
Synergistic Cache Layout For Reuse and Compression
Biswabandan Panda

Indian Institute of Technology Kanpur, India
biswap@cse.iitk.ac.in

André Seznec
INRIA Rennes, France
andre.seznec@inria.fr

ABSTRACT
Recent advances in research on compressed caches make
them an attractive design point for effective hardware imple-
mentation for last-level caches. For instance, the yet another
compressed cache (YACC) layout leverages both spatial and
compression factor localities to pack compressed contiguous
memory blocks from a 4-block super-block in a single cache
block location. YACC requires less than 2% extra storage over
a conventional uncompressed cache.

Performance of LLC is also highly dependent on its cache
block replacement management. This includes allocation
and bypass decision on a miss as well as replacement target
selection which is guided by priority insertion policy on
allocation and priority promotion policy on a hit. YACC
uses the same cache layout as a conventional set-associative
uncompressed cache Therefore the LLC cache management
policies that were introduced during the past decade can be
transposed to YACC. However, YACC features super-block
tags instead of block tags. For uncompressed block, these
super-block tags can be used to monitor the reuse behavior of
blocks from the same super-block. We introduce the First In
Then First Use Bypass (FITFUB) allocation policy for YACC.
With FITFUB, a missing uncompressed block that belongs
to a super-block that is already partially valid in the cache
is not stored in the cache on its first use, but only on its
first reuse if any. FITFUB can be associated with any priority
insertion/promotion policy.
YACC+FITFUB with compression turned off, achieves

an average 6.5%/8% additional performance over a conven-
tional LLC, for single-core/multi-core workloads, respec-
tively. When compression is enabled, the performance ben-
efits associated with compression and FITFUB are almost
additive reaching 12.7%/17%. This leads us to call this de-
sign the Synergistic cache layout for Reuse and Compression
(SRC). SRC reaches the performance benefit that would be
obtained with a 4X larger cache, but with less than 2% extra
storage.

ACM Reference Format:
Biswabandan Panda and André Seznec. 2018. Synergistic Cache
Layout For Reuse and Compression. In International conference
on Parallel Architectures and Compilation Techniques (PACT ’18),
November 1–4, 2018, Limassol, Cyprus. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3243176.3243178

1 INTRODUCTION
Compressed caches have become an attractive design point
for effective hardware implementation for last-level caches
(LLCs). Recently proposed compressed cache layouts, such
as decoupled compressed cache (DCC) [25], skewed com-
pressed cache (SCC) [23], and yet another compressed cache
(YACC) [24] leverage super-block tags1 to implement com-
pressed caches with a limited storage overhead (less than 2%
for SCC and YACC). On YACC and SCC, the data array is or-
ganized in fixed size data entries (typically 64B the size of an
uncompressed block), each data entry being associated with
a unique and fixed tag. However, this tag is a super-block tag
and the data entry can contain either multiple compressed
memory blocks or a single uncompressed memory block.
The read access time of YACC or SCC is similar as the ones
of uncompressed caches apart for the decompression. YACC
and SCC are agnostic to the cache compression algorithm.
However, YACC and SCC ensures that the allocation unit in
the LLC is a complete 64B data entry. The DIctionary SHaring
(DISH) compression scheme [19] leverages this particularity.
With DISH, a dictionary is shared among the memory blocks
represented in the data entry. This allows more efficient com-
pression than traditional compression schemes [3, 10, 21]
that compress every memory block independently. As a re-
sult, YACC or SCC coupled with DISH performs generally
better than a 2X uncompressed cache[19].
LLC replacement policies for compressed caches has re-

ceived little attention so far, apart from [7, 11, 20]. Before
of the introduction of YACC, the adaptation of the state-of-
art replacement policies for compressed caches was very
challenging. For instance, on DCC [25], the replacement pol-
icy had to manage the super-block replacements (when the
super-block tag is missing) and the block replacements (when
the super-block tag is present, but the block is missing). As
the allocated data size is known only after compression, a
single cache miss could lead to several super-blocks evic-
tions and several cache block evictions. In contrast, YACC
has a very similar layout as a conventional cache, apart that
a super-block tag is associated with each data array entry in-
stead of a block tag (Figure 1), thus allowing to map either an
uncompressed data block or up to four co-compressed blocks
1A super-block is an aligned and contiguous group of blocks (compressed
and uncompressed) that use a single tag called super-block tag for all the
blocks. For example, a 4-block super-block that contains four cache blocks
share a single super-block tag.

1

https://doi.org/10.1145/3243176.3243178

offset blk-ID Index Super-blk Tag

Address bits Tag Entry for SB with CF=1

CS2 0 Super-blk Tag

0 6 8 47

Tag Entry for SB with CF=4

Super-blk Tag 1 CS0 CS1 CS2 CS3

Uncompressed

Compressed
0 3 6 9 12

Figure 1: YACC tag entries with different compression
factors (CFs). CS:coherence states/V/I bits. SB: Super-
block.

of the super-block in the data entry. On a cache allocation, a
single data entry is replaced. Most LLC management policies
that were proposed for conventional caches [14], [22], [13],
[31], [26], [15], [17], [12] can be directly transposed to the
YACC cache.

However YACC uses super-block tags. As conventional
tags, super-block tags can be used tomonitor activities/status
of the blocks present in the cache. They can also be used
to monitor the activities/status of blocks belonging to the
super-block, but absent from the cache. Many fetched blocks
are not reused before eviction (e.g. [5]). The super-block
tag can be used to (partially) exploit this property on super-
blocks that are uncompressed or not co-compressible. The
First In Then First Use Bypass (FITFUB) allocation policy
leverages the super-block tag in YACC as follows.On an
LLC miss, on a block Bi within a missing super-block B, a
data entry and its super-block associated tag are allocated.
On a subsequent miss on Bj in the same super-block B, if the
block cannot be co-compressed with Bi, then the validity status
associated with Bj is updated in the super-block tag as First-Use,
but the data entry is not allocated. An additional data entry
and its associated super-block tag location are allocated for Bj
only if it gets reused before super-block B is evicted from the
cache. On YACC, FITFUB can be implemented on top of a
conventional priority insertion/promotion policy.
Interestingly, FITFUB is an efficient LLC allocation pol-

icy even when compression is turned off and makes the
YACC layout attractive even for uncompressed caches. In
our experiments, with compression turned off, YACC with
FITFUB achieves an average 6.5% and 8% higher perfor-
mance than a conventional LLC that uses SHiP++ [31] (an
extended version of SHiP as per cache replacement champi-
onship held in ISCA ’17) for single-core and multi-core work-
loads, respectively. When the DISH compression is turned
on, YACC+FITFUB achieves 12.7% and 17% higher perfor-
mance than a conventional uncompressed LLC for single-
core andmulti-coreworkloads, respectivelywhile YACC only
achieves 8.3% and 10%, respectively. As the benefits of cache
compression through the YACC layout and the benefits of

the FITFUB policy are nearly additive, and as FITFUB essen-
tially identifies the reused cache blocks when uncompressed,
we call it Synergistic cache layout for Reuse and Compression
(SRC).

The remainder of the paper is organized as follows. Section
2 presents the background on compressed caches. Section 3
introduces our experimental framework. The motivation and
opportunity behind SRC is in Section 4. Section 5 introduces
the FITFUB allocation policy for YACC. We evaluate the
overall SRC proposal in Section 6 while Section 8 concludes
this study.

2 BACKGROUND
This section provides the background on the state-of-the-art
compressed cache layouts and cache compression schemes.
Compressed Cache Layouts: Compressed caches use a
compression technique that compresses cache blocks and a
compaction technique that compacts the compressed blocks
in the data array. Till the proposition of DCC[25], the pro-
posed designs were considering the use of more tags than
data entries.
In DCC[25], super-block tags limit the tag volume, the

main observation being that often adjacent contiguous cache
blocks co-reside at the LLC. DCC compacts up to 16 four
64B block super-block in 1024B. The SCC[23] and the YACC
cache [24] further simplify the cache layout design through
associating a single super-block tag with a fixed 64 bytes
data entry.

