
Quark-X: An Efficient Top-K Processing Framework for
RDF Quad Stores

Jyoti Leeka
IIIT Delhi, India

jyotil@iiitd.ac.in

Srikanta Bedathur
IBM Research, India

sbedathur@in.ibm.com

Debajyoti Bera
IIIT Delhi, India

dbera@iiitd.ac.in
Medha Atre

IIT Kanpur, India
atrem@cse.iitk.ac.in

ABSTRACT
There is a growing trend towards enriching the RDF content from its
classical Subject-Predicate-Object triple form to an annotated repre-
sentation which can model richer relationships such as including fact
provenance, fact confidence, higher-order relationships and so on.
One of the recommended ways to achieve this is to use reification
and represent it as N-Quads –or simply quads– where an additional
identifier is associated with the entire RDF statement which can then
be used to add further annotations. A typical use of such annotations
is to have quantifiable confidence values to be attached to facts.
In such settings, it is important to support efficient top-k queries,
typically over user-defined ranking functions containing sentence-
level confidence values in addition to other quantifiable values in
the database. In this paper, we present Quark-X, an RDF-store and
SPARQL processing system for reified RDF data represented in
the form of quads. This paper presents the overall architecture of
our system – illustrating the modifications which need to be made
to a native quad store for it to process top-k queries. In Quark-X,
we propose indexing and query processing techniques for making
top-k querying efficient. In addition, we present the results of a
comprehensive empirical evaluation of our system over Yago2S
and DBpedia datasets. Our performance study shows that the pro-
posed method achieves one to two order of magnitude speed-up over
baseline solutions.

Keywords
Top-K; RDF; SPARQL

1. INTRODUCTION
The Resource Description Framework (RDF) has become a com-

mon way to represent semantically linked data on the web, and in
knowledge-bases such as Yago, DBpedia, FreeBase etc. As these
diverse semantic sources are used in an integrated manner, there is
a move towards richer representations of semantic resources from
classical Subject-Predicate-Object (SPO) triple forms. One of the
recommended ways to model such higher-order relationships within

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM’16 , October 24-28, 2016, Indianapolis, IN, USA
c© 2016 ACM. ISBN 978-1-4503-4073-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2983323.2983727

RDF is to use the notion of reification [20] which allows SPO-like
statements to be made about other statements using the built-in vo-
cabulary of RDF. Reification helps to represent various annotations
such as confidence value associated with a statement. For instance,
Yago2 knowledge-base makes extensive use of reification to an-
notate its extracted facts with their confidence, geo-location, and
time [11]. Note that these reified statements can be stored either as
triples in traditional triple-stores, stored using the recently proposed
approach singleton property approach [25] or stored as quads – the
approach we pursue in this paper.

We have focused on efficiently evaluating top-k queries over such
reified RDF data. We were motivated by the following two observa-
tions: first, a large fraction of semantic resources such as Yago and
DBpedia contain facts linking to quantifiable values which naturally
suggests the use of queries containing ORDER-BY. This is further
amplified by the use of reification to attach annotations such as confi-
dence and time. Secondly, despite the SPARQL recommendation of
using ORDER-BY / LIMIT operators, efficient processing of top-k
queries with a user-defined ranking function within RDF/SPARQL
setting have received limited attention [19, 33].

Take, for instance, the following query from the Yago2S dataset:
Find the top ten leaders of countries with the highest rate of inflation
and the lowest rate of economic growth, and yet these leaders own
luxurious items e.g., jewels, private homes, sports clubs etc.. Since
information about such possessions may also be rumours, there is
confidence value associated with the ownership statement which is
one of the factors in the ranking function. Most RDF processing
systems handle such queries by first collecting the results and then
sorting them in-memory based on the user-specified function; this
approach is not very scalable. On the other hand, commonly used
rank-join approaches also can not be effectively applied due to the
extensive combination of joins based on ranking attributes as well
as other non-quantifiable predicates in a SPARQL query.

A straightforward way of storing RDF data is using the rela-
tional model which enables the use of top-k algorithms designed
for relational databases used for RDF data. The property table tech-
nique [30, 18, 36] and vertically partitioned approach [1, 29] for
storing RDF data are two such techniques which can draw advantage
from top-k algorithms proposed for relational databases. However,
many researchers have shown that these models of storing RDF
in relational databases are not efficient in handling complex query
patterns seen in SPARQL queries [35, 23, 24]. Simple triple-store
model of storing RDF in relational tables is also not effective for
top-k querying since: (a) self-joins incurred by top-k algorithms
over a large table are bound to be expensive, (b) either of the two
access methods viz., the sorted or the random access [14] are not
suitable because of unsorted nature of quantifiable values in RDF

http://dx.doi.org/10.1145/2983323.2983727

and the complex pattern matching model of SPARQL queries (cf.
Section 4.2).

Quark-X overcomes these limitations by introducing a combina-
tion of adaptively switching block-wise sorted and random accesses
based on their cost estimates along with its semantic encoding of
identifiers to improve locality of reference of subjects associated
with quantifiable predicates. To the best of our knowledge, these
features are not explored until now in relational top-k processing
systems as well as RDF quad stores.

Quark-X pursues the idea of exhaustive indexing (popularized by
RDF-3X [24]), and adapts it for the storage of reified RDF stored as
quads. Starting with this, the Quark-X system adds following key
features:

1. The use of compact in-memory synopsis indexes –called S-
indexes– in addition to on-disk fine-grained indexes –called Q-
indexes– for quantifiable predicates involved in user-defined
ranking functions. This is in the same spirit as building
impact-layered indexes in information retrieval, but carefully
redesigned for use for ranking in reified RDF.

2. Intelligent reassignment of identifiers to RDF resources so
that entities associated with similar predicates and reification
structures are collocated on disk.

3. We propose novel Rank-Hash Join (RHJ) algorithm designed
to utilize the synopsis indexes, by selectively performing
range scans for quantifiable facts early on – this is crucial to
the overall performance of SPARQL queries which involve a
large number of joins.

4. Processing of data in blocks whenever possible, which enables
simultaneous processing of multiple buckets of S-indexes to
quickly generate the top-k results or reach early-termination
criterion.

We evaluate Quark-X by comparing it with two state-of-the-art
commercial RDF management systems – Jena-TDB-2.13.0 [16],
and Virtuoso 7.2 [32](a highly optimized RDBMS for storing RDF)
as well as two academic RDF systems – SPARQL-RANK [19] and
RDF-3X [24]. We also develop a query workload, which represents
various usage patterns of SPARQL with ORDER-BY/LIMIT over
reified RDF datasets. Our performance results demonstrate that
Quark-X is significantly faster than comparable systems in both,
cold as well as warm cache settings, while needing a very small
memory-footprint during query processing.

The rest of the paper is organized as follows. Section 2 intro-
duces preliminaries. Section 3 includes related work done in the
field of RDF stores, Databases, and Information Retrieval. Quark-X
is explained in detail in Section 4 and 5 – these sections explain
Quark-X’s indexing and query processing subsystems respectively.
Update management is explained in section 6. Section 7 explains
the implementation details of Quark-X. Section 8 explains our eval-
uation framework. Section 9 includes our experimental evaluation,
and Section 10 concludes the paper.

2. PRELIMINARIES
RDF expresses data in the form of subject(s), predicate(p), ob-

ject(o) triples. Subject and Object represent any two connected
resources on the web. The connection between them is represented
through a property(a.k.a. predicate). SPARQL [10] is the stan-
dard query language for querying RDF. The SPARQL queries we
consider have the following format:

SELECT [projection clause]
WHERE [graph pattern]
ORDER BY [ranking function]
LIMIT [top-K results]

The SELECT clause includes a set of variables that should be instan-
tiated from the RDF knowledge base (variables in a SPARQL query
are denoted by a “?” prefix. Please see Figure 2). A graph pattern in
the WHERE clause consists of triple patterns in the following forms:

1. s p o
2. r rdf:subject s. r rdf:predicate p. r rdf:object o,
here, r stands for fact id (or reification id). s, p, o and r can be

either bound to constants, or unbound variables in the query. The
predicates starting with prefix rdf are part of the RDF reification
vocabulary to explicitly declare the various parts of a RDF statement
identified through its identifier r. The ORDER BY clause in the
query allows a user-defined ranking function to establish the order
of bindings of the projected variables (the SELECT clause).

