
N-way multi-join

Medha Atre

Aug 8, 2016

Input to the following algorithm is a list of triple patterns, i.e., the edges in the pattern query sorted
in the ascending order of number of triples (graph edges) that match that edge pattern after doing the
semi-joins based pruning as we saw in the lecture slides.

In practice we use additional trick (not included in the following algorithm for simplicity and clarity)
– we first sort all the triple patterns in the ascending order of number of triples matching them. We pick
the first triple pattern from this list, and from the second triple pattern onwards, we recursively choose
the triple pattern that shares a common wildcard node, i.e., a join variable, e.g., ?friend with at least
one of the previously chosen triple patterns. Come to think of it, this is similar to the way we choose a
spanning tree over a graph – every time a node is chosen such that it is connected to at least one node
of the previously chosen nodes as a part of the spanning tree.

We always find such a spanning tree for our query graph, because we assume that the query graph
is always connected, i.e., there do not exist any Cartesian products in the query. Cartesian products are
very rare (and do not hold much significance) in the context of graph shaped data.

Algorithm 1: multi-way-join

input : vmap, stps, visited
output: all the results of the query

1 if visited.size == stps.size then
2 output (vmap); // generate a single result

3 return;

4 if visited is empty then
5 tp1 = first TP from stps;
6 visited.add(tp1);
7 for each triple t ∈ BMtp1

do
8 generate bindings for vars(tp1) from t, store in vmap;
9 multi-way-join(vmap, stps, visited, nulreqd);

10 else
11 for each tpi in stps do
12 if tpi ∈ visited then
13 continue;
14 get bindings for vars(tpi) from vmap;
15 if no bindings found then
16 continue;

17 atleast-one-triple = false;
18 for each triple t ∈ BMtpi

with same bindings do
19 atleast-one-triple = true;
20 store vars(tpi) bindings from t in vmap;
21 visited.add(tpi);
22 multi-way-join(vmap, stps, visited);
23 visited.remove(tpi);

24 if (atleast-one-triple == false) then
25 return;

1