SCC[23] is a compressed cache layout that compacts mul-
tiple (in power of two, such as 1, 2, and 4) compressed blocks
from the same super-block and stores them in one data entry.
It uses super-block tags and skewed associative mapping
[27]. It maintains an one-to-one mapping between a tag en-
try and a data entry, and it compacts cache blocks based on
their compression factors (CFs). For a data entry of 64 bytes,
the CF of a cache block is: four/two/one if it is compressed
to <16B/between 16B to 32B/>32B.

YACC [24] simplifies the design aspects of SCC, and main-
tains the one-to-one mapping between a tag entry and a data
entry. It uses a cache layout, which is similar to a regular set-
associative uncompressed cache. It removes skewing from
SCC, and achieves the same performance level. However,
similar to SCC, it compacts cache blocks by taking their CFs
into account. YACC tracks from one to four cache blocks
with the help of a super-block tag. An important property
of YACC is that all the blocks belonging to a 4-block super-
blocks are stored in the same cache set. That is: YACC has a set
associative structure, apart that it uses super-block tags instead
of block tags, and that a data entry-aka a cache line location-
can store either an uncompressed cache block, or several com-
pressed cache blocks from the same super-block. This mapping

2

provides an average performance reduction of less than 1.5%
as it reduces the effective associativity of a set. In this paper,
we consider a version of YACC, which considers only two
possible compression factors, CF=1 (1 uncompressed block)
and CF=4 (1 to 4 compressed blocks). In that context, Figure
1 represents the super-block tag. Compared to the tag of a
conventional cache and assuming a 3-bit coherence/validity
state per block, the extra tag storage is only 8 bits per tag
((three 3-bits + one bit compressed/uncompressed) - (two
address bits that YACC saves from the address splitting)), i.e.
1.5% storage overhead on the LLC.
Cache Compression Techniques: State-of-the-art com-
pressed cache layouts are independent of the underlying
compression techniques such as CPACK [10], FPC [3], BDI
[21], SC2 [6] and DISH [19], out of which BDI and DISH
provide compression ratios of 1.7X and 2.3X when associ-
ated with a YACC layout, respectively [19]. On a compressed
cache, decompression is on the critical path. BDI and DISH
decompress a cache block in a single cycle.

BDI [21] compresses a cache block by exploiting the data
correlation property. It uses one base value for a cache block,
and replaces the other data values of the block in terms of
their respective deltas (differences) from the base value. BDI
tries different granularities of base (2 bytes to 8 bytes) and
deltas (1 byte to 4 bytes).

DISH [19] is a compression technique that was specifi-
cally designed for the compaction schemes such as SCC and
YACC that always allocate a full data block in the LLC and
that associate it to a super-block tag. DISH uses a dictionary
that is shared by up to four cache blocks. In this way, DISH
manages both compression and compaction together. Both
BDI and DISH can be used with a YACC layout. DISH is
more efficient than BDI when associated with YACC [19].
It even simplifies the YACC layout design, retaining only
two cases CF=4 and CF=1. Therefore, apart when explicitly
mentioned, in the remainder of the paper, DISH is used as
the compression scheme.

3 EXPERIMENTAL METHODOLOGY
This section describes the experimental methodology that
we use throughout the paper. We use the x86-based gem5
[9] simulator to evaluate the effectiveness of SRC cache at
the LLC. Table 1 illustrates the baseline configuration for
the simulated systems. We simulate both single-core and
multi-core (16- and 32-core) systems, and we estimate the
cache latencies with CACTI 6.5 [18]. To calculate the power
consumption of DRAM, we use the Micron Power Calculator.
We measure the energy consumption of LLC and DRAM,
off-chip transfers between LLC and DRAM, as well as the
energy consumed by the compressor and de-compressor of
DISH. For single-core evaluations, we collect the statistics

Processor 1/16/32-cores, 3.7 GHz, out of order
L1 D/I, L2 32 KB (4 way), 256KB (8 way)
Banked Shared L3 2/32/64 MB for 1/16/32 cores with 16

ways, non-inclusive
MSHRs 16/16/16 per core MSHRs at L1/L2/L3
Line size 64B in L1, L2 and L3
Cache Replacement policy SHiP++ [31]
Compressed Cache Layout YACC [24]
Compression Technique DISH [19]
L2 prefetcher Stream based [30], 32 streams with de-

gree = 4 and distance = 32
On-chip interconnect Crossbar
DRAM controller 1/4/8 controllers for 1/16/32-cores, Open

Row, 64 read/write queues, FR-FCFS
DRAM bus split-transaction, 800 MHz, BL=8
DRAM DDR3 1600 MHz (11-11-11), Max band-

width/channel - 12.8 GB/sec

Table 1: Parameters of the simulated system

Benchmarks Types
SPECCPU 2006 [29] xalancbmk, bzip2, hmmer, soplex, mcf,

omnetpp, h264ref, cactusADM, lbm, gro-
macs, zeusmp

Sensitive-
positive
(SP)

libquantum, milc, bwaves, namd,
leslie3d, sjeng

Insensitive
(IN)

PARSEC [8] canneal, dedup, ferret, fluidanimate, fre-
qmine, vips

Sensitive-
positive
(SP)

blackscholes, bodytrack, swaptions,
facesim, streamcluster, x264

Insensitive
(IN)

CRONO [1] sssp, apsp Sensitive-
positive
(SP)

pagerank, community detection (com-
munity), bfs, betweenness centrality (bc)

Insensitive
(IN)

Machine Learning sparse matrix vector multiplication
(spmv), symmetric Gauss-seidel
smoother (symgs)

Sensitive-
positive
(SP)

locality sensitive hashing (lsh). stochas-
tic gradient descent (sgd), K nearest
neighbor (knn)

Insensitive
(IN)

Table 2: Classification of benchmarks.

from the region of interest for 2B instructions.
Workload selection: Table 2 classifies 40 benchmarks from
SPEC CPU 2006 [29] 2, PARSEC [8], CRONO [1], and from
the world of graph analytics and machine learning, into
2 classes (SP, and IN), based on their sensitivity to cache
capacity. A benchmark is sensitive-positive (SP) if there is
an improvement in performance with the increase in the
LLC size and insensitive (IN) if the increase in the cache
size does not affect performance or affect it negligibly. IN
also includes the benchmarks that are sensitive-negative, for
which performance decreases when the LLC size doubles
(this occurs when LLC misses do not drop since we model a
longer access latency for a larger LLC).

2In our gem5 set-up, only 17 SPEC applications run correctly. Seven ap-
plications do not run correctly with gem5 and the rest of the applications
provide incorrect outputs.

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
b

zi
p

2
ca

ct
u

sA
D

M
lib

q
u

an
tu

m
le

sl
ie

3
d

o
m

n
et

p
p

sj
en

g
xa

la
n

cb
m

k
m

ilc
lb

m
so

p
le

x
m

cf
ze

u
sm

p
gr

o
m

ac
s

h
m

m
er

h
2

6
4

re
f

n
am

d
b

w
av

es
b

la
ck

sc
h

o
le

s
b

o
d

yt
ra

ck
ca

n
n

ea
l

d
ed

u
p

fr
eq

m
in

e
fl

u
id

an
im

at
e

fa
ce

si
m

fe
rr

et
st

re
am

cl
u

st
er

sw
ap

ti
o

n
s

vi
p

s
x2

6
4

ap
sp b

c
b

fs
co

m
m

u
n

it
y

p
ag

er
an

k
ss

sp sg
d

ls
h

sp
m

v
sy

m
gs

kn
n

A
ve

ra
ge

Fr
ac

ti
o

n
 o

f
n

o
n

-r
eu

se
d

 b
lo

ck
s

Figure 2: Fraction of non-reused LLC blocks.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

b
zi

p
2

ca
ct

u
sA

D
M

lib
q

u
an

tu
m

le
sl

ie
3

d
o

m
n

et
p

p
sj

en
g

xa
la

n
cb

m
k

m
ilc

lb
m

so
p

le
x

m
cf

ze
u

sm
p

gr
o

m
ac

s
h

m
m

er
h

2
6

4
re

f
n

am
d

b
w

av
es

b
la

ck
sc

h
o

le
s

b
o

d
yt

ra
ck

ca
n

n
ea

l
d

ed
u

p
fr

eq
m

in
e

fl
u

id
an

im
at

e
fa

ce
si

m
fe

rr
et

st
re

am
cl

u
st

er
sw

ap
ti

o
n

s
vi

p
s

x2
6

4
ap

sp b
c

b
fs

co
m

m
u

n
it

y
p

ag
er

an
k

ss
sp sg
d

ls
h

sp
m

v
sy

m
gs

kn
n

A
ve

ra
geFr

ac
ti

o
n

 o
f

u
n

co
m

p
re

ss
ed

 b
lo

ck
s

Figure 3: Fraction of uncompressed LLC blocks.