Although SPARQL 1.1 standard enables a large array of possible
ranking functions to be used here, in this work we limit ourselves to
convex monotonic functions involving quantifiable (i.e., numerical)
values. Examples of convex monotonic functions are: (a+ b),((a ∗
b) for a, b > 0), (a/b for b ≤ a & a > 0). The LIMIT clause
helps control the number of results returned.

2.1 Running Example
For ease of exposition, we use reified RDF listing shown in Fig-

ure 1(in a format popularized by YAGO2S) as a running example
throughout this paper. For illustration, we have used synthetic num-
bers for estimated affected population. The top-k SPARQL query
over the running example snippet that we use is given in Figure 2.
This query finds top-2 food products which contain toxins, ranked
based on number of victims, product’s cost and toxin’s concentration
in the product. The toxicity of a chemical compound has associated
confidence value which needs to be included in the ranking function.

For the rest of the paper, we adopt the following terminology: We
call the query patterns containing quantifiable predicates as quan-
tifiable query patterns, and the remaining query patterns are called
non-quantifiable query patterns (abbreviated as NQP). Subjects of
quantifiable query patterns are called quantifiable variables. The
example query in Figure 2 has (?product <hasPrice> ?price) as a
quantifiable query pattern. Also, the facts containing quantifiable
values in our knowledge base are called quantifiable facts.

3. RELATED WORK
In this section, we briefly discuss and contrast our work with the

related work from RDF and relational databases as well as from
information retrieval. We will limit ourselves to the discussion on
top-k query processing, and direct the interested reader to W3C
recommendations on supporting annotations and reification in RDF
(cf. Section 4.3 in [27]), and their usage in real-world semantic
datasets such as Yago [11].

RDF/SPARQL: Although modern RDF systems such as Virtu-
oso and Jena have fairly sophisticated SPARQL query processing,
their approach to top-k queries is to collect all the results of a query,
sort them or use an in-memory priority queue to compute top-k
answers. This approach is expensive as the query engine needs to
process all solutions, even though only k of them are requested by
the user.

The other approach involves early termination in an explicit man-
ner. We are aware of only a few such approaches in the context
of SPARQL – albeit only over triple-stores – which we discuss
next. The SPARQL-RANK framework proposed by Magliacane et
al. [19] makes use of different index permutations used in native
triple-stores for fast random access during top-k processing, and ap-
plies early-termination criterion. They propose an algorithm, which
requires the left-most index used in the join plan to be sorted based
on the ranking function, and then it randomly probes the right-side

:contains

:isA

:noOfVictims

:Diaminopropionic acid

:NeuroToxin

164000

:Lathyrus sativus

50

:hasPrice

0.025

:hasConcentration

:hasSource

http://www.fda.gov

0.98

:hasConfidenceNon-Quantifiable Fact

Quantifiable
Fact

Non-Quantifiable Predicate

Quantifiable Predicate

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns\#>
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
#@ <id1>
:Lathyrus_sativus :contains :Diaminopropionic_acid.
#@ <id2>
:Lathyrus_sativus :noOfVictims "164000"^^xsd:int.
#@ <id3>
:Lathyrus_sativus :hasPrice "50.0"^^xsd:double.
#@ <id4>
<id1> :hasSource <http://www.fda.gov>.
#@ <id5>
:Diaminopropionic_acid :isA :NeuroToxin.
#@ <id6>
<id5> :hasConfidence "0.98"^^xsd:double.
#@ <id7>
<id1> :hasConcentration "0.025"^^xsd:double .

Figure 1: Example RDF knowledge graph

SELECT ?product ?chemical ?source
((f1(?countVictims) + f2(?price)) * f3(?conc) *

f4(?conf) as ?rank)
WHERE {

?product :noOfVictims ?countVictims.
?product :hasPrice ?price.
?reif rdf:subject ?product; rdf:predicate :

contains; rdf:object ?chemical.
?reif :hasConcentration ?conc.
?reif :hasSource <http://www.fda.gov>;
?reif1 rdf:subject ?chemical; rdf:predicate :

isA; rdf:object ?toxin.
?reif1 :hasConfidence ?conf.

} ORDER BY DESC(?rank) LIMIT 2

Figure 2: Running Example Query

index. Thus, when the right-side index is large, the performance of
rank join suffers. Also, the requirement for the left-side index to be
sorted based on ranking function makes it unsuitable for arbitrary
user-defined ranking functions.

In another framework introduced by Wang et al. [34], quantitative
entities in the RDF dataset are separated out into an MS-tree index.
In the first step of query processing, candidate entities are located
using the MS-tree index that are then used as seeds for performing
breadth-first (BFS) traversals over the graph to find matching sub-
graphs. If the query requires only a few highly correlated predicates,
the algorithm may end up storing many unnecessary nodes in the
queue, making the retrieval of the first entity possible only after
several iterations. On the other hand, our approach does not require
unrelated predicates and entities to be stored together. However, we
did not empirically compare our work with this work as it is still
unclear how to apply their BFS based candidate generation phase
on reified databases.

Relational Databases: Hash Rank-Join (HRJN) [12] and Nested
Loops Rank Join (NRJN) [13] represent the state-of-the-art rela-
tional rank-join algorithms. HRJN [12] is based on ripple join
algorithm [9]. It maintains two hash tables in-memory for storing the
input tuples seen so far, the stored input tuples are used for finding
join results. These results are in-turn fed to a priority queue, which
outputs them in the order specified by the ranking function. NRJN
is similar to HRJN except that unlike HRJN it does not store input
tuples, but rather follows a nested-loop strategy. However for RDF
data, SPARQL-RANK showed experimentally that it outperformed
HRJN [19]. The performance gain was attributed to the unsorted na-
ture of numerical attributes present in indexes build by RDF engines.
We show in a later section that we outperform SPARQL-RANK by
a large margin by targeting precisely the numerical attributes once
again. Hence, we did not compare Quark-X with algorithms like
HRJN for relational databases.

Information Retrieval (IR): Block-max index structure proposed
by Ding et al. [7] is one of the effective approaches proposed in

the IR community for retrieving top-k documents efficiently. The
block-max index stores documents sorted by document ids in a
block-partitioned inverted index. In contrast, the identifiers in our
approach are sorted by scores. Our approach is somewhat similar to
impact-layered indexes, where the posting list is divided into layers
such that the higher layer posting list has a lower score than the
layer below it. Additionally, top-k ranking algorithms proposed
in the IR community are different from those proposed in the RDF
and relational databases community – in IR, bindings of just one
variable needs to be retrieved, whereas in relational database as well
as RDF setting, bindings of multiple variables need to be retrieved,
leading to unsorted orders.

4. QUARK-X INDEXING
Quark-X pursues the exhaustive indexing approach for RDF

databases made popular by RDF-3X [23], and additionally develops
an indexing framework for efficiently answering top-k queries. This
section presents the details of the indexing framework in Quark-X
for top-k processing. It consists of:

1. two indexes, an in-memory synopsis index called S-index and
a bucket-ordered quantifiable Q-index, on quantifiable facts in the
database,

2. a semantic re-encoding strategy of identifiers which utilizes
the information gathered during indexing to remap the ids involved
in quantifiable facts.

The index creation process, and the semantic re-encoding of
identifiers is illustrated in Figure 3.

