda Hall.

The Smart Spaces Control (SSC) server uses the Automatic
Path Creation service to create a path between the sender and re-
cipient that performs any necessary transcodings (e.g., transcod-
ing GSM-encoded audio to PCM-encoded audio or performing
speech-to-text recognition). Using a control channel that is par-
allel to the data channel, we can dynamically customize the op-
erators (e.g., the speech recognizer uses a constrained n-gram,
based upon room control commands, to improve recognition ac-
curacy and speed).

The implementation of the SSC applications leveraged the
ICEBERG and Ninja infrastructure and was completed in only
a few person-months of work. Extending the applications has
been equally easy. Adding support for a graphical Personal Dig-
ital Assistant, using a GUI instead of speech, required only two
hours of work.

We are currently extending the speech recognition operators
to include more sophisticated operators, such as pause removal,
pitch emphasis detection, time code extraction, and confidence
extraction.

VI. CLEARING HOUSE: RESOURCE ALLOCATION AND

BILLING

A. Overview

In this section, we describe our initial design of the Clear-
ing House (CH), which coordinates the interactions between the
ICEBERG Network plane and the ISP Plane (Figure 1). The
structure of CH is designed for efficient provision of resource
reservations and secure billing of services. In addition, the CH
must scale over both distance and number of ISPs to support the
operation of ICEBERG in the wide area.

To make the CH scalable to a large user base over a wide
area network, we are implementing the CH as a hierarchical dis-

tributed system. We assume the network to be composed of vari-
ous basic domains (based on either administrative or geographic
boundaries), with minimal domain overlap. In our design, phys-
ically adjacent domains are aggregated to form bigger logical
domains. This induces a hierarchy of logical domains in the
network and a distributed CH is associated with each of them.
At each level, multiple CH’s share the task of searching through
the ISP space to construct inter-domain subpaths, as well as stor-
ing this information for future usage. When a call between two
end-points across the wide area is requested, a recursive call will
be made from the parent level of the CH hierarchy for a path be-
tween a local ISP and an adjacent domain. The children CH
nodes will perform the local search automatically to construct
paths which span to the boundary of the adjacent domain.

The implementation of the CH is still on-going, and further
studies are needed to map the CH hierarchical tree and its logi-
cal domains to the existing Internet that spans multiple adminis-
trative domains without clear geographical boundaries.

B. Clearing House Infrastructure
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Fig. 3. A High-level view of the CH architecture during call setup.

First, we demonstrate how the CH handles the various tasks
by describing a typical sequence of events that take place after
a call setup request arrives at the iPOP, as labeled steps 1-4 in
Figure 3:

1. iPOP passes call specifications to the CH
When the iPOP receives a new call request, it looks up
the Naming Service and PAT to locate the caller and the
callee, and obtains their preferred contact point from their
respective PR (Section IV-A). The iPOP then contacts
the CH, and passes along the following call specifications:
[caller location, callee location, end device of contact, traf-
fic statistics, desired quality of service, misc.]

2. The CH performs an optimal path search
The CH uses its internal cache information about inter-ISP
reservation status and the call specifications to search for
the optimal end-to-end packet flow path through ISPs. This
path is optimized based on the desired quality of service
(e.g. network latency), and reservation availability.

3. The CH sends reservation requests and billing tickets to
ISPs
The CH aggregates reservation requests and billing tickets
for calls that travel through the same ISP. After a preset
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time period, the clustered reservation requests and billing
tickets are sent to each of the ISPs involved in the path.

4. The CH authorizes the ISPs in the path
If sufficient resources are reserved along the optimal path,
the call is admitted.

Admission Control: If the CH fails to locate any links with
sufficient resources reserved to complete a chosen path, the CH
will either block the new call, or renegotiate with the iPOP for
the amount of required resources to carry the call. The decision
involves some trade-offs in the user perceived quality of the call,
the cost for increasingly scarce resources, and the additional la-
tency to complete call setup.

In the following discussions, we elaborate on how the CH
provides resource reservation and secured billing services to the
ICEBERG architecture.

B.1 Scalable Resource Reservation

We propose a credit-based resource reservation scheme, of
which one very important feature is that the resource reserva-
tion is not performed on a per-call basis, but rather is aggregated
over various connections that use a particular link. As shown in
Figure 3, resource reservations are set up from ISP to ISP, in-
stead of end-to-end. The neighboring ISPs send regular updates
to the CH which keeps track of the ”reservation status”, i.e., how
much of the available resources are currently reserved on a par-
ticular link. The truthfulness of such updates can be verified by
companies such as Inverse Network Technology [29]. An ISP
pays another ISP a certain amount of credit to reserve resources
for a preset time window, and one can enhance the reservation
by increasing the credit of the existing reservation, instead of
requesting a separate reservation.