We createdmulti-programmedworkloadmixes from single-
threaded SPECCPU 2006, PARSEC, CRONO, and other bench-
marks. We created these workload mixes based on their LLC
sensitivity and fraction of non-reused cache blocks. At the
LLC, if a workload gets a performance increase over 8% when
the LLC size doubles, then we classify it as high (H) in terms
of LLC sensitivity otherwise, the workload is termed as low
(L). Similarly, in terms of non-reused blocks, if a workload
exhibits more than 50% of LLC blocks that are non-reused,
we termed it high (h); otherwise, it is termed as low (l). We se-
lect 200 16-core and 32-core workloads into four categories
such as Hh, Hl, Lh, and Ll where each category consists
of 50 workloads. For multi-core evaluations, we evaluate
both multi-programmed and multi-threaded workloads. For
multi-threaded workloads (such as PARSEC and CRONO),
we use the region of interest for 2B instructions. For multi-
programmed workloads, we simulate the multi-programmed
mixes by running each benchmark for 2B instructions from
the region of interest. A workload terminates when the slow-
est benchmark completes 2B instructions. For all the eval-
uations, we warm-up the cache for 1B instructions before
running the region of interest.

Metrics: We use data block misses per kilo instruction
(MPKI) to measure the behavior of the cache itself. For single-
core simulations and for multi-threaded workloads, we use
speedup as the metric, i.e., Exectimebasel ine

Exectimetechnique
. For multi pro-

grammed mixes, we use normalized weighted speedup (WS)
[28] and the normalized fair speedup (FS) [16] whereWS =
N−1∑
i=0

I PC toдether
i

I PCalone
i

, FS = N
N−1∑
i=0

I PCalonei

I PCtoдetheri

, IPCtoдether
i is the IPC

of core i when it runs along with other N -1 applications
and IPCalone

i is the IPC of core i when it runs alone on a
N -core multi-core system.WS tends to be a good measure
for system throughput improvement while FS balances sys-
tem throughput improvement with maintenance of system
fairness.

4 MOTIVATION AND OPPORTUNITY
Albericcio et al. showed that a significant fraction of the
blocks missing in the LLC do not get any reuse before evic-
tion from LLC [5]. Our experiments show that this property
still holds for compressed caches. Fig. 2 illustrates the fraction
of LLC blocks that are not reused on YACC in our experi-
ments for single core. On average, more than 55% of blocks
(both compressed and uncompressed) do not get a reuse at
the LLC, with the maximum of 82%. In particular, streaming
applications such as libquantum have a significant number
of LLC blocks getting no reuse. The Reuse cache [5] was
proposed to exploit this property on an uncompressed cache.
The Reuse cache layout is radically different from the one
of a conventional cache. It implements 4X more tags than
the number of data cache blocks; the tag array and data ar-
ray are decoupled (pointers and back pointers are needed).
On a miss on a memory block, only the tag is allocated and
the data is bypassed to the core. On the first (tag) reuse, i.e.,
hit on the tag array but miss on the data array, the data
block is allocated on data array. Our experiments confirm
that, in most cases, the Reuse cache achieves performance in
the same range or higher as a 2X larger conventional cache.
Unfortunately the Reuse cache also incurs very significant
hardware overhead; ignoring the extra logic, the Reuse cache
necessitates about 20% of extra storage than a conventional
cache. With the Reuse cache, data blocks have three possible
presence status, tag-only, tag+data, and invalid. The tag-only
status allows to track the first use blocks that are not present
in the data array.
In our experiments, with YACC, on average, 42% of the

blocks sitting in the LLC are uncompressed, with the maxi-
mum being 90% (Fig. 3). This means that 42% of the super-
block tags (that can map up to four contiguous blocks) repre-
sent one tag+data block state and 3 invalid block states. For
a super-block with super-block tag (say SA) that contains
one uncompressed block A2, the introduction of the pres-
ence status tag-only in YACC will allow to track the reuse
property of its companion cache blocks (A0, A1 and A3).
In the next section, we present the FITFUB allocation

policy for YACC. FITFUB exploits this extra presence status
to (partially) filter the allocation of single use uncompressed
blocks in the YACC cache.

4

A2
(Global Miss)

L3 Accesses

A0
(Tag Hit,
Block Miss)

A0
(Tag Hit,
Reuse detected)

A3
(Multiple Tag Hits,
Block Miss)

Super-blk Tag I0

FU/V/I bit

Set 0

Set 0

Set 0

Set 0

Way 0Way 1Way 2Way 3

A2

Way of Data array Way of Tag array

1

2

3

4

VII

Super-blk Tag I0 VIFU

A2

A2A0

Super-blk Tag I0 VII

Super-blk Tag I0 IIV

A2A0
Super-blk Tag FU0 VII

Super-blk Tag FU0 IIV

Write-back A3
(Multiple Tag Hits,
Data forwarded to
the DRAM)

Set 0

Way 0Way 1Way 2Way 3

5 A2A0
Super-blk Tag FU0 VII

Super-blk Tag FU0 IIV

Figure 4: Different access scenarios with the U-SRC cache. FU is the first-use bit. A0 to A3 are the blocks of a
super-block SA. For each access, we show the updated tag entries (after the access is serviced).

5 FIRST IN THEN FIRST USE BYPASS
ALLOCATION POLICY

We describe FITFUB policy as follows: On an LLC miss for a
block Bi within a missing super-block B, a data entry and its
associated super-block tag are allocated. On a subsequent miss
on Bj in the same super-block B, and if the block cannot be
co-compressed with Bi, the validity status associated with Bj is
updated in the super-block tag as First-Use, but the data entry
is not allocated. An additional data entry and its associated
super-block tag location are allocated for this second block Bj,
only if it gets reused before super-block B is evicted from the
cache.
We detailed below the various access scenarios induced

by the FITFUB policy on the YACC cache. For the sake of
simplicity, we first describe the scenarios when all blocks
are uncompressed (or not co-compressible), and then we
generalize to themix of uncompressed and compressed cache
blocks.

5.1 Scenarios with uncompressed blocks
We consider in this section that all blocks in the super-block
are uncompressible (or that they are not co-compressible).
On YACC, four contiguous cache blocks A0, A1, A2 and A3
belonging to a 4-block super-block (say SA) are mapped to
the same cache set. A super-block tag is associated with each
data entry. Below are the different access cases (refer Figure
4):

Global miss on SA (1):On the access, if the super-block
englobing the block, e.g. block A2 in super-block SA is miss-
ing then a super-block tag is allocated in the tag array. The

data block is placed in the associated data entry. In the tag,
the CS field (as mentioned in Figure 1) associated with the
loaded block is marked as valid. The CS fields associated with
the other blocks in the super-block are marked as invalid.

Hit on super-block tag, but requested block is invalid
(2):When block A0 is accessed and if tag SA with block A2
valid is present, a hit is encountered on the tag array, but a
miss on the data array (CS0 is invalid). Block A0 is marked as
first-use in CS0 (meaning this is the first access to block A0),
the block is forwarded to L2 cache and then to the processor.
But it is not allocated in the data array.