Similar to most state-of-the-art RDF engines, Quark-X encodes
typically long URIs and strings in RDF as fixed-length numerical
identifiers and maintains these mappings in a dictionary structure.
The size of the dictionary is further reduced by identifying frequently
occurring common maximal prefixes among URIs in the database
which are encoded first into integers. These prefixes are represented
using their encodings in URIs they occur in, and these prefix encoded
strings are stored in the dictionary. For example, if the URI prefix
http://yago-knowledge.org/resource is mapped to integer 1, then
the URI http://yago-knowledge.org/resource/contains is prefix-
encoded to 1/contains and then stored in the mapping dictionary.

4.1 Quantifiable Indexes
Quark-X introduces two special indexes for quantifiable facts in

the database, designed to help in efficient early pruning of results
and in preserving interesting orders.

S-index. The S-index is an in-memory synopsis index which
stores for each quantifiable predicate a statistical metadata sum-
marizing all the entities and their associated quantifiable values
in a compact form. In particular, histogram-based information is
maintained for each quantifiable predicate to describe the value dis-
tribution. For simplicity, we employ an equi-depth histogram over

String
Tetraodontidae
Blighia sapida
Lathyrus sativus
Solanum tuberosum
Vicia faba
Rheum rhabarbarum

:noOfVictims
String
Prunus dulcis
Anacardium occidentale
Vicia faba
Rheum rhabarbarum
Lathyrus sativus
Solanum tuberosum

:hasPrice

Vicia faba
Rheum rhabarbarum

Lathyrus sativus
Solanum tuberosum

String
Tetraodontidae
Blighia sapida

Vicia faba
Rheum rhabarbarum
Lathyrus sativus
Solanum tuberosum

:hasPrice & :noOfVictims

Tetraodontidae
Blighia sapida

:noOfVictims:hasPrice
Prunus dulcis
Anacardium occidentale

String
Vicia faba
Rheum rhabarbarum
Lathyrus sativus
Solanum tuberosum

:hasPrice & :noOfVictims

Tetraodontidae
Blighia sapida

Prunus dulcis
Anacardium occidentale

B1

B2

B3

S-Index

1,23,4

7,8

B1

B2 B3

:hasPrice

3,4

1,25,6

B1 B2

B3

:noOfVictims
:noOfVictims

:hasPrice

:noOfVictims

A

B

D E

C

Entity Identifier

(Min, Max)

(434,800)

(30,50)

(1200,1350)

(100000,164000) (20000,35000)

(300000,350000)

Lathyrus sativus
Solanum tuberosum

Vicia faba
Rheum rhabarbarum

String
Prunus dulcis
Anacardium occidentale B1

B2

B3

:hasPrice
Bucket

Bucket
(B2,B3)
(B2,B3)
(B3,B2)
(B3,B2)

Idn
1
2
3
4

Ido
44
40
38
61

B1
B1

25
22

5
6

B1
B1

49
31

7
8

Ido
25
22
44
40
38
61

Value
1350
1200
800
434
50
30

Ido
49
31
38
61
44
40

Value
350000
300000
164000
100000
35000
20000

Value
1350
1200

Value
350000
300000
164000
100000
35000
20000

800
434
50
30

(B2,B3)
(B2,B3)
(B3,B2)
(B3,B2)

B1
B1

B1
B1

Figure 3: Summarized Index Creation (A©Raw Numerical Facts B© Bucket Creation (Bi=Bucket) C© Characteristic Set-Bucket Mapping D© Assign new
collocated ids (Ido: old identifier, Idn: new identifier) E© S-Index) 1

the range of values for each quantifiable predicate. We can easily
employ other forms of histograms as required. Associated with each
bucket of the histogram, we maintain:
• the lower and upper values, min[b] and max[b], defining the

range of quantifiable values covered by the bucket b,
• the set of subject ids associated with the quantifiable value

falling within this bucket range.
Although it is possible to store the set of subject ids as a Bloom
filter, we chose not to do so as it can not be used to maintain sorted
orders within each bucket, which, as we show later, can be used to
further speed up top-k processing.

We illustrate the process of constructing the S-index in Figure 3
for our running example data from Figure 1. The S-index con-
structed at this stage is called a temporary S-index. In this example,
the predicate :hasPrice has values in the range of [30, 1350], and
entities associated with the predicate :hasPrice have been divided
into 3 buckets. Similarly, the predicate :noOfVictims too has 3 buck-
ets. For brevity, the buckets for the other quantifiable predicates,
viz., :hasConfidence and :hasConcentration, are not shown. The
semantic encoding strategy we explain next necessitates re-mapping
of subject ids in the S-index as shown in step E.

Q-Index. Since S-index buckets only store upper- and lower-
bounds of scores in the bucket, we maintain an additional B+-tree
index called Q-index on predicate id, bucket number, subject id
and the corresponding quantifiable value. This index is used for
finding the exact numerical values associated with a subject and a
(quantifiable) predicate. Once the candidate buckets are determined
using S-index, it is quite straightforward to use Q-index to retrieve
quantifiable values in the order of their subject ids.

4.2 Semantic Encoding of Identifiers
In traditional RDF engines the URIs and strings in the database

are encoded typically in their order of appearance in the database
or hashing. Both these techniques have been shown to be subop-
timal for compressibility and, more importantly, for efficient join
processing [31]. In top-k ranking join queries, the problem is further
exacerbated by the requirement that identifier assignment should
not only help the classical equi-join processing, but also preserve
the ordering over quantifiable values.

To address this, during S-index construction the RDF terms are
re-encoded and re-mapped in the dictionary as well as the S-index
buckets. These new encodings are derived through the soft-schema
present in the RDF data which stems from the fact that multiple RDF
statements are used to describe the “properties” of a subject. To il-
lustrate this, consider the following query patterns from query given
in Figure 2 – (?product :noOfVictims ?countVictims), (?product
:hasPrice ?price) – both the patterns describe a food product, its
price and the number of victims through the predicates :noOfVictims

and :hasPrice. These two predicates are also strongly correlated
in the database since this pairing of predicates holds for only food
products. Many entities can likewise be uniquely identified by the
predicates connected to them. This observation has been used ear-
lier for improving the cardinality estimates of RDF queries [22],
where they name the set of predicates connected to an entity as its
characteristic set.

The semantic encoding scheme employed by Quark-X can be un-
derstood by using a subset of the example knowledge base shown in
Figure 1. In that knowledge base, subjects like Rheum_rhabarbarum,
Vicia_faba, etc. are described by two quantifiable predicates –
:noOfVictims and :hasPrice. On the other hand, subjects like
Prunus_dulcis, Blighia_sapida etc. have information pertaining
to just one quantifiable predicate, either :noOfVictims or :hasPrice.
Resulting in the following 3 characteristic sets: (:noOfVictims and
:hasPrice), (:noOfVictims) and (:hasPrice).

Using the temporary S-index, the subjects that have quantifiable
predicates belonging to a characteristic set are assigned their cor-
responding buckets (illustrated in steps A through C in Figure 3).
While doing so, subjects falling within each characteristic set are
ordered according to their predicate values, instead of subject values.
Next, ids are assigned to the sorted subjects in a manner so that
subjects belonging to the same characteristic set and bucket are
allocated consecutive ids. This is shown in Figure 3, step D. Then
the ids present in the temporary S-index are re-mapped using the
mappings generated at the end of step D. The resulting semantically
encoded S-index is shown in the step E of Figure 3.

5. QUARK-X QUERY PROCESSING
Now, we turn our attention to the top-k query processing in

Quark-X and describe how our quantifiable indexes are utilized to
evaluate queries efficiently. Since S-index is an in-memory synopsis
index which summarizes the quantifiable value distribution, we aim
to use it greedily for join-ahead pruning early on in the plan. The
query compiler simply extracts the quantifiable predicates from the
query before generating a cost-based query plan on non-quantitative
patterns. The S-index based join-ahead pruning over quantifiable
query patterns is added subsequently so as to generate candidate ids
while maintaining interesting orders.