Since online resource reservation is very costly and time con-
suming, the goal of our design is to minimize the amount of
per-link reservation that has to be done during call setup for a
particular call. In Step 2 above, the optimal path is chosen such
that the number of new per-link resource reservations is mini-
mized.

B.2 Billing

Once the CH finds the optimal path, it returns an authoriza-
tion ticket and a billing ticket for each ISP involved to the iPOP.
For each aggregate reservation request, the CH sends the autho-
rization tickets in groups to each ISP. Along with this, the CH
also periodically sends the clustered billing tickets to each ISP.

The iPOP hands the pairs of tickets to each ISP on the path,
setting up the call in the process. Each ISP authenticates the
authorization ticket before allowing the call setup. After each
call ends, its billing ticket is kept in persistent storage. At the
end of the regular billing cycle, each ISP aggregates its billing
tickets and sends them to the CH for lump settlement payments.

Security: We assume that the ISPs trust the local CH to store
their service information. The CH’s security structure must pre-
vent ISPs from forging their own billing tickets or unauthorized
call setup messages. We provide a secure system that uses digi-
tal signatures and asymmetric and symmetric encryption to pro-
vide security while maximizing performance (see further dis-
cussions in Section VII). To reduce the CPU overhead imposed
on the CH by encryption operations, the CH aggregates multiple
billing tickets for a given ISP within a fixed time window, and

provides a digital signature for the concatenated billing tickets.

B.3 Discussions

The resource reservation and billing mechanisms described
above meet the following design goals:

� Scalability: Resource reservation requests are made for
aggregate connections instead of for individual users. Nei-
ther the CH nor the ISPs need to maintain per connection
state. Similarly, the CH clusters the corresponding billing
tickets for a preset time window before sending them to
ISPs. This allows the CH to scale nicely.

� Heterogeneity: The CH design provides resource reser-
vation and billing mechanisms that work across heteroge-
neous access networks and services. Since reservation is
done using time-based credits, service handoffs can be per-
formed without having to tear down resource reservations
on every link. This functionality supports PANS and per-
sonal mobility in ICEBERG.

� Minimize Signaling Overhead and Setup Time: The
flexibility in allowing existing resource reservations to be
enhanced greatly reduces the need to set up new reserva-
tions for every single link whenever a new call is made.
Since reservations may already exist on some links in the
sender-to-receiver path, both resource reservation and call
setup time can be reduced. The clustering of billing tickets
also reduces the amount of CPU overhead for encryption
operations, and lessens the number of control messages that
are exchanged.

� Inter-operability in the Wide Area: The CH’s design
can easily be extended to work with future Internet pro-
tocols that provide different service levels (e.g., Differenti-
ated Service or Integrated Service with RSVP).

VII. SECURITY AND AUTHENTICATION ISSUES IN CALL

SETUP

ICEBERG is built upon the untrusted Internet, which poses
privacy and authentication issues in the call setup process. We
briefly discuss these issues in this section.

Authenticating Name Mapping Service lookup: This
lookup operation is an important step in call setup. Name
servers in our architecture are akin to DNS name servers: they
are assumed to store public information. This abstraction sim-
plifies the authentication requirement for a Name Mapping
Server (NMS) lookup — only the reply from the NMS needs
to be authenticated, and the reply need not be encrypted. We
use the Name Mapping Service to bootstrap authentication; it is
used to get the public key of any user or network infrastructure
component that is required for further cryptographic operations.
We assume the existence of a PKI (Public Key Infrastructure)
for authenticating the Name Mapping Service reply.

Preventing caller spoofing: Call setup (from caller
�

to
callee � ) involves the lookup of � ’s Preference Registry ( ����� )
by
�

’s Call Agent ( � ��� ). At this stage, ��� � has to verify that
� ��� is a valid Call Agent of the caller to prevent bogus callers.
In our model, ����	 , user

�
’s Preference Registry, is considered

to be the authority of the information about the list of valid Call
Agents for

�
. This model is flexible: ��� 	 can update the list

when the user subscribes for the services of � ��� and informs
��� 	 about it (through an out of band channel). ��� 	 can then
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issue a certificate to that effect to � ��� , which can then be pre-
sented to ��� � for the required authentication.

Enforcing callee control and callee privacy: There is an-
other subtle requirement in the call setup process when the
originating and terminating call agents communicate ( � � � �
� ��� ): � ��� has to be able to verify that � ��� has indeed con-
tacted ��� � in the recent past. This is to enforce callee control
and disallow callers from by-passing the Preference Registry be-
fore calling. Our approach to deal with this is to have ����� issue
an encrypted, signed ticket to � ��� during step 2. This ticket is
for one-time use only, and has an expiration timestamp. This
ticket is used by � ��� for the required verification. This mech-
anism also provides callee privacy: ����� can hide the actual
endpoint identity of the callee by encrypting this information in
the ticket.