Hit(s) on super-block tag, but request block ismarked
as first use block (3): On a subsequent access to block A0, a
new super-block tag and its associated data block is allocated
in the cache for A0. Its CS0 field is marked as valid. In the
first tag associated with SA (that was allocated on the access
of A2), the CS field is marked as invalid.

Multiple super-block tag hits, but request block is
invalid (4): On an access to A3, the same process is re-
peated apart that on the first access, the CS3 field in both
tags associated with A2 and A0 are set to first use.
Writeback at the LLC (5): On a writeback at the LLC,

if the block is valid in the LLC, it is updated. Otherwise, on a
full miss or a first use hit, the block is directly forwarded to
the DRAM without modifying the LLC. The rationale of this
policy is that multiple uses by the processor are, in practice
read uses. In practice, we leverage the use of super-block tags
to record the recent first use of blocks belonging to super-
blocks that have been recently touched: a single tag is able
to record this information for four blocks of the super-block.

5

An extra coherence/validity state: FITFUB needs an ad-
ditional state for cache blocks: the first-use state. For a non-
inclusive cache hierarchy, depending on whether the number
of possible states allowed by the coherence protocol is power
of two or not, this additional state can lead to an additional
bit per block in the super-block.

5.2 Scenarios with compressible blocks
So far we have only considered un-compressible blocks. In
this section, we describe few extensions for accommodat-
ing compressed blocks. The first type of modification cor-
responds to the cases 1 and 3 of Section 5.1: On a cache
block allocation, if the block is compressible then it is stored
as compressed block and the compressed bit is set in the
super-block tag (refer 1 of Figure 5). The second type of
modification corresponds to cases 2 and 4 of Section 5.1
where one needs to take into account that a data entry that
contains one or more compressed blocks can still be com-
pleted with a missing block.

Hit on super-block tag, compressed bit is set, how-
ever block is present in invalid state: This scenario corre-
sponds to the access to A0 with super-block tag SA when a
valid block A2 is present in compressed form. In this case,
if A0 is co-compressible3 with A2 then A0 is packed in the
same data entry as A2 and marked as valid (refer 2 of Fig-
ure 5). However if the missing block is in-compressible (or
not co-compressible) then it would be marked as first use, as
illustrated for block A1 (refer 3 of Figure 5).
Hit on super-block tag, compressed bit is set, how-

ever block is in first use state: This corresponds to the case
4 in Figure 5. A1 was in first-use state and is reused so a
dedicated data entry is allocated for it (general case). In the
case where A1 has been modified since its first use (e.g a
Write-Back) and has become co-compressible with A2, one
can pack it in the already allocated entry.

Multiple super-block taghits, at least one super-block
tag has compressed bit set, however block is in invalid
state. In this scenario, the block could potentially be co-
compressible with several cache entries, one has to ensure
that at most one copy of the block (in compressed format)
is stored in the cache and the corresponding super-block
tag correctly updated (refer 5a of Figure 5). If it can not be
compacted then it is marked as first use in all super-block
hitting tags (refer 5b of Figure 5).
The third type of modification corresponds to the write-

backs. For most writebacks, the scenario is directly derived
from the scenario on uncompressed blocks, i.e., we update

3The DISH compression scheme proposes two encoding schemes, and two
blocks of a super-block can be stored in the same data entry only if they
can be compressed with same encoding scheme [19]

the block in the cache if the data block is present and is co-
compressible with the other co-located blocks in the LLC. If
the block is marked as first use or is invalid then we directly
write back the block into the DRAM.

However particular attention must be given to the case
where the compressibility status of the block changes and
becomes incompatible with the previous state. This arises
when the block was compressible and co-located with one
or more other blocks, and becomes in-compressible or not
co-compressible with its companion blocks. In this case, the
block is directly written back to the DRAM and invalidated
in the LLC (refer 6 of Figure 5). The rationale is that, we
find, in these cases more than 80% of the time the written
back cache block do not get a reuse before its replacement.
Techniques such as dead-write predictor [2] can be used to
improve the decision process for this event.

5.3 FITFUB, YACC and inclusive Cache
Hierarchies

For inclusive cache hierarchies, the FITFUB allocation policy
violates the inclusiveness by not allocating data entries at the
LLC. To resolve this issue, we rely on the solution proposed
for the Reuse cache, the tag-only (TO) status. So at the LLC,
a coherence state can have two different variations: one in
which data is present in the data array and one where only
the tag is valid (corresponding to a first use). A coherence
transaction on a block in TO state should be propagated to
the caches closer to the processor. With the addition of a
new state, there are two new coherence transitions that are
possible: tag-only to tag+data and tag+data to tag-only. This
incurs an additional overhead of 1 bit per cache block.

6 PERFORMANCE EVALUATION
We first evaluate the FITFUB allocation policy on YACC
layout with compression turned off. For convenience, we refer
this configuration as U-SRC. Then we evaluate the FITFUB
allocation policy with YACC and DISH compression turned
on. We refer to this configuration as the SRC cache. Our
evaluation addresses the FITFUB allocation policy. Therefore,
for all simulated caches on an insertion or a block hit, the
block priority is updated as in SHiP++ [31].

6.1 Evaluation: Compression turned off
In this section, we evaluate the effectiveness of U-SRC and
compare it with a baseline cache as well as the Reuse Cache
[5]. The Reuse cache is simulated as a reference point since it
was essentially designed to capture the potential of bypassing
first use prefetch blocks.

Due to space limitation, we illustrate the results for single
core only. Figure 6 and Figure 7 illustrate the improvement

6

A2
(Global Miss, compressible)

L3 Accesses

A0
(SA Tag Hit, Block Miss, Co-compressible)

A1
(SA Tag Hit, Block Miss, Incompressible)

Tag I1

FU/V/I bitWay of Data array Way of Tag array

2

3

VII

A1
(SA Tag hit, Reuse Detected, Incompressible)

4

A2

Tag I1 VIV
A2A0

Tag I1 VII
A2A0

Tag I1 VFUV
A2A0

Tag I1 VIV
A2A0A1

Tag I0 IVI

Dictionary

A3
(Multiple SA Tag hits, Block Miss, Co-compressible
with A0 and A2)

5a Tag V1 VIV
A2A0

Tag I0 IVI

A3A1

2

1

A3
(Multiple SA Tag Hits, Block Miss, Incompressible)

Tag I1 VII
A2A0

Tag I1 VII

Tag FU1 VIV
A2A0

Tag FU0 IVI

5b
A1

Way 0Way 1

A2
(Writeback, Not Co-compressible)

6 Tag I1 VII
A2A0

Tag I1 VII

Tag FU1 IIV
A0

Tag FU0 IVI

A1

Figure 5: FITFUB: Access scenarios for compressible blocks..

0

5

10

15

20

25

30

b
zi

p
2

ca
ct

u
sA

D
M

lib
q

u
an

tu
m

le
sl

ie
3

d
o

m
n

et
p

p
sj

en
g

xa
la

n
cb

m
k

m
ilc

lb
m

so
p

le
x

m
cf

ze
u

sm
p

gr
o

m
ac

s
h

m
m

er
h

2
6

4
re

f
n

am
d

b
w

av
es

b
la

ck
sc

h
o

le
s

b
o

d
yt

ra
ck

ca
n

n
ea

l
d

e
d

u
p

fr
eq

m
in

e
fl

u
id

an
im

at
e

fa
ce

si
m

fe
rr

et
st

re
am

cl
u

st
er

sw
ap

ti
o

n
s

vi
p

s
x2

6
4

ap
sp b

c
b

fs
co

m
m

u
n

it
y

p
ag

er
an

k
ss

sp sg
d

ls
h

sp
m

v
sy

m
gs

kn
n

G
eo

m
ea

n

Uncompressed Baseline Uncompressed Reuse Cache U-SRC Cache

Lower the better

32.1

Figure 6: LLC misses in terms of absolute MPKI.