Note that S-index buckets are processed bucket at a time in the
order of quantifiable value, and the same sequence is retained in
subsequent (non-quantifiable) joins as well. We call this as S-index
filtering of non-quantitative index, and it plays an important role in
the query evaluation pipeline we present next.
1Example data manually extracted from the following two books:
1. K.R. Natarajan. India’s poison peas. Chemistry, 49(6), 1976. (obtained from the
FDA Poisonous Plant Database).
2. David R. Briggs. Naturally-occurring toxicants in some nutritionally significant
plant foods and fish.

The query processing in Quark-X proceeds in three stages: first,
the S-index join is performed using early-termination over S-index
synopsis to generate candidate ids with lower and upper bounds
on the associated quantifiable values. Next, these candidate ids are
used for join-ahead pruning over non-quantifiable query patterns in
NQP-join or non-quantifiable query pattern joins, and, finally, the
SQ-index join is performed where the final list of top-k results with
their complete order-by scores is generated. We describe each of
these stages next.

The entire query processing flow is illustrated for our running ex-
ample in Figure 4. In the rest of this section, we regularly reference
various named parts of this figure for the ease of exposition.

5.1 S-index Join
Given a monotonic scoring function, we use the quantifiable value

distribution maintained in S-index for early-termination using neigh-
borhood expansion [37]. Note that this in itself is not an entirely
novel technique – similar ideas have been explored in distributed
top-k processing [21], scan depth estimation [26], and others for
enabling early termination [14]. We use S-index in a more effective
way by combining the quantifiable value sorted candidate ids gener-
ated by the index with non-quantifiable joins. Recall that Quark-X
employs semantic encoding of identifiers (cf. Section 4.2), which
ensures that identifiers belonging to a characteristic set to be clus-
tered. This works synergistically with S-index to provide increased
sequential scans on other indexes.

In our running example from Section 2.1, the S-index join on
quantifiable predicates :hasPrice and :noOfVictims, retrieves the
following bucket pairs: L1′ = (B2, B3) with join results (1, 2)
and max-score bound 28 × 106 and L2′ = (B3, B2) with join
result (3, 4) with max-score bound 8.2 × 106. The left-bottom
block of Figure 4 with label E′

1 depicts the S-index join result L2′.
Observe that the identifiers in L2′ – viz., (3, 4) – are also present in
the PSOR index (PSOR stands for an index sorted lexicographically
in the order of Predicate, Subject, Object, Reification ids) for the
predicate :contains which is a non-quantifiable part of the query,
as illustrated in the grey block E′

2 of Figure 4. Such a collocation
significantly speeds up the query processing by preferring range-
scans over random probes.

5.2 Non-quantifiable Predicate Joins
We now turn our attention to the join processing between non-

quantifiable query predicates using the S-index join results for join-
ahead pruning. Note that S-index induced score computation takes
place on quantifiable variables – i.e., subjects with quantifiable pred-
icates in the query. Therefore, by treating ordering over quantifiable
variables as an interesting order [12], we can generate rank-aware
plans which can exploit the S-index results.

Generation of such plans is quite different from the classical top-
k ranking systems which focus on maintaining interesting orders
inferred from join conditions, group-by and order-by clauses, while
ignoring enforcing interesting orders on other attributes like quan-
tifiable variables. Thus they end up materializing all results of a join
before generating the final ranked list. To remedy this, we propose
a novel rank-join operator called Rank-Hash Join (RHJ) which we
describe next.

5.2.1 Rank-Hash Join (RHJ) algorithm
The key idea of our Rank-Hash Join is to use the results from

the S-index join step to adaptively decide if the right-side index of
the join has to be probed or to be scanned fully. It does so in a
manner similar to a classical hash-join, but differing in not requiring
the entire result of the left hand side of the join to be in hash table.

Instead, RHJ needs to maintain only the ids from a single bucket
in the S-index in the hash table. Since we process all elements in
the hash-table completely before pulling the next bucket from the
underlying S-index join, it is guaranteed not to miss any results.

The RHJ algorithm builds hash-table on the left-side using tuples
filtered through from the S-index join stage. For retrieving tuples
from right-side of the join, the following two index choices exist:
(1) index on the sorted order of joining variables, which we term
as index-1, that can enable efficient disk skips by using the ids
retrieved from left hand side of the join in a sideways information
passing optimization [24], and (2) index on the sorted order of
quantifiable variables, which we term as index-2, over which we
can limit the number of pages required to be scanned by utilizing the
entity ids from the underlying S-index. These indices are adaptively
selected, triggered by a condition based on the cost calculated using
a cost model on these index alternatives which estimates the number
of disk pages required to be scanned.

The cost model for index-1 Due to its sorted order, the number
of pages required to be fetched from this index in the worst case is
equal to the number of tuples retrieved from left sub-plan. Hence,
the number of tuples satisfying the left sub-plan is taken to be the
estimate of the cost of this candidate plan. Specifically,

C1 = N ×
∏
i∈qp

Si × Snqp,

where, Snqp is the selectivity of the non-quantifiable predicate in the
left sub-plan; Si denotes the selectivity of i-th quantifiable predicate
in left sub-plan; N is the number of elements in a bucket (note that
we use equi-depth buckets), and qp are the quantitative predicates
in the query.

The cost model for index-2 As a result of semantic encoding,
the ids within a bucket are stored consecutively on a disk page (or
in adjacent disk pages) which can be retrieved with only one seek.
Therefore, in the worst case the number of pages required to be
fetched from this index is equal to number of buckets whose score
is above lk where lk is the score of the k-th best scoring element
seen so far, i.e.,

C2 = number of buckets having score greater than lk.

After estimating the cost of each candidate plan, the query re-
optimizer chooses the plan with smallest cost amongst the two
choices.

Note that, due to S-index filtering of non-quantitative index, our
algorithm incurs zero-cost for switching indexes (plans) at “materi-
alization” points [6], i.e. decision points where plans are changed.
In RHJ, materialization points are points at which next bucket is
retrieved from leftmost index. For example in our running example,
points at which buckets L1 (left-middle with label B), L2 (middle
with label E), L3 (right-middle with label H) are retrieved from the
leftmost index are materialization points. We believe, there is only
one prior work by Ilyas et al. [15] in DBMSs, which also uses adap-
tive query processing(AQP) for efficient top-k retrieval. However,
unlike our proposal, the state-saving techniques proposed in [15]
wastes a significant amount of already done work while switching
plans (with state-of-the-art rank join algorithms like HRJN, NRJN,
etc).

Our novel RHJ algorithm borrows ideas from classical hash join
and adaptive query processing (AQP) research and applies it in the
context of RDF/SPARQL processing, to the best of our knowledge,
for the first time.

RHJ Stepwise Description: Now we go through the workings of
the RHJ algorithm illustrating it step-by-step based on our running
example from Section 2.1. We refer to the steps illustrated in the

RHJ RHJ

HALT

L1

RHJ

HALT

R

Predicate
:hasPrice
:hasPrice
:noOfVictims

Predicate
:hasPrice
:hasPrice
:noOfVictims

SQ - Index Join

NQP - Join

A

B
Step1

C D

E
Step2

F G

H
Step3

I
Output l(Top-k Results)

RHJ Execution Steps

Index-1 Index-2

tL ≥lk
tL ≥lk

tR ≥lk
tR <lk

tL <lk

lk = 0 lk =20434 lk =100030

HALT

EXIT

...

?o=?sRHJ

P=:isA, ID=191

P
191
191
191
191
191
191

P=:isA, ID=191

R1

R2

R3
103,106

:hasConfidence

R1′=(B1)

S-Index Output

Join ahead pruning

Index-1
P=:contains, ID=50

3,4

:noOfVictims

L2′=(B3, B2)

S-Index Join

Join ahead pruning

Index-2

:hasPrice

tL ≥lk

E′
1

E′
3

E′
5

If: tR ≥lk

L2

L3

L1

L2

L3

R1

R2

L1

L2

L3

R1

R2

R3

...