Secure billing: To prevent tampering of billing tickets, we
need to provide authenticity guarantees. The natural choice is to
use public-private key encryption, where the CH digitally signs a
billing ticket with its private key for authenticity. Using the digi-
tal signature, a provider can authenticate the origin of the billing
ticket, and provide undeniable proof of the charged amount.
However, public key cryptography imposes a much higher CPU
overhead than symmetric key encryption. Our design choices
directly impact call setup latency, and require further studies of
the trade-offs involved.

Encryption for secrecy in any of the above steps is done in
one of two ways: (a) by using the public key of the recipient,
or (b) by establishing a shared session key before information
exchange. Both these methods could involve extra round-trips
(for learning the public key, or for establishing the session key).
The latter method (established session key) would be used for
secrecy of the messages exchanged during call session main-
tenance. Note that the use of IP multicast makes call session
management vulnerable to denial-of-service attacks. Nonethe-
less, new multicast proposals, like Simple Multicast [14], offer
access control and prevent denial-of-service attacks.

The complete call setup process could involve a significant
amount of latency for all of the authentication steps. Fortu-
nately, almost all of the authentication steps can be optimized by
caching previous authentication information, public key lookup
information, or the pre-established shared session keys. These
optimizations can save network round-trips, as well as crypto-
graphic operations at the endpoints.

We are in the process of implementing these security mecha-
nisms in our existing ICEBERG testbed.

VIII. IMPLEMENTATION

To gain experience and to iterate on our design, we have been
implementing ICEBERG components in a testbed setting. This
testbed currently consists of a GSM cellular base-station, lap-
tops with WaveLAN wireless interfaces, a H.323 gateway, and
a two-way paging base-station. We have built IAPs for interfac-
ing with cell-phones and IP-telephony, and are in the process of
building IAPs for the H.323 and paging gateways.

In terms of the other software components, we have imple-
mented our signaling protocol in Call Agents, the Preference
Registry, the Name Mapping Service, and the APC service. We
are using the H.323 gateway in our testbed to experiment with
billing mechanisms. We are in the process of working out the

next level of details of our Clearing House design and security
design.

The Call Agent, Preference Registry, and the APC service are
implemented as services in Java with an RMI interface. We’re
currently using an LDAP server (from www.openldap.org) for
service location and the Name Mapping Service.

Our implementation is as yet untuned and shows that a high-
end PC (with 500Mhz Intel Pentium II processor and 256MB
RAM) can handle 10 call initiations per second. The current
telephone usage model, according to [30], is a mean call arrival
rate and a mean call duration during busy hours of 2.8 calls per
hour and 2.6 minutes per call respectively. Using this model, we
would require approximately 500 PCs to handle the call traffic
for a region on the scale of the San Francisco Bay Area with a
population of six million.

Our examination of the call processing latencies shows that a
large part of the cost is due to the Java services. RMI lookup
and calls take on the order of 10ms and require multiple net-
work round-trips. Performance is also limited by the fact that
we’re using a Java implementation with user-level threads that
spin idly while waiting for network packets. With a large com-
munity of researchers working on Java CPU, as well as, Java I/O
performance, we expect that these costs will be reduced.

IX. CONCLUSIONS AND FUTURE WORK

In this article, we presented the ICEBERG network architec-
ture: an Internet-core network for integrated communications.
Our network can be viewed as islands of cluster computing plat-
forms that offer scalable, available, and robust services on them.
Our signaling protocol takes the approach of lightweight ses-
sions and soft state, enabling scalable and robust call services
in the wide area. With multi-device communication as the basic
call service combined with ICEBERG components that manage
user preferences, behaviors, and compose units of computation,
we provide an easy service creation environment for customiz-
able services. To address wide area quality of service issues, we
use a Clearing House-based approach that leverages aggregation
to provide scalable resource reservation and billing mechanisms.
The ICEBERG architecture also provides secure, authenticated
call setup and billing for services.

We have a significant amount of future work ahead of us, in
particular we have not yet addressed the problem of Operations,
Administrations and Maintenance (OA&M), a mature (and crit-
ical) technology in modern telecommunications networks. In
addition, we are continuing our experiments with more sophisti-
cated and novel services and we are in the process of formulating
a well-defined service creation model. We also plan to address
the incremental wide area deployment of ICEBERG architecture
and Clearing House infrastructure over the existing Internet.
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