1
1.05

1.1
1.15

1.2
1.25

1.3
1.35

1.4
1.45

1.5

b
zi

p
2

ca
ct

u
sA

D
M

lib
q

u
an

tu
m

le
sl

ie
3

d
o

m
n

et
p

p
sj

en
g

xa
la

n
cb

m
k

m
ilc

lb
m

so
p

le
x

m
cf

ze
u

sm
p

gr
o

m
ac

s
h

m
m

er
h

2
6

4
re

f
n

am
d

b
w

av
es

b
la

ck
sc

h
o

le
s

b
o

d
yt

ra
ck

ca
n

n
ea

l
d

e
d

u
p

fr
eq

m
in

e
fl

u
id

an
im

at
e

fa
ce

si
m

fe
rr

et
st

re
am

cl
u

st
er

sw
ap

ti
o

n
s

vi
p

s
x2

6
4

ap
sp b

c
b

fs
co

m
m

u
n

it
y

p
ag

er
an

k
ss

sp sg
d

ls
h

sp
m

v
sy

m
gs

kn
n

G
eo

m
ea

n

Uncompressed Reuse Cache U-SRC Cache

Higher the better

Figure 7: Speedup normalized to an uncompressed
baseline LLC.

on LLC misses and execution time, respectively. U-SRC sim-
ulation results for multicores are illustrated in Figure 10 of
Section 6.
The miss rates of the Reuse cache and U-SRC are very

similar and this for all applications in our benchmark set.
The miss rates are in many cases significantly lower than
on the conventional cache confirming than bypassing first

use blocks allows to keep useful multi-used blocks in the
cache. Both the Reuse cache and U-SRC keeps information
on multiple uses on a 4X larger size than the effective data
array. The SHiP++ policy applied on the baseline does not
have such information.

Note that, the improvement inmiss rates does not translate
in the same performance improvement on U-SRC as on the
Reuse cache. Compared to the baseline uncompressed LLC,
the Reuse cache improves the performance by 8.6% and U-
SRC only captures 3

4 th of this potential, i.e, 6.5% performance
improvement.
In practice, the misses encountered by U-SRC and the

Reuse cache are not similar. U-SRC allocates a data entry on
the first miss on 4-block super-block while the Reuse cache
treats all blocks as equal. This translates in missed opportu-
nities of bypassing for U-SRC, but also in extra misses for
reused blocks on the Reuse cache. In our experiments, in
most cases these two phenomena compensate approximately
each other in terms of miss numbers. While the miss rates
on the caches are similar, the access patterns on the main
memory and the cost of the misses are different. The average
cost of a miss on U-SRC is higher than on the Reuse cache.
For instance, for a fully used super-block encountering mul-
tiple uses, the Reuse cache suffers two bursts of four misses,
each burst generating 4 contiguous DRAM accesses, thus po-
tentially benefiting from row locality. On the same sequence,
U-SRC saves a low cost miss, but unfortunately statistically
this low cost miss is replaced by a higher cost miss.

However, given the higher design complexity of the Reuse
cache compared to a conventional cache design and U-SRC,

7

0

5

10

15

20

25

30

b
zi

p
2

ca
ct

u
sA

D
M

lib
q

u
an

tu
m

le
sl

ie
3

d
o

m
n

et
p

p
sj

en
g

xa
la

n
cb

m
k

m
ilc

lb
m

so
p

le
x

m
cf

ze
u

sm
p

gr
o

m
ac

s
h

m
m

er
h

2
6

4
re

f
n

am
d

b
w

av
es

b
la

ck
sc

h
o

le
s

b
o

d
yt

ra
ck

ca
n

n
ea

l
d

e
d

u
p

fr
eq

m
in

e
fl

u
id

an
im

at
e

fa
ce

si
m

fe
rr

et
st

re
am

cl
u

st
er

sw
ap

ti
o

n
s

vi
p

s
x2

6
4

ap
sp b

c
b

fs
co

m
m

u
n

it
y

p
ag

er
an

k
ss

sp sg
d

ls
h

sp
m

v
sy

m
gs

kn
n

G
eo

m
ea

n

Uncompressed Baseline U-SRC Cache
YACC+DISH 4X Uncompressed Baseline
SRC Cache

Lower the better

Figure 8: LLC misses in terms of absolute MPKI.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

b
zi

p
2

ca
ct

u
sA

D
M

lib
q

u
an

tu
m

le
sl

ie
3

d
o

m
n

et
p

p
sj

en
g

xa
la

n
cb

m
k

m
ilc

lb
m

so
p

le
x

m
cf

ze
u

sm
p

gr
o

m
ac

s
h

m
m

er
h

2
6

4
re

f
n

am
d

b
w

av
es

b
la

ck
sc

h
o

le
s

b
o

d
yt

ra
ck

ca
n

n
ea

l
d

ed
u

p
fr

eq
m

in
e

fl
u

id
an

im
at

e
fa

ce
si

m
fe

rr
et

st
re

am
cl

u
st

er
sw

ap
ti

o
n

s
vi

p
s

x2
6

4
ap

sp b
c

b
fs

co
m

m
u

n
it

y
p

ag
er

an
k

ss
sp sg
d

ls
h

sp
m

v
sy

m
gs

kn
n

G
eo

m
ea

n
U-SRC Cache YACC+DISH 4X Uncompressed Baseline SRC Cache

Higher the better

1.77
1.5

Figure 9: Speedup normalized to an uncompressed baseline LLC.

in terms of storage overhead (about 20% storage overhead),
and design complexity (tag array and data array are decou-
pled, and pointers and back pointers are needed), U-SRC (i.e
YACC layout and FITFUB policy) appears as a cost-effective
design point even for uncompressed LLCs.

6.2 Compression turned on
In this section, we evaluate the effectiveness of the SRC cache
i.e YACC layout + FITFUB allocation policy with cache com-
pression turned on. We compare it with the baseline com-
pressed cache YACC. In both cases, we assume that the DISH
compression scheme is used. We also compare SRC cache
with an uncompressed Reuse cache, with U-SRC, with the
conventional cache and a 4X sized conventional cache. DISH
takes 24 and 1 cycles for compression and decompression, re-
spectively. The access time to the cache is modelled through

CACTI 6.5, therefore the access time of a 4X larger cache is
longer than the one on the baseline cache.

Single-core Results: Fig. 8 illustrates the absolute MPKI
numbers for an uncompressed baseline, U-SRC, YACC+DISH,
4X uncompressed LLC, and SRC. The SRC cache always
encounters fewer misses than YACC and U-SRC. It even
encounters fewer LLC misses than the 4X uncompressed
baseline cache, except for mcf and bzip2. For many memory-
intensive (high MPKI) applications such as mcf and lbm, the
reduction is very significant with number of LLC misses
reduced by more than 3X.
In several cases, the benefit comes essentially from com-

pression e.g. sssp, apsp, and bzip2. In other cases, the ben-
efit comes from FITFUB allocation policy e.g. libquantum,
leslie3d, and bwaves. In many cases, the reduction in LLC
misses comes from both the block allocation policy and the
cache compression e.g lbm, soplex, and knn. Compared to

8

1

1.05

1.1

1.15

1.2

1.25

1.3

Hh (WS) Hl (WS) Lh (WS) Ll (WS) GM:200
WLs (WS)

PARSEC CRONO GA & ML

YACC+DISH

Uncompressed Reuse Cache

U-SRC Cache

4X Uncompressed Baseline

SRC Cache

Higher the better

Multi-programmed Multi-threaded

Figure 10: Normalized system performance (weighted
speedup) over an uncompressed baseline.

1

1.05

1.1

1.15

1.2

1.25

1.3

Hh (FS) Hl (FS) Lh (FS) Ll (FS) GM:200 WLs (FS)

YACC+DISH

Uncompressed Reuse Cache

U-SRC Cache

4X Uncompressed Baseline

SRC Cache

Higher the better

Figure 11: Normalized system performance (fair
speedup) over an uncompressed baseline.