OR

R
103
106
107
108
112
113

S
20
43
41
44
30
56

O
205
207
196
196
204
202

P
191
191
191
191
191
191 E′

4

S
20
22
30
41
43
56

R
103
104
112
107
106
113

O
205
201
204
196
207
202

P
50
50
50
50
50
50

L1

L2

E′
2

S
1
2
3
4
5
6

O
56
30
20
43
90
53

R
36
45
21
19
42
100

Detailed RHJ Execution: Depicting AQP (Step 1 and Step2)E′

R3

Q-Index Q-Index
Bucket
B2
B2
B3

Subject
1
2
1

Value
800
434
35000

Bucket
B3
B3
B2

Subject
3
4
3

Value
50
30
164000

l=φ Update l Update l

Collocated Ids due to semantic encoding
(R)

Figure 4: Quark-X Query Processing (AQP: Adaptive Query Processing; Reading order from label A to I)

schematic diagram in Figure 4. In the rest of this section, we use l
to denote the list with top-k results, with lk denoting the score of
the k-th result. For ease of exposition, our description is ordered
using the labels used in Figure 4 starting from label A at the top-left
of the figure until label I at the top-right of the figure.
A: Initialize the algorithm with l = ∅ and lk = 0.
B: Left and right-side are joined using classical hash join where:
• Left side: S-index join pulls the first bucket L1′ = (B2, B3),
which is used as a filter over P=:contains index, which helps
create candidate result block L1.
• Right side: Uses index-1 as illustrated in the grey portion
of the figure with label E′

4. The index-1 (PSRO ordered index)
is preferred here over the index-2 (PRSO-ordered) alternative
based on the cost considerations described above. In particular,
we observe that the ids 56 and 30 in column O, are present only
in bucket R3 of index-2 which necessitates retrieval of all pages
from R1 and R2 from disk, making it extremely inefficient. In
comparison, index-1 is used, it can utilize the sideways infor-
mation passing optimization since this index has the joining
variable in sorted order. This results in only 2 disk seeks in
the worst-case (assuming tuples corresponding to 56 and 30 are
stored on separate disk pages).

C: Find quantifiable values from Q-index using candidate buckets
retrieved from S-index in B.

D: The retrieved quantifiable values are aggregated using ranking
function in top-middle block with label D. The resulting k tu-
ples with highest score are then stored in l. The kth maximum
scoring element lk is passed to NQP-join stage – it helps in
performing early-termination check by verifying that, there is
no combination of buckets that has a maximum score (for de-
scending) more than the k-th result.

E: Left and right are again joined using classical hash join in
middle block with label E.
• Left Side: S-index Join (left-bottom block with label E′

1)
pulls next bucket L2′ = (B3, B2) (shown in left-bottom with
label E′

1), which is in-turn used as filter over P=:contains index
(grey block with label E′

2), which helps create block L2
• Right-side: Uses index-2 as illustrated in the grey block with
label E′

5. Note, here index-scan is speed-up by pulling buckets
from S-index (shown in right-bottom block with label E′

3).
We explain next the reason for choosing index-2 (PRSO). From
grey block with label E′

2, we observe block L2 requires 2 disk
seeks for the two identifiers 20 and 43 when index-1 (PSRO) –
shown with label E′

4 in grey block – is used. However, using lk

(score of kth result), we observe that only bucket R1 (shown
with label E′

5) is needed from the right side index. Thus, it is
beneficial to only scan R1 (requiring 1 disk seek) of index-2
instead of performing a full scan on the index-1.

F: Find quantifiable values from Q-index for the new set of candi-
date buckets retrieved from S-index in E.

G: The retrieved quantifiable values are again aggregated using
ranking function. The resulting k tuples with highest score are
then stored in l. The kth maximum scoring element lk is passed
to NQP-join stage – which helps in performing early-termination
check (described in D).

H: When pulling next bucket from S-index Join, we find early-
termination condition is satisfied (as score of k-th element is
greater than maximum score (tL) of yet to be retrieved buckets
i.e. lk>tL), hence the algorithm terminates.

I: Outputs top-k scores stored in list l.

5.2.2 SQ - Index Join
The S-Index join stage passes bindings of entity ids along with

their corresponding bucket numbers to NQP-Join stage, for quan-
tifiable variables appearing in sorted order in index scans. For
finding the explicit numerical values of other quantifiable variables
which appear in unsorted order in index scans, we first find their
corresponding bucket numbers using S-Index.

Using the bucket number retrieved either using the approach
described above or using S-Indexes, we find the exact numerical
values using Q-Index. The obtained numerical values are stored in a
list l, and the list is in-turn used to find the score of the last element
lk with respect to the ranking function.

6. UPDATES
Quark-X handles updates similar to the other state-of-the-art RDF

management system like RDF-3X and similarly assumes that up-
dates are mostly insertions, are far fewer compared to queries and
can be batched together. During batch updates, Quark-X creates
differential indexes for S-index, Q-index, and permutations of SPOR
which are stored in main memory and are merged with the main
index at suitable intervals. For recovering in case of failure, differ-
ential indexes are additionally stored in log files on disk.

During query processing, these indexes, and the main Quark-X
indexes undergo merge-join; however, being small, these incur
little overhead. While re-assigned ids in main indexes helped us in
clustering together semantically similar ids on disk, thereby reducing
disk seeks, the differential indexes reside entirely in main memory

and can avoid disk seek altogether. Id-assignment is therefore not
done in these indexes and is deferred until they are merged with the
main index at which point all ids are reassigned afresh.

7. IMPLEMENTATION
In this work, we assumed system architecture of a quad-store

that provides with a mapping dictionary between ids and strings.
In line with this, we have used RQ-RDF-3X [17] as a baseline
framework for our implementation. RQ-RDF-3X is a quad store
with exhaustive clustered B+-indexing of all permutations of SPOR.
RQ-RDF-3X stores all the 24 permutations over quads, many of
which are superflorous to begin with, thus, we dropped the following:
1) permutations where R appeared in the third position (e.g. SPRO)
were removed because R is always unique, therefore, a sorted order
of O for SPR does not provide additional help during joins; 2) all
permutations where R appeared in the first place (except RSPO)
were removed since sorted order of R, always unknown, does not
give any advantage for speeding-up range scans. But when R is a
joining variable, its sorted ordering helps perform joins efficiently;
however, only one index (RSPO) is sufficient for this purpose.

After explaining RQ-RDF-3X, now we explain how processing
data in blocks improved query execution time of Quark-X. At the
beginning of query processing, in the S-Index join stage, the candi-
date set of buckets required to be retrieved is equal to the set of all
plausible buckets. Accordingly, the S-Index aggregates buckets until
a fraction of k entities are retrieved and these aggregated buckets are
then passed to the NQP-Join stage. As the query execution proceeds,
a stage comes when it is possible to restrict the candidate set of
buckets based on their score and the score of the k-th result. At
this stage, we divide these candidate set of buckets into fractions.
It is evident that upon incremental processing, the threshold score
would get tighter, which helps in early termination. We also access
data in blocks during the SQ-Index join stage – where we keep
materializing the results obtained from NQP-Join until retrieving
k results. SQ-Index join then processes these materialized results
together. After k results have been retrieved, SQ-Index join pro-
cesses together aggregate buckets passed by S-Index join stage to
NQP-Join. Thus block-wise access helps in amortizing cost of index
scans over a range of results.

8. EVALUATION FRAMEWORK
Quark-X is implemented in C++, compiled with g++-4.8 with

-O3 optimization flag. All experiments were conducted on a Dell
R620 server with Intel Xeon E5-2640 processor @ 2.5GHz, 64GB
main-memory, RAID-5 hard-disk with 3TB effective size. In our
experimental evaluation, we report cold-cache timings after drop-
ping filesystem caches using: echo 3>/proc/sys/vm/drop
_caches, and warm-cache numbers by repeatedly running the
query processor with the same query 5 times, and taking the average
of last 3 runs.

We evaluate against two research prototypes – RDF-3X and
SPARQL-RANK, and two state-of-the-art commercial systems –
Jena-TDB-2.13.0 and Virtuoso 7.2. Among the research prototypi-
cal competitors we use, the inability of RDF-3X to compute only the
top-k results, and the higher number of random seeks incurred by
the query processing algorithm of SPARQL-RANK make them over-
all much slower in comparison to Quark-X. Note that the overheads
due to random seeks are further exacerbated in the straight forward
extension of these algorithms to quads due to the additional joins
with metadata like confidence values. On the other hand, Quark-X
outperforms the commercial systems which natively support quads
by smartly encoding the ids using soft-schema embedded in the data
to improve locality of reference in its index scans.

Yago2S DBpedia-RF

Size of input files (in ttl) 46 GB 74 GB
of quads 473, 271, 482 668, 867, 020
of numerical quads2 containing only confidence 236, 635, 830 334, 433, 512
of numerical quads without confidence 569, 558 197, 530

Table 1: Sizes of Datasets and Databases (RF: Reified Form)

8.1 Datasets
Despite the abundance of a number of performance benchmarks

for RDF/SPARQL query processing [8, 4, 28], our evaluation could
not use them since all of them are designed primarily for triple-stores,
with no queries using reification and named-graphs in their query set.
Therefore, we decided to work with a suite of top-k queries which
we designed over two large real-world datasets which extensively
use named-graphs or reification. The first dataset we use is DBpedia
3.7 [3], which contains facts extracted from Wikipedia, with prove-
nance expressed in the form of named graph. The second dataset,
Yago2S [11], contains facts extracted from Wikipedia and combined
with GeoNames and WordNet. It encodes additional information
–e.g. confidence score, time, spatial location, and provenance– with
each fact using fact ids encoded as a comment before each triple in
Turtle format.

To simulate the situation where a confidence score (a real-number
between 0 and 1.0) is associated with each fact, we assigned con-
fidence values using an exponential distribution to all facts in the
original dataset, and then we translated them into quads.We ob-
served similar trend in results with Uniform distribution, but due to
lack of space, we report results only with exponential distribution in
the paper. Thus, Yago2S contains a total of 237, 180, 265 numerical
quads – with 236, 610, 707 quads containing only the confidence
predicate and 569, 558 containing the remaining quantifiable predi-
cates. Similarly for DBpedia, out of 668, 867, 020 quads, we have
415, 131, 628 numerical quads with 396, 144, 979 containing only
confidence values that we assigned. Table 1 summarizes key statis-
tics of the dataset and the size of the resulting database in Quark-X.

8.2 Benchmark Query Workloads
Our benchmark query set consists of a set of 11 top-k ranking

queries each for DBpedia and Yago2S. These queries are designed
keeping in mind the following SPARQL query features that have
been found to be quite important [2]: structural features – in which
we consider (a) the number of triple patterns (TP), (b) the count and
degree of joins, and (c) the type of joins; and statistical features – in
which we consider their (a) result cardinality and (b) filtered result
selectivity. For top-k SPARQL query workloads, in addition to the
above set of features, we also use the quantifiable triple pattern
count that has been suggested earlier [38].

Apart from these, we observed the following two features are also
important in determining the complexity of query:

Shape: Based on the overall shape of the SPARQL query, we
classify them as either Star or Complex. Queries that belong to Star
class have only one non-quantifiable triple pattern, connected to
other quantifiable triple patterns. On the other hand, queries which
contain more than one non-quantifiable triple pattern connected to
other quantifiable triple patterns belong to Complex class. Although
this is a high-level classification, we found them to be sufficiently
useful to highlight the differences in the query performance.

Non-Quantifiable Triple Patterns (Non-Quant TP): The num-
ber of non-quantifiable triple patterns in the query highlights the
efficiency of a top-k for processing non-quantifiable patterns along-
side quantifiable query patterns.

Table 2 summarizes some of the important features of all 11
queries for each dataset we have considered in this evaluation. As

2quads containing quantifiable predicates

Query id Shape # QuantTP # NonQuantTP Res.Card.

1 Star 3 1 111, 425
2 Star 4 1 108, 911
3 Star 3 1 298
4 Star 3 1 396
5 Complex 2 3 700
6 Star 2 1 3, 902
7 Star 2 1 15, 380
8 Complex 2 3 44, 063
9 Complex 2 4 12, 909

10 Star 2 1 42, 186
11 Complex 2 2 2, 639

(a) Yago2S

Query id Shape # QuantTP # NonQuantTP Res.Card.

1 Complex 3 2 7, 763
2 Star 3 1 26, 631
3 Complex 3 3 313
4 Star 3 1 861
5 Star 8 1 167
6 Complex 2 3 21
7 Complex 2 2 69, 282
8 Complex 1 2 85, 968
9 Complex 2 2 293

10 Complex 3 2 293
11 Simple 1 2 182

(b) DBpedia
Table 2: Summarized Characteristics of Benchmark Queries

shown, the queries are designed so as to provide a broad cov-
erage of all the key features. Due to lack of space, we point
to the website (https://www.iiitd.edu.in/~jyotil/quarkx-benchmark.html/
BenchmarkQueries.docx) for further details of the queries used, in-
cluding the query listing in SPARQL. It is worth mentioning that
although our framework is aimed at convex monotonic ranking func-
tions, for simplicity we use linear ranking functions in evaluation.

9. EXPERIMENTAL RESULTS
In this section, we present the results of our performance evalua-

tion of Quark-X against the baseline systems we have considered.
We also discuss the impact of individual components of Quark-X on
the overall performance of top-k queries. Unless stated explicitly
otherwise, the results correspond to the setting k = 50.

9.1 Loading of Data and Size of Database

Framework DBpedia Yago2S
Time Size Time Size

Quark-X 13.28 hours 249 GB 7.59 hours 175 GB
Virtuoso 2.37 hours 66 GB 1.53 hours 43 GB
Jena-TDB 5 days 296 GB 3 days 132 GB
RDF-3X 14 hours 156 GB 8.75 hours 96 GB
SPARQL-RANK 18 days 326 GB 10 days 221 GB

Table 3: Data Load Performance of Various Frameworks
We start by discussing the loading time – summarized in Table 3 –

of various frameworks. Among the systems compared, SPARQL-
RANK and Jena-TDB took the longest time to load. SPARQL-
RANK operates on an older version of Jena (ARQ 2.8.9) and it
took more than 2 weeks to load DBpedia, whereas Jena-TDB-2.13.0
needed about 5 days. Both RDF-3X and Quark-X have almost the
same loading time, the least among all row stores.

The size of the database created by Quark-X was smaller than
that by SPARQL-RANK and comparable to the one created by Jena-
TDB. However, it was larger than that of RDF-3X since Quark-X
uses RQ-RDF-3X as the underlying framework which creates many
more clustered indexes than RDF-3X and has to build an additional
Q-index. Apart from the Q-Index, Quark-X also creates S-Indexes,
but that has a comparatively smaller memory footprint. The size of

S-index for the two datasets YAGO2S and DBpedia is 904 MB and
1.7 GB respectively, about 2% of the size of the raw data, despite
the fact that more than 50 percent of facts in two large real-world
datasets which we have used for experimentation (YAGO2S and
DBpedia) are quantitative. Further, the cost of construction of Q-
Index can be amortized by removing the quantitative facts stored in
POS and PSO indexes of the underlying RDF store (RQ-RDF-3X in
our case), as this information is already present in S and Q-Indexes.