YACC+DISH, SRC reduces the average miss rate (in terms of
MPKI) from 3.2 to 1.1. This reduction induces a performance
improvement as illustrated in Figure 9. On average, compared
to an uncompressed baseline, SRC cache provides 12.7% of
speedup (a maximum of 50% for xalancbmk) whereas a 4X
uncompressed baseline, YACC+DISH, and U-SRC provide
speedups of 10%, 8.3% and 6.5% respectively. SRC always
outperforms both YACC+DISH and U-SRC, and on many
benchmarks, the performance benefits of compression and
allocation policy are nearly additive. Moreover, SRC cache
outperforms 4X uncompressed baselines on most of the ap-
plications. A few points can be underlined. i) In a few cases,
the 4X larger cache performs worse than other configura-
tions despite similar (libquantumwith U-SRC) or lower miss
ratios (zeusmpwith U-SRC). This was expected since our sim-
ulations assume a longer cache access latency for 4X larger
cache.
ii) On average U-SRC provides less performance benefit than
YACC+DISH despite a larger miss rate reduction. This can
attributed to the difference of miss patterns that are induced
by the FITFUB allocation policy, leading to less DRAM row
access locality.
iii) For several benchmarks on which U-SRC is lagging in
performance against the Reuse cache despite a similar or
smaller miss rate, e.g freqmine, bfs, and ferret (see Figure

0.7

0.75

0.8

0.85

0.9

0.95

1

YACC+DISH Uncompressed Reuse Cache

U-SRC Cache SRC Cache

Lower the better

LLC Energy DRAM Energy

Figure 12: Improvement in memory sub-system en-
ergy normalized to uncompressed baseline.

6 and 7), the same phenomenon occurs with SRC against
the 4X cache, but with a smaller amplitude. Once again, this
can attributed to the patterns of misses which result in less
locality on DRAM row accesses in memory. However, the
phenomenon is less pronounced than on the uncompressed
cache since compressed blocks do no generate extra misses
on the second use.
iv) Among our benchmarks, bzip2 is a very particular case
with the 4X cache reaching 77% of performance improve-
ment. With the 4X cache, the working set of bzip2 almost
fits in at the LLC. Moreover, the stream of misses exhibits
poor locality, DRAM row hit rate is very low (less than 50
%), therefore the cost of each individual miss is very high.

Multi-core results: For 16- and 32-core systems, we use
an LLC of 32MB and 64MB, respectively. All other shared
resources are scaled as mentioned in Table 1. We divide
the multi-core results into two types - multi-programmed
and multi-threaded. For multi-programmed workloads, we
provide the performance improvement for each of the classes
(Hh, Hl, Lh, Ll) defined according to their sensitivity to cache
size and their ratio of reused blocks (see Section 3).
Fig. 10 illustrates the performance improvement for 200

multi-programmed workloads that span across four cate-
gories, and multi-threaded workloads. On average (geomean
of weighted speedup) across 200 workloads, compared to an
uncompressed baseline, SRC cache provides 17% improve-
ment whereas uncompressed Reuse cache, U-SRC cache and
4X uncompressed baseline provide improvements of 9%, 8%,
and 13%, respectively. Fair speedups are in the same range (re-
fer Figure 11). We observe similar trends for multi-threaded
applications.
In general SRC cache provides additional LLC space by

not allocating data entries to non-reused blocks through
helping the cache-sensitive applications of a workload mix.
As expected, workload mixes of category Hh that contain
cache sensitive applications and high proportions of single
use blocks are the greatest benefactors of SRC cache. As also
expected mixes such as Ll get more marginal benefits with

9

SRC cache as the individual applications are less sensitive to
an increase of the cache size.

SRC on inclusive Cache Hierarchies: So far, the eval-
uation has considered non-inclusive cache hierarchy. We
also simulated a relaxed inclusive cache hierarchy using the
tag-only state described in Section 5.3. On a relaxed inclusive
cache, the effectiveness of SRC remains similar as observed
for non-inclusive caches.

6.3 Energy consumption
Through reducing execution time, SRC reduces the energy
consumption both in the cores and in the memory system.
We focus our evaluation on the shared memory system in-
cluding LLC, DRAM and compressor and de-compressor.
Figure 12 illustrates the reduction in the energy consump-
tion in the memory components (LLC and DRAM) allowed
by the SRC cache for the multicore workloads. On average,
SRC reduces the energy consumption by 17 % on both the
DRAM and the LLC. However these similar average percent-
ages cover different scenarios. For instance, on the PARSEC
workloads, the benefit at the LLC is lower than on DRAM
while on Ll workloads the energy benefit at the DRAM is
much lower than the energy benefit at the cache. At the LLC,
the additional static power required by SRC over the baseline
configuration is marginal (roughly 2%), corresponding to the
storage overhead. Therefore, on our benchmarks, the static
energy consumption of SRC is about 13 % lower than the
one of the conventional cache (1 − 1.02

1.17 ≡ 13%). The savings
on dynamic energy are slightly higher. They come from the
substantial reduction of the number of misses, and also from
the reduction of writes on the cache for data blocks that are
bypassed to the L2 cache.
For DRAM energy, the savings are also slightly higher

on dynamic consumption than on static consumption. The
static energy reduction is proportional to the reduction of
the execution time (1 − 1

1.17 ≡ 15%). For the dynamic energy,
the reduction comes essentially from the reduction of the
number of accesses, and also on the change in the access
patterns on the DRAM which improves the row buffer hit
rate.
Compression/Decompression: While energy is saved at
the memory components (LLC and DRAM), additional en-
ergy is spent on compression/decompression. From our eval-
uation, energy for compressing a block with the DISH com-
pression scheme is about 15% of the energy of a read ac-
cess on the cache. Energy for decompressing a block is 3%
of the energy for a read access. This leads to an overall
compression/decompression energy in the 4% range of the
overall LLC energy since i) all blocks in the LLC are not
compressed and therefore not decompressed, ii) the blocks
bypassed with the FITFUB policy do not flow through the

0.95

1

1.05

1.1

1.15

1.2

1.25

YACC+DISH U-SRC Cache SRC Cache

1MB/core 2MB/core 4MB/core

Higher the better

Figure 13: Effect of LLC size: Performance normalized
to an uncompressed baseline for multi-core systems.

compression hardware. Overall, the extra energy spent on
compression/decompression is much smaller than energy
saved at the memory system.

6.4 Sensitivity Studies
LLC size: To understand the effect of LLC size on SRC cache,
we simulate multi-core systems with 1MB, 2MB and 4MB per
core. Fig. 13 illustrates the average performance for different
cache sizes for multicores. As expected, the performance
benefit is higher for a small cache (1MB per core), but is still
significant for the larger configuration (4MB per core).

Cache Replacement Policies: In our evaluation, SRC
cache uses SHiP++ [31] as its underlying cache replacement
policy. We study the effectiveness of SRC cache with dif-
ferent cache insertion/promotion priority policies such as
not recently reused (NRR) [4], hawkeye [12], and sampling
dead-block predictor (SDBP) [15]. Figure 14 illustrates the
performance difference when we change the cache replace-
ment policy. That is the column (SRC, NRR) illustrates the
performance improvement of SRC with NRR over SRC with
SHiP++. Similarly the column (baseline, hawkeye) illustrates
the performance ratio of baseline with hawkeye over baseline
with SHiP++. Overall, on our experimental set, the average
performance difference between these replacement policies
remains very small (< 2%) for all the cache structures. That is
for all the tested policies, SRC outperforms the baseline con-
figuration by 17% to 18%. This makes a strong case for using
FITFUB as a block allocation policy. However LLC manage-
ment policies answer two different different questions i) on
a miss, whether the block will be allocated in the LLC? ii)
which is the target for replacement ? The FITFUB allocation
policy only answers to the first question and can be asso-
ciated directly with most of the previously proposed LLC
management policies to manage the YACC cache. There are
many possible optimizations around FITFUB and optimizing
the replacement target policy that could be explored. For
instance, one could explore the priority level at which com-
pressed blocks and uncompressed blocks should be inserted,
one could explore the priority level at which compressed

10

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

Baseline U-SRC Cache YACC+DISH SRC Cache

NRR Hawkeye SDB

Higher the better

Figure 14: Effect of cachemanagement policies on SRC
Cache: Normalized performance to the same cache
structure that uses SHiP++. Results are for multi-core
systems.

blocks and uncompressed blocks should be promoted on a
hit, one can predict when not to bypass. All these optimiza-
tions might bring some additional performance gains on SRC,
but are left for future work.

Compression Technique: So far, we have evaluated SRC
cache with DISH technique. However, as SRC cache is inde-
pendent of the underlying compression schemes, we evaluate
SRC cache with BDI, CPACK+Z, and FPC compression tech-
niques that use YACC layout. Compared to the baseline un-
compressed cache, SRC cache that uses BDI, CPACK+Z and
FPC provide performance improvements of 13.8%, 11.2% and
10.3%, respectively, on multi-core systems. Therefore, SRC
cache is effective across different compression techniques
providing high performance gain and energy savings. Unsur-
prisingly, DISH that was designed especially for the YACC
cache layout, achieves the best performance improvement
(17%).

7 RELATEDWORK
To the best of our knowledge, this is the first study on replace-
ment/insertion policy for compressed caches that associate
a single super-block tag to a fixed data entry, i.e., YACC or
SCC. LLC replacement policies for uncompressed caches and
their possible adaptation to the SRC context have been previ-
ously discussed. On the other hand, there has been a limited
number of studies on optimizing insertion/replacement poli-
cies for compressed caches. A few studies [7, 11, 20] address
cache designs where a tag is not associated with a fixed data
entry, or several tags are associated with a data entry.
ECM [7] proposes size aware cache replacement policies

by taking the compressed size of the cache blocks into ac-
count for evicting LLC blocks. CAMP [20] outperforms size
aware cache replacement policies by dynamically prioritizing
cache blocks using their compressed block sizes. In the same
direction, on SRC, one could prioritize promotion/insertion
of data entries based on their compression status and/or on
the number of valid compressed blocks in the data entry.

Gaur et al. [11] acknowledge that replacement decision
is a nightmare on compressed caches with multiple tags
associated with the same data entry. For a compressed cache
allowing a maximum of two compressed blocks per data
entry, they propose the base-victim compression cache. On
the base-victim compression cache, a data entry stores a
main block and possibly a victim block. The replacement
policy only considers the main block. On a miss on block B
as main block (either a real miss or a hit on a victim block),
one allocates a data entry for block B, and one tries to keep
the evicted main block (if compressible) as companion victim
block with some main block. This elegant policy guarantees
that the sequence of misses as main blocks is the same as the
sequence of misses on an uncompressed cache with the same
replacement policy.

8 CONCLUSION
To accommodate cache compression, the YACC [24] layout
appears as a very promising solution, particularly when as-
sociated with an adapted compression scheme such as DISH
[19]. It achieves significant performance improvement com-
pared with a conventional cache design at a very limited
storage overhead (1.5 %).
The structure of the YACC layout is very similar to the

one of a conventional set-associative cache apart that that it
associates a super-block tag with each data entry (aka line
in the data array) instead of a block tag in order to map the
co-compressible of a super-block in a single data entry. The
performance of a cache also depends on its management
and particularly on the decision of allocating in the LLC or
bypassing blocks fetched from the memory. On YACC, the
super-block tag offers us the opportunity to implement the
FITFUB allocation and bypass policy. After a first uncom-
pressed block from a super-block has been allocated in the
cache, its super-block tag can be used to monitor the reuse
usage of its companion blocks in the super-block. This allows
to bypass these companion blocks on their first use, and store
them (and allocate a data entry for them) only on the second
use of the block. FITFUB can be implemented on top of any
priority insertion/promotion policy for the cache.
Our experiments show that, the benefit from cache com-

pression plus FITFUB is in the order of 12.7% and 17% for
single core and multi-core workloads, respectively. These
benefits also translate in energy savings on the memory
system (LLC and DRAM).
As a global proposition, SRC appears as very cost effec-

tive design leveraging cache compression and an effective
allocation and bypass policy at very limited hardware over-
head: the compression/decompression logic and 1.5% storage
overhead.

11

REFERENCES
[1] M. Ahmad, F. Hijaz, Qingchuan Shi, and O. Khan. 2015. CRONO: A

Benchmark Suite for Multithreaded Graph Algorithms Executing on
Futuristic Multicores. In Workload Characterization (IISWC), 2015 IEEE
International Symposium on. 44–55. https://doi.org/10.1109/IISWC.
2015.11

[2] J. Ahn, S. Yoo, and K. Choi. 2014. DASCA: Dead Write Prediction
Assisted STT-RAM Cache Architecture. In 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA). 25–36.
https://doi.org/10.1109/HPCA.2014.6835944

[3] A. R. Alameldeen andD. A.Wood. 2004. Frequent Pattern Compression:
A Significance-Based Compression Scheme for L2 Caches.. In Technical
Report 1500, Computer Sciences Department, University of Wisconsin-
Madison.

[4] Jorge Albericio, Pablo Ibáñez, Víctor Viñals, and Jose María Llabería.
2013. Exploiting Reuse Locality on Inclusive Shared Last-level Caches.
ACM Trans. Archit. Code Optim. 9, 4, Article 38 (Jan. 2013), 19 pages.
https://doi.org/10.1145/2400682.2400697

[5] Jorge Albericio, Pablo Ibáñez, Víctor Viñals, and José M. Llabería.
2013. The Reuse Cache: Downsizing the Shared Last-level Cache. In
Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-46). ACM, New York, NY, USA, 310–321.
https://doi.org/10.1145/2540708.2540735

[6] Angelos Arelakis and Per Stenstrom. 2014. SC2: A Statistical Compres-
sion Cache Scheme. In Proceeding of the 41st Annual International Sym-
posium on Computer Architecuture (ISCA ’14). IEEE Press, Piscataway,
NJ, USA, 145–156. http://dl.acm.org/citation.cfm?id=2665671.2665696

[7] S. Baek, H. G. Lee, C. Nicopoulos, J. Lee, and J. Kim. 2013. ECM: Effec-
tive Capacity Maximizer for high-performance compressed caching. In
High Performance Computer Architecture (HPCA2013), 2013 IEEE 19th
International Symposium on. 131–142. https://doi.org/10.1109/HPCA.
2013.6522313

[8] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.
The PARSEC Benchmark Suite: Characterization and Architectural
Implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques (PACT ’08). ACM,
New York, NY, USA, 72–81. https://doi.org/10.1145/1454115.1454128

[9] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar
Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. 2011. The
Gem5 Simulator. SIGARCH Comput. Archit. News 39, 2 (Aug. 2011),
1–7. https://doi.org/10.1145/2024716.2024718

[10] Xi Chen, Lei Yang, Robert P. Dick, Li Shang, and Haris Lekatsas. 2010.
C-PACK: A High-performance Microprocessor Cache Compression
Algorithm. IEEE Trans. Very Large Scale Integr. Syst. 18, 8, 1196–1208.
https://doi.org/10.1109/TVLSI.2009.2020989

[11] Jayesh Gaur, Alaa R. Alameldeen, and Sreenivas Subramoney. 2016.
Base-victim Compression: An Opportunistic Cache Compression Ar-
chitecture. In Proceedings of the 43rd International Symposium on Com-
puter Architecture (ISCA ’16). IEEE Press, Piscataway, NJ, USA, 317–328.
https://doi.org/10.1109/ISCA.2016.36

[12] Akanksha Jain and Calvin Lin. 2016. Back to the Future: Leveraging
Belady’s Algorithm for Improved Cache Replacement. In Proceedings
of the 43rd International Symposium on Computer Architecture (ISCA
’16). IEEE Press, Piscataway, NJ, USA, 78–89. https://doi.org/10.1109/
ISCA.2016.17

[13] Aamer Jaleel, William Hasenplaugh, Moinuddin Qureshi, Julien Sebot,
Simon Steely, Jr., and Joel Emer. 2008. Adaptive Insertion Policies
for Managing Shared Caches. In Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques (PACT