From the results in Table 3, the performance of Virtuoso is notice-
ably better with respect to loading time (using buffer size of 48 GB)
and size of database created. This is not very surprising because
unlike RQ-RDF-3X (and RDF-3X) which takes an exhaustive in-
dexing approach, Virtuoso builds only two default indexes (PSOG
and POSG), plus 3 distinct projections (SP,OP,GS) [5]. We would
like to emphasize that the ideas introduced in this paper can be
applied to other RDF quad-stores. Choosing RQ-RDF-3X is merely
to demonstrate the effectiveness of our approach. Note that Quark-X
uses only a small amount of storage (about 6% of the size of raw
data for both S- and Q-indexes together), rest of the overhead is due
to the underlying engine RQ-RDF-3X.

9.2 Query Execution Performance
Now we turn our attention to the query processing performance

in answering top-k queries, by first presenting the cold-cache perfor-
mance followed by the warm-cache performance. In our discussion,
we use aggregated speedup values computed as the geometric mean
of individual query speedups for each system considered. Thus,

speedup(X,Y) =
(∏n

i=1

YQi
XQi

) 1
n
, where XQi denotes the time

taken by the system X for evaluating the query Qi and n is the total
number of queries in the benchmark. Workload-average benchmarks
like TPC frequently use geometric mean, since it normalizes the
values being averaged against outliers.

Our primary comparison is against the columnar-store Virtuoso,
which has been shown to have superior performance in comparison
to other RDF storage engines [5]. It is embellished with many opti-
mizations, of which vectorization and cache-consciousness are the
most relevant to our experiments. In contrast, the current implemen-
tation of Quark-X runs in single threaded mode and does not have
cache-conscious features as well as vectorized execution modes. We
believe that the use of these optimizations will significantly help in
further improving the performance of Quark-X.

Cold-cache Performance
The performance of each system on all benchmark queries is sum-
marized in Figure 5, which plots in logarithmic scale the average
time taken, in seconds, after running the query in cold-cache 5 times.
Note that we set the time-out for queries as 30 minutes, hence, the
Y-axis is limited to 1, 800.

The first observation we can make from these numbers is that
Quark-X outperforms all other systems under consideration by a
large margin. We also observe that SPARQL-RANK is many orders
of magnitude slower than even RDF-3X which does not do any
top-k processing at all, and instead materializes all the results of
the query. As we already discussed in Section 3, this is primarily
due to the query processing algorithm of SPARQL-RANK which
ends up using many random accesses over indexes. It is worth
mentioning that SPARQL-RANK returned incorrect results for all
queries except Q8, Q11 of DBpedia, and Q5, Q6, Q7, Q9, Q11 of
YAGO2S, hence the results for the incorrect queries have not been
shown in Figure 5. For queries returning correct results, Quark-X
outperformed SPARQL-RANK over both DBpedia and YAGO, with
all benchmark queries timing out on SPARQL-RANK. In subsequent
experiments, we will not report the results over SPARQL-RANK.

https://www.iiitd.edu.in/~jyotil/quarkx-benchmark.html/BenchmarkQueries.docx
https://www.iiitd.edu.in/~jyotil/quarkx-benchmark.html/BenchmarkQueries.docx

 0.1

 1

 10

1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
in

 S
ec

on
ds

Query Id

Quark-X
Virtuoso

Jena TDB
RDF-3X (no top-k)

SPARQL-RANK

(a) DBpedia

 0.1

 1

 10

1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
in

 S
ec

on
ds

Query Id

Quark-X
Virtuoso

Jena TDB
RDF-3X (no top-k)

SPARQL-RANK

(b) Yago2S
Figure 5: Cold-cache Query Processing Performance

Quark-X outperforms RDF-3X for all queries by 1–2 orders of
magnitude. The reason for poor performance of RDF-3X is: its
inability to retrieve just the top-k results.

We can also see that Virtuoso is by far the closest in performance
to Quark-X cold-cache setting. Quark-X outperforms it by a speedup
factor of 3.9 over Yago2S and 7 for DBpedia. Of all the queries,
Quark-X is significantly faster for Query Q11 over DBpedia by
almost two orders of magnitude over Virtuoso, demonstrating the
power of S-index. S-indexes help Quark-X skip over large portions
during query evaluation.

Warm-cache Performance

 0.001

 0.01

 0.1

 1

 10

1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
in

 S
ec

on
ds

Query Id

Quark-X Jena TDB RDF-3X (no top-k)

(a) DBpedia

 0.01

 0.1

 1

 10

1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
in

 S
ec

on
ds

Query Id

Quark-X Jena TDB RDF-3X (no top-k)

(b) Yago2S
Figure 6: Warm-cache Query Processing Performance
(Mode1)

 0.001

 0.01

 0.1

 1

 10

1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
in

 S
ec

on
ds

Query Id

Quark-X Virtuoso

(a) DBpedia

 0.01

 0.1

 1

 10

1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
in

 S
ec

on
ds

Query Id

Quark-X Virtuoso

(b) Yago2S
Figure 7: Warm-cache Query Processing Performance
(Mode2)

We now turn our attention to warm-cache query processing per-
formance of systems under comparison. Jena and RDF-3X make
use of only the operating system cache, whereas Virtuoso explicitly
manages its own (somewhat large) cache. Therefore, in order to
have a fair comparison, we present warm-cache results in two parts:

Mode 1: Figure 6 reports the results of comparison amongst
Quark-X, Jena, and RDF-3X where all the systems use only O.S.
caches. It can be seen that Quark-X outperforms Jena and RDF-3X
significantly. Specifically, over DBpedia, Quark-X outperforms Jena
by a speedup factor of about 22 and RDF-3X by a factor of 206.

Mode 2: In this mode, we compared Quark-X and Virtuoso, both
using their own internal caches. We suitably modified Quark-X also
to cache the working set of the database, similar to Virtuoso. Since
Quark-X does not yet use vectorization, the vector size of Virtuoso
is set to 1. The results of this comparison are shown in Figure 7,
where we find that Quark-X continues to outperform Virtuoso – by a
speedup factor of 24.2 for Yago2S and 13.6 for DBpedia. Note that
we do not report numbers for Virtuoso for Q2 and Q4 of DBpedia,
because, somewhat surprisingly, it returned incorrect results.
Quark-X is slower than Virtuoso for queries Q5, Q9 and Q10 over
DBpedia. On further analysis, we discovered that unlike Yago2S,
DBpedia is highly unstructured leading to a huge number of char-
acteristic sets, many of which occur only once. Specifically, DB-
pedia contains 197,530 characteristic sets and Yago2S contains 86
characteristic sets of quantifiable predicates. Large number of char-
acteristic sets leads to fragmentation in id space – which naturally
leads to increased random accesses. For a given set of quantitative
predicates of Q5, Q9 and Q10 the Non-Quantifiable Predicate Join
(NQP-Join) stage (cf. Section 5), of Quark-X’s query processing
engine has to look through many different characteristic set space
– which is bound to cause a significant overhead. We can mitigate
this by generating characteristic sets with approximate overlap.
Finally, Quark-X is more than an order of magnitude superior to
all the other systems even when it retrieves all the required results
e.g. for Q6 of DBpedia. The good performance of Quark-X in
comparison to Virtuoso and Jena is attributed to its efficient use of
S-Indexes and reduced memory and index access due to increased
data-locality induced by its novel semantically encoded identifiers.

 1

 10

 100

 1000

k=1 k=50 k=1000

G
eo

m
. M

ea
n

of
 E

xe
cu

tio
n

Ti
m

e
in

 S
ec

.

Quark-X
Virtuoso

Jena TDB
RDF3X (no top-k)

(a) Cold-cache

 0.01

 0.1

 1

 10

 100

k=1 k=50 k=1000

G
eo

m
. M

ea
n

of
 E

xe
cu

tio
n

Ti
m

e
in

 S
ec

.