’08). ACM, New York, NY, USA, 208–219. https://doi.org/10.1145/
1454115.1454145

[14] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel Emer.
2010. High Performance Cache Replacement Using Re-reference Inter-
val Prediction (RRIP). In Proceedings of the 37th Annual International
Symposium on Computer Architecture (ISCA ’10). ACM, New York, NY,
USA, 60–71. https://doi.org/10.1145/1815961.1815971

[15] Samira Manabi Khan, Yingying Tian, and Daniel A. Jimenez. 2010.
Sampling Dead Block Prediction for Last-Level Caches. In Proceed-
ings of the 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO ’43). IEEE Computer Society, Washington,
DC, USA, 175–186. https://doi.org/10.1109/MICRO.2010.24

[16] Kun Luo, J. Gummaraju, and M. Franklin. 2001. Balancing thoughput
and fairness in SMT processors. In Performance Analysis of Systems and
Software, 2001. ISPASS. 2001 IEEE International Symposium on. 164–171.
https://doi.org/10.1109/ISPASS.2001.990695

[17] R Manikantan, Kaushik Rajan, and R Govindarajan. 2011. NUcache: An
Efficient Multicore Cache Organization Based on Next-Use Distance.
In Proceedings of the 2011 IEEE 17th International Symposium on High
Performance Computer Architecture (HPCA ’11). IEEE Computer Society,
Washington, DC, USA, 243–253. http://dl.acm.org/citation.cfm?id=
2014698.2014862

[18] Naveen Muralimanohar and Rajeev Balasubramonian. [n. d.]. CACTI
6.0: A Tool to Understand Large Caches. ([n. d.]).

[19] Biswabandan Panda and André Seznec. 2016. Dictionary Sharing:
An Efficient Cache Compression Scheme for Compressed Caches. In
49th Annual IEEE/ACM International Symposium on Microarchitecture,
2016. IEEE/ACM, Taipei, Taiwan. https://hal.archives-ouvertes.fr/
hal-01354246

[20] G. Pekhimenko, T. Huberty, R. Cai, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry. 2015. Exploiting compressed block size as an
indicator of future reuse. In High Performance Computer Architecture
(HPCA), 2015 IEEE 21st International Symposium on. 51–63. https:
//doi.org/10.1109/HPCA.2015.7056021

[21] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B. Gibbons,
Michael A. Kozuch, and Todd C. Mowry. 2012. Base-delta-immediate
Compression: Practical Data Compression for On-chip Caches. In
Proceedings of the 21st International Conference on Parallel Architectures
and Compilation Techniques (PACT ’12). ACM, New York, NY, USA,
377–388. https://doi.org/10.1145/2370816.2370870

[22] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely, and
Joel Emer. 2007. Adaptive Insertion Policies for High Performance
Caching. In Proceedings of the 34th Annual International Symposium on
Computer Architecture (ISCA ’07). ACM, New York, NY, USA, 381–391.
https://doi.org/10.1145/1250662.1250709

[23] Somayeh Sardashti, André Seznec, and David A. Wood. 2014. Skewed
Compressed Caches. In Proceedings of the 47th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO-47). IEEE Computer
Society, Washington, DC, USA, 331–342. https://doi.org/10.1109/
MICRO.2014.41

[24] Somayeh Sardashti, Andre Seznec, and David A. Wood. 2016. Yet
Another Compressed Cache: A Low-Cost Yet Effective Compressed
Cache. ACM Trans. Archit. Code Optim. 13, 3, Article 27 (Sept. 2016),
25 pages. https://doi.org/10.1145/2976740

[25] Somayeh Sardashti and David A. Wood. 2013. Decoupled Compressed
Cache: Exploiting Spatial Locality for Energy-optimized Compressed
Caching. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-46). 62–73.

[26] Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry.
2012. The Evicted-address Filter: A UnifiedMechanism to Address Both
Cache Pollution and Thrashing. In Proceedings of the 21st International
Conference on Parallel Architectures and Compilation Techniques (PACT

12

https://doi.org/10.1109/IISWC.2015.11
https://doi.org/10.1109/IISWC.2015.11
https://doi.org/10.1109/HPCA.2014.6835944
https://doi.org/10.1145/2400682.2400697
https://doi.org/10.1145/2540708.2540735
http://dl.acm.org/citation.cfm?id=2665671.2665696
https://doi.org/10.1109/HPCA.2013.6522313
https://doi.org/10.1109/HPCA.2013.6522313
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/TVLSI.2009.2020989
https://doi.org/10.1109/ISCA.2016.36
https://doi.org/10.1109/ISCA.2016.17
https://doi.org/10.1109/ISCA.2016.17
https://doi.org/10.1145/1454115.1454145
https://doi.org/10.1145/1454115.1454145
https://doi.org/10.1145/1815961.1815971
https://doi.org/10.1109/MICRO.2010.24
https://doi.org/10.1109/ISPASS.2001.990695
http://dl.acm.org/citation.cfm?id=2014698.2014862
http://dl.acm.org/citation.cfm?id=2014698.2014862
https://hal.archives-ouvertes.fr/hal-01354246
https://hal.archives-ouvertes.fr/hal-01354246
https://doi.org/10.1109/HPCA.2015.7056021
https://doi.org/10.1109/HPCA.2015.7056021
https://doi.org/10.1145/2370816.2370870
https://doi.org/10.1145/1250662.1250709
https://doi.org/10.1109/MICRO.2014.41
https://doi.org/10.1109/MICRO.2014.41
https://doi.org/10.1145/2976740

’12). ACM, New York, NY, USA, 355–366. https://doi.org/10.1145/
2370816.2370868

[27] André Seznec. 1993. A Case for Two-way Skewed-associative Caches.
In Proceedings of the 20th Annual International Symposium on Computer
Architecture (ISCA ’93). ACM, New York, NY, USA, 169–178. https:
//doi.org/10.1145/165123.165152

[28] Allan Snavely and Dean M. Tullsen. 2000. Symbiotic Job scheduling for
a Simultaneous Multithreaded Processor. In Proceedings of the Ninth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS IX). ACM, New York, NY,
USA, 234–244. https://doi.org/10.1145/378993.379244

[29] Cloyce D. Spradling. 2007. SPEC CPU2006 Benchmark Tools. SIGARCH
Computer Architecture News 35 (March 2007). Issue 1.

[30] Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt.
2007. Feedback Directed Prefetching: Improving the Performance
and Bandwidth-Efficiency of Hardware Prefetchers. In Proceedings of
the 2007 IEEE 13th International Symposium on High Performance Com-
puter Architecture (HPCA ’07). IEEE Computer Society, Washington,
DC, USA, 63–74. https://doi.org/10.1109/HPCA.2007.346185

[31] Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Margaret Martonosi,
Simon C. Steely, Jr., and Joel Emer. 2011. SHiP: Signature-based Hit Pre-
dictor for High Performance Caching. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-44).
ACM, New York, NY, USA, 430–441. https://doi.org/10.1145/2155620.
2155671

13

https://doi.org/10.1145/2370816.2370868
https://doi.org/10.1145/2370816.2370868
https://doi.org/10.1145/165123.165152
https://doi.org/10.1145/165123.165152
https://doi.org/10.1145/378993.379244
https://doi.org/10.1109/HPCA.2007.346185
https://doi.org/10.1145/2155620.2155671
https://doi.org/10.1145/2155620.2155671

	Abstract
	1 Introduction
	2 Background
	3 Experimental Methodology
	4 Motivation and Opportunity
	5 First In Then First Use Bypass allocation policy
	5.1 Scenarios with uncompressed blocks
	5.2 Scenarios with compressible blocks
	5.3 FITFUB, YACC and inclusive Cache Hierarchies

	6 Performance Evaluation
	6.1 Evaluation: Compression turned off
	6.2 Compression turned on
	6.3 Energy consumption
	6.4 Sensitivity Studies

	7 Related Work
	8 Conclusion
	References