Quark-Xown cache
Quark-XO.S. cache

Virtuosoown cache
JenaO.S. cache

RDF-3XO.S. cache

(b) Warm-cache
Figure 8: Performance over DBpedia for Varying k

We also observe that the consistent poor performance of Jena in both
cold as well as warm cache is due to its exclusive use of index-based
joins leading to random access patterns during query processing.

9.3 Impact of Varying k
Next, we consider the impact of varying k. Figure 8 shows the

geometric mean of all queries for each value of k = {1, 50, 1000}
in both cold- and warm-cache (the subscript denotes, whether the
system uses its own cache or O.S. cache). Due to lack of space,
we limit showing results only over DBpedia (results over Yago2S
follow a similar trend).

One of the immediate effects that can be observed from these
plots is that on increasing the value of k, systems which translate
URIs and strings in RDF data into integer ids and back during final
result generation are significantly affected. If the dictionary used for
this translation is inefficient, for large values of k, the system can
spend significant amount of time in its dictionary lookups during
result generation. Due to this reason even though Virtuoso and Jena
evaluate and output all results still they show slight variation with
increasing value of k. Quark-X, in contrast, does not evaluate all
results, thus, the variation of Quark-X’s query processing perfor-
mance is much greater. Additionally, it is noteworthy that Quark-X’s
performance in warm cache using its own cache is better than its
performance using O.S. caches. This performance improvement is
attributed to the elimination of decompression cost in Quark-X when
it uses its own cache, as decompression is known to be beneficial for
cold cache but is an unnecessary overhead for warm cache (when
caching is performed by the O.S.).

Upon incrementing k, the use of block-wise processing in Quark-
X also comes into play as follows: we process k fraction of buckets
at a time until all k results are obtained. As we increase k, if all
top results are obtained from the initial fraction of buckets, then we
can see significant performance speedups. Only in specific queries
which include many non-quantifiable facts, this feature does not
play a crucial role.

10. CONCLUSION
This paper presents Quark-X, an efficient top-k query processing

framework for RDF quad stores. The salient features of Quark-
X include its indexes, viz., S-Index and Q-Index; the Rank-Hash
Join query execution algorithm to adaptively choose the best index
for joins; and the Semantic Encoding strategy used for increasing
data locality. Through our experiments, Quark-X was shown to
outperform existing frameworks by 1-2 orders of magnitude. As
part of the future work, we plan to implement Quark-X enabled
top-k RDF-graph reasoner.

11. REFERENCES
[1] D. J. Abadi et al. Scalable Semantic Web Data Management using vertical

partitioning. In Proc. of VLDB, 2007.
[2] G. Aluç et al. Diversified Stress Testing of RDF Data Management Systems. In

ISWC. 2014.
[3] C. Bizer et al. DBpedia - A Crystallization Point for the Web of Data. J. Web

Sem., 7(3), 2009.
[4] C. Bizer and A. Schultz. The Berlin SPARQL Benchmark. Int. Journal of

Semantic Web Inf. Syst., 5(2), 2009.
[5] P. Boncz et al. Advances in Large-Scale RDF Data Management. In Linked

Open Data–Creating Knowledge Out of Interlinked Data. 2014.
[6] A. Deshpande et al. Adaptive Query Processing. Foundations and Trends in

Databases, 1(1), 2007.
[7] S. Ding and T. Suel. Faster Top-k Document Retrieval using Block-max

Indexes. In SIGIR, 2011.
[8] Y. Guo et al. LUBM: A Benchmark for OWL Knowledge Base Systems. J. Web

Sem., 3(2), 2005.
[9] P. Haas et al. Ripple Joins for Online Aggregation. In SIGMOD, 1999.

[10] S. Harris et al. SPARQL 1.1 Query Language. W3C Recommendation, 2013.
[11] J. Hoffart et al. YAGO2: A Spatially and Temporally Enhanced Knowledge

Base from Wikipedia. Artificial Intelligence, 194, 2013.
[12] I. Ilyas et al. Rank-Aware Query Optimization. In SIGMOD, 2004.
[13] I. Ilyas et al. Supporting Top-k Join Queries in Relational Databases. PVLDB,

13(3), 2004.
[14] I. Ilyas et al. A Survey of Top-k Query Processing Techniques in Relational

Database Systems. CSUR, 40(4), 2008.
[15] I. F. Ilyas et al. Adaptive Rank-Aware Query Optimization in Relational

Databases. TODS, 31(4), 2006.
[16] Apache Jena-TDB 2.13 documentation.

http://jena.apache.org/documentation/tdb/index.html, Jan 2016.
[17] J. Leeka and S. Bedathur. RQ-RDF-3X: Going beyond Triplestores. In ICDEW -

DESWEB, 2014.
[18] J. Levandoski and M. Mokbel. RDF Data-Centric Storage. In ICWS, 2009.
[19] S. Magliacane et al. Efficient Execution of Top-k SPARQL Queries. In ISWC.

2012.
[20] F. Manola et al. RDF Primer. W3C recommendation, 10(1-107), 2004.
[21] S. Michel et al. KLEE: a Framework for Distributed Top-k Query Algorithms.

In Proc. of VLDB, 2005.
[22] T. Neumann and G. Moerkotte. Characteristic Sets: Accurate Cardinality

Estimation for RDF Queries with Multiple Joins. In ICDE, 2011.
[23] T. Neumann and G. Weikum. RDF-3X: a RISC-style Engine for RDF. PVLDB,

1(1), 2008.
[24] T. Neumann and G. Weikum. Scalable Join Processing on very Large RDF

Graphs. In SIGMOD, 2009.
[25] V. Nguyen et al. Don’t like RDF Reification?: making Statements about

Statements using Singleton Property. In WWW, 2014.
[26] H. Pang et al. Efficient Processing of Exact Top-k Queries over Disk-Resident

Sorted Lists. VLDB Journal, 19(3), 2010.
[27] Rdf primer. http://www.w3.org/TR/2004/REC-rdf-primer-20040210/, Feb 2004.
[28] M. Schmidt et al. SP2Bench: A SPARQL Performance Benchmark. In ICDE,

2009.
[29] L. Sidirourgos et al. Column-Store support for RDF Data Management: not all

Swans are White. PVLDB, 1(2), 2008.
[30] M. Sintek et al. RDFBroker: A Signature-based High-Performance RDF Store.

ESWC, 2006.
[31] J. Urbani et al. KOGNAC: Efficient Encoding of Large Knowledge Graphs. In

IJCAI, 2016.
[32] Virtuoso 7.2. http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/

VirtTipsAndTricksSPARQL11FeaturesExamplesCollection, May 2016.
[33] A. Wagner et al. Top-k Linked Data Query Processing. In ESWC. 2012.
[34] D. Wang et al. Top-k Queries on RDF Graphs. Information Sciences, 316, 2015.
[35] C. Weiss et al. Hexastore: Sextuple Indexing for Semantic Web Data

Management. PVLDB, 1(1), 2008.
[36] K. Wilkinson. Jena Property Table Implementation. SSWS, 2006.
[37] D. Xin et al. Progressive and Selective Merge: Computing Top-k with ad-hoc

Ranking Functions. In SIGMOD, 2007.
[38] S. Zahmatkesh. Retrieval of the most relevant Combinations of Data Published

in Heterogeneous Distributed Datasets on the Web. ISWC-DC 2014.

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtTipsAndTricksSPARQL11FeaturesExamplesCollection
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtTipsAndTricksSPARQL11FeaturesExamplesCollection

	Introduction
	Preliminaries
	Running Example

	Related Work
	Quark-X Indexing
	Quantifiable Indexes
	Semantic Encoding of Identifiers

	Quark-X Query Processing
	S-index Join
	Non-quantifiable Predicate Joins
	Rank-Hash Join (RHJ) algorithm
	SQ - Index Join

	Updates
	Implementation
	Evaluation Framework
	Datasets
	Benchmark Query Workloads

	Experimental Results
	Loading of Data and Size of Database
	Query Execution Performance
	Impact of Varying k

	Conclusion
	References

